ON SOME PROBLEMS OF GYARMATI AND SÁRKÖZY

Le Anh Vinh
Mathematics Department, Harvard University, Cambridge, Massachusetts
vinh@math.harvard.edu

Received: 12/3/08, Revised: 5/22/11, Accepted: 7/1/12, Published: 7/13/12

Abstract

In a recent paper, for "large" (but otherwise unspecified) subsets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ of \mathbb{F}_{q}, Gyarmati and Sárközy (2008) showed the solvability of the equations $a+b=c d$, and $a b+1=c d$ with $a \in \mathcal{A}, b \in \mathcal{B}, c \in \mathcal{C}, d \in \mathcal{D}$. They asked whether one can extend these results to every $k \in \mathbb{N}$ in the following way: for large subsets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ of \mathbb{F}_{q}, there are $a_{1}, \ldots, a_{k}, a_{1}^{\prime}, \ldots, a_{k}^{\prime} \in \mathcal{A}, b_{1}, \ldots, b_{k}, b_{1}^{\prime}, \ldots, b_{k}^{\prime} \in \mathcal{B}$ with $a_{i}+b_{j}, a_{i}^{\prime} b_{j}^{\prime}+1 \in \mathcal{C D}$ (for $\left.1 \leqslant i, j \leqslant k\right)$. In this paper, we give an affirmative answer to this question.

1. Introduction

In [6] and [5], Sárközy proved that if $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ are "large" subsets of \mathbb{Z}_{p}, more precisely, $|\mathcal{A}||\mathcal{B}||\mathcal{C}||\mathcal{D}| \gg p^{3}$, then the equation

$$
\begin{equation*}
a+b=c d \tag{1}
\end{equation*}
$$

respectively

$$
\begin{equation*}
a b+1=c d \tag{2}
\end{equation*}
$$

can be solved with $a \in \mathcal{A}, b \in \mathcal{B}, c \in \mathcal{C}$ and $d \in \mathcal{D}$. Gyarmati and Sárközy [4] generalized the results on the solvability of equation (1) to finite fields. Using bounds of multiplicative character sums, Shparlinski [7] extended the class of sets which satisfy this property. Furthermore, Garaev $[2,3]$ considered the equations (1) and (2) over some special sets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ to obtain new results on the sum-product problem in finite fields.

At the end of [4], Gyarmati and Sárközy proposed some open problems related to the above equations. They asked whether one can extend the solvability of the equations (1) and (2) in the following way: for every $k \in \mathbb{N}$, there are $c=c(k)>0$ and $q_{0}=q_{0}(k)$ such that if $q>q_{0}, \mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \subseteq \mathbb{F}_{q},|\mathcal{A}||\mathcal{B}\|\mathcal{C}\| \mathcal{D}|>q^{4-c}$ then there are $a_{1}, \ldots, a_{k}, a_{1}^{\prime}, \ldots, a_{k}^{\prime} \in \mathcal{A}, b_{1}, \ldots, b_{k}, b_{1}^{\prime}, \ldots, b_{k}^{\prime} \in \mathcal{B}$ with $a_{i}+b_{j}, a_{i}^{\prime} b_{j}^{\prime}+1 \in \mathcal{C D}$
for $1 \leqslant i, j \leqslant k$. In this paper, we give an affirmative answer to this question. More precisely, our results are the following.
Theorem 1. Let $k \in \mathbb{N}$. If $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \subseteq \mathbb{F}_{q}$ with $|\mathcal{A}\|\mathcal{B}\| \mathcal{C} \| \mathcal{D}| \gg q^{4-\frac{1}{2(k+2)}}$, then there are $a_{1}, \ldots, a_{k} \in \mathcal{A}, b_{1}, \ldots, b_{k} \in \mathcal{B}$ with $a_{i}+b_{j} \in \mathcal{C D}$ for $1 \leqslant i, j \leqslant k$.
Theorem 2. Let $k \in \mathbb{N}$. If $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \subseteq \mathbb{F}_{q}$ with $|\mathcal{A}\|\mathcal{B}\| \mathcal{C} \| \mathcal{D}| \gg q^{4-\frac{1}{2(k+2)} \text {, then }}$ there are $a_{1}, \ldots, a_{k} \in \mathcal{A}, b_{1}, \ldots, b_{k} \in \mathcal{B}$ with $a_{i} b_{j}+1 \in \mathcal{C D}$ for $1 \leqslant i, j \leqslant k$.

In [4], Gyarmati and Sárközy also studied the solvability of other (higher degree) algebraic equations with solutions restricted to "large" subsets of \mathbb{F}_{q}. They considered the following equations:

$$
a+b=f(c, d), \quad a \in \mathcal{A}, b \in \mathcal{B}, c \in \mathcal{C}, d \in \mathcal{D}
$$

and

$$
a b=f(c, d), \quad a \in \mathcal{A}, b \in \mathcal{B}, c \in \mathcal{C}, d \in \mathcal{D}
$$

with $f(x, y) \in \mathbb{F}_{q}[x, y], \mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \subset \mathbb{F}_{q}$. We generalize Theorems 1 and 2 in this direction. We have the following result for the sum problem.

Theorem 3. Suppose that $f(x, y) \in \mathbb{F}_{q}[x, y]$, and $f(x, y)$ is not of the form $g(x)+$ $h(y)$. We write $f(x, y)$ in the form

$$
f(x, y)=\sum_{i=0}^{m} g_{i}(x) y^{i}
$$

with $g_{i}(x) \in \mathbb{F}_{q}[x]$, and let I denote the greatest i value with the property that $g_{i}(x)$ is not identically constant. Assume that $(I, q)=1$. For every $k \in \mathbb{N}$, if $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \subseteq \mathbb{F}_{q}$ with $|\mathcal{A}||\mathcal{B}||\mathcal{C}||\mathcal{D}| \gg q^{4-\frac{1}{4(k+2)}}$, then there are $a_{1}, \ldots, a_{k} \in \mathcal{A}, b_{1}, \ldots, b_{k} \in \mathcal{B}$ with $a_{i}+b_{j} \in f(\mathcal{C}, \mathcal{D})$ for $1 \leqslant i, j \leqslant k$ (where $\left.f(\mathcal{C}, \mathcal{D})=\{f(c, d): c \in \mathcal{C}, d \in \mathcal{D}\}\right)$.

Before formulating the next theorem, we need to take some definitions from [4].
Definition 4. A polynomial

$$
F(x, y)=\sum_{i=1}^{n} G_{i}(y) x^{i}=\sum_{j=0}^{m} H_{j}(x) y^{j} \in \mathbb{F}_{q}[x, y]
$$

is said to be primitive in x if $\left(G_{0}(y), \ldots, G_{n}(y)\right)=1$, and it is said to be primitive in y if

$$
\left(H_{0}(x), \ldots, H_{m}(x)\right)=1
$$

Definition 5. Every polynomial $f(x, y) \in \mathbb{F}_{q}[x, y]$ can be written uniquely (apart from constant factors) in the form

$$
f(x, y)=F(x) G(x) H(x, y)
$$

where $H(x, y)$ is primitive in both x and y. The polynomial $H(x, y)$ (uniquely determined up to constant factors) is called the primitive kernel of $f(x, y)$.

We now can state an analog of Theorem 3 for the product problem.
Theorem 6. Suppose that $f(x, y) \in \mathbb{F}_{q}[x, y]$ and the primitive kernel $H(x, y)$ of $f(x, y)$ is not of the form $c(K(x, y))^{d}$. For every $k \in \mathbb{N}$, if $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \subset \mathbb{F}_{q}$ with $|\mathcal{A}||\mathcal{B}||\mathcal{C}||\mathcal{D}| \gg q^{4-\frac{1}{4(k+2)}}$, then there are $a_{1}, \ldots, a_{k} \in \mathcal{A}, b_{1}, \ldots, b_{k} \in \mathcal{B}$ with $a_{i} b_{j} \in$ $f(\mathcal{C}, \mathcal{D})$ for $1 \leqslant i, j \leqslant k$.

2. Pseudo-Randomness of Restricted-Sum Graphs

For any $a \in \mathcal{A}, c \in \mathcal{C}$, denote by $N^{c, \mathcal{D}}(a)$ the set of all $b \in \mathbb{F}_{q}$ such that $a+b \in$ $c \mathcal{D}$, and let $N_{\mathcal{B}}^{c, \mathcal{D}}(a)=N^{c, \mathcal{D}}(a) \cap \mathcal{B}$. The following key estimate says that the cardinalities of the $N_{\mathcal{B}}^{c, \mathcal{D}}(a)$'s are close to $\frac{|\mathcal{B}||\mathcal{D}|}{q}$ when $|\mathcal{B}|,|\mathcal{D}|$ are large.
Lemma 7. For all subsets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ of \mathbb{F}_{q}, we have

$$
\sum_{(a, c) \in \mathbb{F}_{q}^{2}}\left(\left|N_{\mathcal{B}}^{c, \mathcal{D}}(a)\right|-\frac{|\mathcal{B} \| \mathcal{D}|}{q}\right)^{2}<q|\mathcal{B} \| \mathcal{D}|
$$

Proof. For any set X, let $X(\cdot)$ denote the characteristic function of X. Let χ be any non-trivial additive character of \mathbb{F}_{q}. We have

$$
\begin{aligned}
\left|N_{\mathcal{B}}^{c, \mathcal{D}}(a)\right| & =\sum_{(b, d) \in \mathbb{F}_{q}^{2}, a+b-c d=0} \mathcal{B}(b) \mathcal{D}(d) \\
& =\sum_{(b, d) \in \mathbb{F}_{q}^{2}, s \in \mathbb{F}_{q}} \frac{1}{q} \chi(s(a+b-c d)) \mathcal{B}(b) \mathcal{D}(d) \\
& =\frac{|\mathcal{B}||\mathcal{D}|}{q}+\frac{1}{q} \sum_{(b, d) \in \mathbb{F}_{q}^{2}, s \in \mathbb{F}_{q}^{*}} \chi(s(a+b-c d)) \mathcal{B}(b) \mathcal{D}(d) .
\end{aligned}
$$

Therefore

$$
\begin{align*}
\sum_{(a, c) \in \mathbb{F}_{q}^{2}} & \left(\left|N_{\mathcal{B}}^{c, \mathcal{D}}(a)\right|-\frac{|\mathcal{B}||\mathcal{D}|}{q}\right)^{2} \\
& =\frac{1}{q^{2}} \sum_{(a, c) \in \mathbb{F}_{q}^{2}}\left(\sum_{(b, d) \in \mathbb{F}_{q}^{2}, s \in \mathbb{F}_{q}^{*}} \chi(s(a+b-c d)) \mathcal{B}(b) \mathcal{D}(d)\right)^{2} \\
& =\frac{1}{q^{2}} \sum_{\substack{a, c, b, b^{\prime}, d, d^{\prime} \in \mathbb{F}_{q} \\
s, s^{\prime} \in \mathbb{F}_{q}^{*}}} \chi\left(\left(s-s^{\prime}\right) a\right) \chi\left(s b-s^{\prime} b^{\prime}\right) \chi\left(c\left(s^{\prime} d^{\prime}-s d\right)\right) \mathcal{B}(b) \mathcal{D}(d) \mathcal{B}\left(b^{\prime}\right) \mathcal{D}\left(d^{\prime}\right) \\
& =\sum_{b, d, b^{\prime} \in \mathbb{F}_{q}, s=s^{\prime} \in \mathbb{F}_{q}^{*}} \chi\left(s\left(b-b^{\prime}\right)\right) \mathcal{B}(b) \mathcal{D}(d) \mathcal{B}\left(b^{\prime}\right) \\
& =R_{1}+R_{2}, \tag{3}
\end{align*}
$$

where R_{1} is taken over $b=b^{\prime}$ and R_{2} is taken over $b \neq b^{\prime}$ (the third line follows from the orthogonality in a and c. Consider the second line as a sum over a, then c implies that all summands vanish unless $s=s^{\prime}$ and $d=d^{\prime}$). We have

$$
\begin{align*}
R_{1} & =\sum_{b=b^{\prime}, d \in \mathbb{F}_{q}, s=s^{\prime} \in \mathbb{F}_{q}^{*}} \chi\left(s\left(b-b^{\prime}\right)\right) \mathcal{B}(b) \mathcal{D}(d) \mathcal{B}\left(b^{\prime}\right) \\
& =(q-1) \sum_{b, d \in \mathbb{F}_{q}} \mathcal{B}(b) \mathcal{D}(d)=(q-1)|\mathcal{B} \| \mathcal{D}| \tag{4}
\end{align*}
$$

and

$$
\begin{align*}
R_{2} & = \\
& =\sum_{b \neq b^{\prime}, d \in \mathbb{F}_{q}, s=s^{\prime} \in \mathbb{F}_{q}^{*}} \chi\left(s\left(b-b^{\prime}\right)\right) \mathcal{B}(b) \mathcal{D}(d) \mathcal{B}\left(b^{\prime}\right) \\
& =\quad \sum_{b, d \in \mathbb{F}_{q}, s \in \mathbb{F}_{q}^{*}, t \neq 1 \in \mathbb{F}_{q}, b^{\prime}=t b} \chi(s b(1-t)) \mathcal{B}(b) \mathcal{D}(d) \mathcal{B}(t b) \\
& <0 . \tag{5}
\end{align*}
$$

The lemma follows immediately from (3), (4) and (5).
The following result is an easy corollary of Lemma 7.
Corollary 8. For all subsets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ of \mathbb{F}_{q} and $c \in \mathcal{C}$, let $N^{c, \mathcal{D}}(\mathcal{A}, \mathcal{B})$ be the number of pairs $(a, b) \in \mathcal{A} \times \mathcal{B}$ such that $a+b \in c \mathcal{D}$. Then there exists $c_{0} \in \mathcal{C}$ such that

$$
\left|N^{c_{0}, \mathcal{D}}(\mathcal{A}, \mathcal{B})-\frac{|\mathcal{D}|}{q}\right| \mathcal{A}||\mathcal{B}||<\sqrt{\frac{q|\mathcal{D}|}{|\mathcal{C}|}} \sqrt{|\mathcal{A}||\mathcal{B}|} .
$$

Proof. By the pigeon-hole principle, there exists $c_{0} \in \mathcal{C}$ such that

$$
\sum_{a \in \mathcal{A}}\left(\left|N_{\mathcal{B}}^{c_{0}, \mathcal{D}}(a)\right|-\frac{|\mathcal{B}||\mathcal{D}|}{q}\right)^{2} \leqslant \frac{1}{|\mathcal{C}|} \sum_{a \in \mathcal{A}, c \in \mathcal{C}}\left(\left|N_{\mathcal{B}}^{c, \mathcal{D}}(a)\right|-\frac{|\mathcal{B}||\mathcal{D}|}{q}\right)^{2}<\frac{q|\mathcal{D}||\mathcal{B}|}{|\mathcal{C}|}
$$

By the Cauchy-Schwartz inequality,

$$
\begin{aligned}
\left|N^{c_{0}, \mathcal{D}}(\mathcal{A}, \mathcal{B})-\frac{|\mathcal{D}|}{q}\right| \mathcal{A}||\mathcal{B}|| & \leqslant \sum_{a \in \mathcal{A}}| | N_{\mathcal{B}}^{c_{0}, \mathcal{D}}(a)\left|-\frac{|\mathcal{B}||\mathcal{D}|}{q}\right| \\
& \leqslant \sqrt{|\mathcal{A}|} \sqrt{\sum_{a \in \mathcal{A}}\left(\left|N_{\mathcal{B}}^{c_{0}, \mathcal{D}}(a)\right|-\frac{|\mathcal{B}||\mathcal{D}|}{q}\right)^{2}} \\
& \leqslant \sqrt{\frac{q \mid \mathcal{D}}{|\mathcal{C}|} \sqrt{|\mathcal{A}||\mathcal{B}|} .}
\end{aligned}
$$

As a consequence, for any two large subsets \mathcal{A}, \mathcal{B} of \mathbb{F}_{q}, there are many pairs $(a, b) \in \mathcal{A} \times \mathcal{B}$ with $a+b \in \mathcal{C D}$.

Corollary 9. For all subsets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ of \mathbb{F}_{q}, let $N^{\mathcal{C}, \mathcal{D}}(\mathcal{A}, \mathcal{B})$ be the set of pairs $(a, b) \in \mathcal{A} \times \mathcal{B}$ such that $a+b \in \mathcal{C D}$. Then

$$
N^{\mathcal{C}, \mathcal{D}}(\mathcal{A}, \mathcal{B}) \geqslant \frac{|\mathcal{D}|}{q}|\mathcal{A}||\mathcal{B}|-\sqrt{\frac{q|\mathcal{D}|}{|\mathcal{C}|}} \sqrt{|\mathcal{A}||\mathcal{B}|} .
$$

Proof. It follows immediately from Corollary 8.
Note that Corollaries 8 and 9 can be derived directly from Theorem 1 in [4]. However, Theorem 1 in [4] is also an easy corollary of Lemma 7 above.

Theorem 10. (cf. Theorem 1 in [4]) For any subsets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \subseteq \mathbb{F}_{q}$, denote by $N(\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D})$ the number of solutions of Eq. (1). Then we have

$$
\left|N(\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D})-\frac{|\mathcal{A}||\mathcal{B}||\mathcal{C}||\mathcal{D}|}{q}\right|<\sqrt{q|\mathcal{A}||\mathcal{B} \| \mathcal{C}||\mathcal{D}|}
$$

Proof. By Lemma 7, we have

$$
\sum_{a \in \mathcal{A}, c \in \mathcal{C}}\left(\left|N_{\mathcal{B}}^{c, \mathcal{D}}(a)\right|-\frac{|\mathcal{B}||\mathcal{D}|}{q}\right)^{2} \leq \sum_{(a, c) \in \mathbb{F}_{q}^{2}}\left(\left|N_{\mathcal{B}}^{c, \mathcal{D}}(a)\right|-\frac{|\mathcal{B} \| \mathcal{D}|}{q}\right)^{2}<q|\mathcal{B} \| \mathcal{D}|
$$

By the Cauchy-Schwartz inequality,

$$
\begin{aligned}
\left|N(\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D})-\frac{|\mathcal{A}||\mathcal{B}||\mathcal{C}||\mathcal{D}|}{q}\right| & \leqslant \sum_{(a, c) \in \mathbb{F}_{q}^{2}}| | N_{\mathcal{B}}^{c, \mathcal{D}}(a)\left|-\frac{|\mathcal{B}||\mathcal{D}|}{q}\right| \\
& \leqslant \sqrt{|\mathcal{A}||\mathcal{C}|} \sqrt{\sum_{a \in \mathcal{A}, c \in \mathcal{C}}}\left(\left|N_{\mathcal{B}}^{c, \mathcal{D}}(a)\right|-\frac{|\mathcal{B}||\mathcal{D}|}{q}\right)^{2} \\
& \leqslant \sqrt{q|\mathcal{A}||\mathcal{B}||\mathcal{C}||\mathcal{D}| .}
\end{aligned}
$$

3. Pseudo-Randomness of Restricted-Product Graphs

For any $a \in \mathcal{A}, c \in \mathcal{C}$, let $T^{c, \mathcal{D}}(a)$ be the set of all $b \in \mathbb{F}_{q}$ such that $a b+1 \in c \mathcal{D}$, and let $T_{\mathcal{B}}^{c, \mathcal{D}}(a)=T^{c, \mathcal{D}}(a) \cap \mathcal{B}$. The following key estimate says that the cardinalities of the $T_{\mathcal{B}}^{c}(a)$'s are close to $\frac{|\mathcal{B}||\mathcal{D}|}{q}$ when $|\mathcal{B}|,|\mathcal{D}|$ are large.

Lemma 11. For all subsets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ of \mathbb{F}_{q}, we have

$$
\left.\sum_{(a, c) \in \mathbb{F}_{q}^{2}}\left(\left|T_{\mathcal{B}}^{c, \mathcal{D}}(a)\right|-\frac{|\mathcal{B}||\mathcal{D}|}{q}\right)^{2}\langle q| \mathcal{B}| | \mathcal{D} \right\rvert\, .
$$

Proof. For any set X, let $X(\cdot)$ denote the characteristic function of X. Let χ be any non-trivial additive character of \mathbb{F}_{q}. We have

$$
\begin{aligned}
\left|T_{\mathcal{B}}^{c, \mathcal{D}}(a)\right| & =\sum_{(b, d) \in \mathbb{F}_{q}^{2}, a b-c d+1=0} \mathcal{B}(b) \mathcal{D}(d) \\
& =\sum_{(b, d) \in \mathbb{F}_{q}^{2}, s \in \mathbb{F}_{q}} \frac{1}{q} \chi(s(a b-c d+1)) \mathcal{B}(b) \mathcal{D}(d) \\
& =\frac{|\mathcal{B}||\mathcal{D}|}{q}+\frac{1}{q} \sum_{(b, d) \in \mathbb{F}_{q}^{2}, s \in \mathbb{F}_{q}^{*}} \chi(s(a b-c d+1)) \mathcal{B}(b) \mathcal{D}(d) .
\end{aligned}
$$

Therefore

$$
\begin{align*}
& \sum_{(a, c) \in \mathbb{F}_{q}^{2}}\left(\left|T_{\mathcal{B}}^{c, \mathcal{D}}(a)\right|-\frac{|\mathcal{B}||\mathcal{D}|}{q}\right)^{2} \\
= & \frac{1}{q^{2}} \sum_{(a, c) \in \mathbb{F}_{q}^{2}}\left(\sum_{(b, d) \in \mathbb{F}_{q}^{2}, s \in \mathbb{F}_{q}^{*}} \chi(s(a b-c d+1)) \mathcal{B}(b) \mathcal{D}(d)\right)^{2} \\
= & \frac{1}{q^{2}} \sum_{\substack{a, c, b, b^{\prime}, d, d^{\prime} \in \mathbb{F}_{q} \\
s, s^{\prime} \in \mathbb{F}_{q}^{q}}} \chi\left(a\left(s b-s^{\prime} b^{\prime}\right)\right) \chi\left(c\left(s^{\prime} d^{\prime}-s d\right)\right) \chi\left(s-s^{\prime}\right) \mathcal{B}(b) \mathcal{D}(d) \mathcal{B}\left(b^{\prime}\right) \mathcal{D}\left(d^{\prime}\right) \\
= & \frac{1}{q^{2}}\left(R_{1}+R_{2}\right), \tag{6}
\end{align*}
$$

where R_{1} is taken over $s=s^{\prime}$ and R_{2} is taken over $s \neq s^{\prime}$. We have

$$
\begin{align*}
R_{1} & =\sum_{a, c, b, b^{\prime}, d, d^{\prime} \in \mathbb{F}_{q}, s=s^{\prime} \in \mathbb{F}_{q}^{*}} \chi\left(a s\left(b-b^{\prime}\right)\right) \chi\left(c s\left(d-d^{\prime}\right)\right) \mathcal{B}(b) \mathcal{D}(d) \mathcal{B}\left(b^{\prime}\right) \mathcal{D}\left(d^{\prime}\right) \\
& =(q-1) q^{2}|\mathcal{B}||\mathcal{D}|, \tag{7}
\end{align*}
$$

where the last line follows from the orthogonality in a and then c. Considering the sum over a and then over b, this implies that all summands with $b \neq b^{\prime}$ or $d \neq d^{\prime}$ vanish. Now we compute R_{2}.

$$
\begin{align*}
R_{2} & =\sum_{\substack{a, c, b, b^{\prime}, d, d^{\prime} \in \mathbb{F}_{q} \\
s \in \mathbb{F}_{q}, t \neq 1 \in \mathbb{F}_{q}}} \chi(a s(b-t b)) \chi(c s(d-t d)) \chi(s(1-t)) \mathcal{B}(b) \mathcal{D}(d) \mathcal{B}\left(b^{\prime}\right) \mathcal{D}\left(d^{\prime}\right) \\
& =-\sum_{a, c, b^{\prime}=t b, d^{\prime}=t d \in \mathbb{F}_{q}, s \in \mathbb{F}_{q}^{*}, t \neq 1} \mathcal{B}(b) \mathcal{D}(d) \mathcal{B}\left(b^{\prime}\right) \mathcal{D}\left(d^{\prime}\right) \\
& <0, \tag{8}
\end{align*}
$$

where the last line follows from the orthogonality in a and c. By considering the sum over a, and then over b, this implies that all summands with $b^{\prime} \neq t b$ or $d^{\prime} \neq t d$ vanish. The lemma follows immediately from (6), (7) and (8).

Corollary 12. For all subsets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ of \mathbb{F}_{q} and $c \in \mathcal{C}$, let $T^{c, \mathcal{D}}(\mathcal{A}, \mathcal{B})$ be the set of pairs $(a, b) \in \mathcal{A} \times \mathcal{B}$ such that $a b+1 \in c \mathcal{D}$. Then there exists $c_{0} \in \mathcal{C}$ such that

$$
\left|T^{c_{0}, \mathcal{D}}(\mathcal{A}, \mathcal{B})-\frac{|\mathcal{D}|}{q}\right| \mathcal{A}||\mathcal{B}||<\sqrt{\frac{q|\mathcal{D}|}{|\mathcal{C}|}} \sqrt{|\mathcal{A}||\mathcal{B}|}
$$

Proof. The proof of this corollary is similar to that of Corollary 8, except that we use Lemma 11 instead of Lemma 7.

We also have an analog of Corollary 9 in the shifted-product problem.
Corollary 13. For all subsets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ of \mathbb{F}_{q}, let $N^{\mathcal{C}, \mathcal{D}}(\mathcal{A}, \mathcal{B})$ be the set of pairs $(a, b) \in \mathcal{A} \times \mathcal{B}$ such that $a b+1 \in \mathcal{C D}$. Then

$$
T^{\mathcal{C}, \mathcal{D}}(\mathcal{A}, \mathcal{B}) \geqslant \frac{|\mathcal{D}|}{q}|\mathcal{A}||\mathcal{B}|-\sqrt{\frac{q|\mathcal{D}|}{|\mathcal{C}|}} \sqrt{|\mathcal{A}||\mathcal{B}|} .
$$

Similarly as in the previous section, slightly weaker (but still useful) versions of Corollaries 12 and 13 can be derived directly from Theorem 2 in [4].

4. Proof of Theorems 1

We now give a proof of Theorem 1.1. The key tool is the following lemma.
Lemma 14. Suppose that $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ of \mathbb{F}_{q} with

$$
|\mathcal{A}|,|B| \gg \sqrt{\frac{q|\mathcal{D}|}{|\mathcal{C}|}}\left(\frac{q}{|\mathcal{D}|}\right)^{k}
$$

Then there are $a_{1}, \ldots, a_{k} \in \mathcal{A}, b_{1}, \ldots, b_{k} \in \mathcal{B}$ such that $a_{i}+b_{j} \in \mathcal{C D}$ for all $1 \leqslant i, j \leqslant k$.

Proof. The proof proceeds by induction on k. The base case, $k=1$, follows immediately from Corollary 9. Suppose that the theorem holds for all $l<k$. From Corollary 9, we have

$$
N^{\mathcal{C}, \mathcal{D}}(\mathcal{A}, \mathcal{B}) \geqslant \frac{|\mathcal{D}|}{q}|\mathcal{A}||\mathcal{B}|-\sqrt{\frac{q|\mathcal{D}|}{|\mathcal{C}|}} \sqrt{|\mathcal{A}||\mathcal{B}|}=(1+o(1)) \frac{|\mathcal{D}|}{q}|\mathcal{A}||\mathcal{B}| .
$$

By the pigeon-hole principle, there exists $a_{1} \in \mathcal{A}$ such that

$$
\begin{equation*}
N^{\mathcal{C}, \mathcal{D}}\left(a_{1}, \mathcal{B}\right) \geqslant(1+o(1)) \frac{|\mathcal{D}|}{q}|\mathcal{B}| \gg \sqrt{\frac{q|\mathcal{D}|}{|\mathcal{C}|}}\left(\frac{q}{|\mathcal{D}|}\right)^{k-1} \tag{9}
\end{equation*}
$$

Let \mathcal{B}_{1} be the set of all $b \in \mathcal{B}$ such that $a_{1}+b \in \mathcal{C D}$. From Corollary 9 , we have

$$
N^{\mathcal{C}, \mathcal{D}}\left(\mathcal{A}, \mathcal{B}_{1}\right) \geqslant \frac{|\mathcal{D}|}{q}|\mathcal{A}|\left|\mathcal{B}_{1}\right|-\sqrt{\frac{q|\mathcal{D}|}{|\mathcal{C}|}} \sqrt{|\mathcal{A}|\left|\mathcal{B}_{1}\right|}=(1+o(1)) \frac{|\mathcal{D}|}{q}|\mathcal{A}|\left|\mathcal{B}_{1}\right| .
$$

By the pigeon-hole principle, there exists $b_{1} \in \mathcal{B}_{1}$ such that

$$
\begin{equation*}
N^{\mathcal{C}, \mathcal{D}}\left(\mathcal{A}, b_{1}\right) \geqslant(1+o(1)) \frac{|\mathcal{D}|}{q}|\mathcal{A}| \gg \sqrt{\frac{q|\mathcal{D}|}{|\mathcal{C}|}}\left(\frac{q}{|\mathcal{D}|}\right)^{k-1} . \tag{10}
\end{equation*}
$$

Let \mathcal{A}_{1} be the set of all $a \in \mathcal{A}$ such that $a+b_{1} \in \mathcal{C D}$. Set $\mathcal{A}^{*}=\mathcal{A} \backslash\left\{a_{1}\right\}$ and $\mathcal{B}^{*}=\mathcal{B}_{1} \backslash\left\{b_{1}\right\}$. It follows from (9) and (10) that

$$
\left|\mathcal{A}^{*}\right|,\left|\mathcal{B}^{*}\right| \gg \sqrt{\frac{q|\mathcal{D}|}{|\mathcal{C}|}}\left(\frac{q}{|\mathcal{D}|}\right)^{k-1}
$$

Thus, by the induction hypothesis, there are $a_{2}, \ldots, a_{k} \in \mathcal{A}^{*}, b_{2}, \ldots, b_{k} \in \mathcal{B}^{*}$ such that $a_{i}+b_{j} \in \mathcal{C D}$ for all $2 \leqslant i, j \leqslant k$. We also have $a_{1}+b_{i}, a_{j}+b_{1} \in \mathcal{C D}$ for all $i, j=1, \ldots, k$. This completes the proof of the lemma.

Let $c=c(k)=\frac{1}{2(k+2)}$ and $q \gg 1$. Then $|\mathcal{A}|,|\mathcal{B}|,|\mathcal{C}|,|\mathcal{D}| \gg q^{1-c}$. It follows that

$$
\begin{equation*}
\sqrt{\frac{q|\mathcal{D}|}{|\mathcal{C}|}}\left(\frac{q}{|\mathcal{D}|}\right)^{k} \ll q^{(1+c) / 2+c k} \ll q^{1-c} \ll|\mathcal{A}|,|\mathcal{B}| . \tag{11}
\end{equation*}
$$

Therefore, Theorem 1 follows immediately from Lemma 14. Note that the upper bound for the left hand side of (11) can be estimated by $q^{1 / 2+k c}$. This can improve the bound of Theorem 1 to $|\mathcal{A}||\mathcal{B}\|\mathcal{C}\| \mathcal{D}| \gg q^{4-\frac{1}{2 k+2}}$.

5. Proof of Theorem 2

Similar to the previous section, we can obtain the following result from Corollary 13.

Lemma 15. Suppose that $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ of \mathbb{F}_{q} with

$$
|\mathcal{A}|,|B| \gg \sqrt{\frac{q|\mathcal{D}|}{|\mathcal{C}|}}\left(\frac{q}{|\mathcal{D}|}\right)^{k}
$$

Then there are $a_{1}, \ldots, a_{k} \in \mathcal{A}, b_{1}, \ldots, b_{k} \in \mathcal{B}$ such that $a_{i} b_{j}+1 \in \mathcal{C D}$ for all $1 \leqslant i, j \leqslant k$.

Let $c=c(k)=\frac{1}{2(k+2)}$ and $q \gg 1$, then $|\mathcal{A}|,|\mathcal{B}|,|\mathcal{C}|,|\mathcal{D}| \gg q^{1-c}$. It follows that

$$
\sqrt{\frac{q|\mathcal{D}|}{|\mathcal{C}|}}\left(\frac{q}{|\mathcal{D}|}\right)^{k} \ll q^{(1+c) / 2+c k} \ll q^{1-c} \ll|\mathcal{A}|,|\mathcal{B}| .
$$

Theorem 2 now follows from Lemma 15.

6. Proof of Theorem 3

We write $f(x, y)$ in the form

$$
f(x, y)=\sum_{i=0}^{m} g_{i}(x) y^{i}
$$

where $g_{i}(x) \in \mathbb{F}_{q}[x]$. Let I denote the greatest i value with the property that $g_{i}(x)$ is not identically constant: $g_{I}(x) \not \equiv c$, and either $I=m$ or $g_{I+1}(x), \ldots, g_{n}(x)$ are identically constant. Since $f(x, y)$ is not of the form $g(x)+h(y), I>0$. Denote the degree of the polynomial $g_{I}(y)$ by D so that $D>0$. Assume that $(I, q)=1$. The following theorem is due to Gyarmati and Sárközy [4].
Theorem 16. (cf. Theorem 3 in [4]) If $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \subset \mathbb{F}_{q}$, and the number of solutions of

$$
a+b=f(c, d), \quad a \in \mathcal{A}, b \in \mathcal{B}, c \in \mathcal{C}, d \in \mathcal{D}
$$

is denoted by N, then we have

$$
\left|N-\frac{|\mathcal{A}||\mathcal{B} \| \mathcal{C}||\mathcal{D}|}{q}\right| \leqslant\left(q\left(D+(I-1) q^{1 / 2}\right)|\mathcal{A}||\mathcal{B}\|\mathcal{C}\| \mathcal{D}|\right)^{1 / 2}
$$

The following result is an analog of Corollary 9.
Corollary 17. For all subsets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \subset \mathbb{F}_{q}$, let $N_{f}^{\mathcal{C}, \mathcal{D}}(\mathcal{A}, \mathcal{B})$ be the number of pairs $(a, b) \in \mathcal{A} \times \mathcal{B}$ such that $a+b \in f(\mathcal{C}, \mathcal{D})$. Then

$$
N_{f}^{\mathcal{C}, \mathcal{D}}(\mathcal{A}, \mathcal{B}) \geqslant \frac{|\mathcal{D}|}{m q}|\mathcal{A}||\mathcal{B}|-\frac{1}{m} \sqrt{q\left(D+(I-1) q^{1 / 2}\right) \frac{|\mathcal{D}|}{|\mathcal{C}|}} \sqrt{|\mathcal{A}||\mathcal{B}|} .
$$

Proof. For any $c \in \mathcal{C}$, let $N_{f}^{c}(\mathcal{A}, \mathcal{B}, \mathcal{D})$ denote the number of triples $(a, b, d) \in$ $\mathcal{A} \times \mathcal{B} \times \mathcal{D}$ such that $a+b=f(c, d)$. By the pigeon-hole principle and Theorem 16, there exists $c_{0} \in \mathcal{C}$ such that

$$
N_{f}^{c_{0}}(\mathcal{A}, \mathcal{B}, \mathcal{D}) \geqslant \frac{|\mathcal{D}|}{q}|\mathcal{A}||\mathcal{B}|-\sqrt{q\left(D+(I-1) q^{1 / 2}\right) \frac{|\mathcal{D}|}{|\mathcal{C}|}} \sqrt{|\mathcal{A}||\mathcal{B}|}
$$

Besides, for any fixed a, b and $c_{0}, f\left(c_{0}, d\right)-a-b$ is a polynomial of degree m on d. Therefore, the number of d such that $a+b=f\left(c_{0}, d\right)$ is at most m. The corollary follows.

As a consequence, we have the following lemma.
Lemma 18. Suppose that $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \subset \mathbb{F}_{q}$ with

$$
|\mathcal{A}|,|\mathcal{B}| \gg \frac{1}{m} \sqrt{q\left(D+(I-1) q^{1 / 2}\right) \frac{|\mathcal{D}|}{|\mathcal{C}|}}\left(\frac{m q}{|\mathcal{D}|}\right)^{k}
$$

Then there are $a_{1}, \ldots, a_{k} \in \mathcal{A}, b_{1}, \ldots, b_{k} \in \mathcal{B}$ such that $a_{i}+b_{j} \in f(\mathcal{C}, \mathcal{D})$ for all $1 \leqslant i, j \leqslant k$.

Proof. The proof of this lemma is similar to that of Lemma 14, except that we use Corollary 17 instead of Corollary 9

Let $c=c(k)=\frac{1}{4(k+2)}$ and $q \gg 1$, then $|\mathcal{A}|,|\mathcal{B}|,|\mathcal{C}|,|\mathcal{D}| \gg q^{1-c}$. It follows that

$$
\frac{1}{m} \sqrt{q\left(D+(I-1) q^{1 / 2}\right) \frac{|\mathcal{D}|}{|\mathcal{C}|}\left(\frac{m q}{|\mathcal{D}|}\right)^{k} \ll q^{3 / 4} q^{c / 2+k c} \ll q^{1-c} \ll|\mathcal{A}|,|\mathcal{B}|}
$$

Theorem 3 now follows from Lemma 18

7. Proof of Theorem 6

Using multiplicative character sums, Gyarmati and Sárközy [4] proved the following theorem.

Theorem 19. rm (cf. Theorem 4 in [4]) Suppose that $f(x, y) \in \mathbb{F}_{q}[x, y]$ and that the primitive kernel $H(x, y)$ of $f(x, y)$ is not of the form $c(K(x, y))^{d}$. Write $f(x, y)=F(x) G(y) H(x, y)$ in a unique way up to constant factors. Let r, s, n, m be the degrees of $F, G, f(x, y)$ in $x, f(x, y)$ in y, respectively. If $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \subset \mathbb{F}_{q}$ and the number of solutions of

$$
a b=f(c, d), \quad a \in \mathcal{A}, b \in \mathcal{B}, c \in \mathcal{C}, d \in \mathcal{D}
$$

is denoted by N, then we have

$$
\left|N-\frac{|\mathcal{A}||\mathcal{B} \| \mathcal{C}||\mathcal{D}|}{q}\right|<4 n^{1 / 2} q^{3 / 4}(|\mathcal{A}\|\mathcal{B}\| \mathcal{C} \| \mathcal{D}|)^{1 / 2}+7\left(r+s+n+(n m)^{1 / 2}\right) q^{5 / 2}
$$

Similar to the previous sections, we have the following corollary.
Corollary 20. For all subsets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \subset \mathbb{F}_{q}$, let $N_{f}^{\mathcal{C}, \mathcal{D}}(\mathcal{A}, \mathcal{B})$ be the number of pairs $(a, b) \in \mathcal{A} \times \mathcal{B}$ such that $a b=f(\mathcal{C}, \mathcal{D})$. Then

$$
N_{f}^{\mathcal{C}, \mathcal{D}}(\mathcal{A}, \mathcal{B}) \geqslant \frac{|\mathcal{D}|}{m q}|\mathcal{A}||\mathcal{B}|-\frac{4 n^{1 / 2} q^{3 / 4}}{m} \sqrt{\frac{|\mathcal{D}|}{|\mathcal{C}|}} \sqrt{|\mathcal{A}||\mathcal{B}|}-\frac{7\left(r+s+n+(n m)^{1 / 2}\right) q^{5 / 2}}{m|\mathcal{C}|}
$$

Proof. For any $c \in \mathcal{C}$, let $N_{f}^{c}(\mathcal{A}, \mathcal{B}, \mathcal{D})$ denote the number of triples $(a, b, d) \in$ $\mathcal{A} \times \mathcal{B} \times \mathcal{D}$ such that $a b=f(c, d)$. By the pigeon-hole principle and Theorem 19, there exists $c_{0} \in \mathcal{C}$ such that
$N_{f}^{c_{0}}(\mathcal{A}, \mathcal{B}, \mathcal{D}) \geqslant \frac{|\mathcal{D}|}{m q}|\mathcal{A}||\mathcal{B}|-\frac{4 n^{1 / 2} q^{3 / 4}}{m} \sqrt{\frac{|\mathcal{D}|}{|\mathcal{C}|}} \sqrt{|\mathcal{A}||\mathcal{B}|}-\frac{7\left(r+s+n+(n m)^{1 / 2}\right) q^{5 / 2}}{m|\mathcal{C}|}$.
Besides, for any fixed a, b and $c_{0}, f\left(c_{0}, d\right)-a b$ is a polynomial of degree m on d. Therefore, the number of d such that $a b=f\left(c_{0}, d\right)$ is at most m. The corollary follows.

We following lemma follows from Corollary 20 in a similar way that Lemma 14 follows from Corollary 9.

Lemma 21. Suppose that $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \subset \mathbb{F}_{q}$ with

$$
|\mathcal{A}|,|\mathcal{B}| \gg \frac{4 n^{1 / 2} q^{3 / 4}}{m} \sqrt{\frac{|\mathcal{D}|}{|\mathcal{C}|}}\left(\frac{m q}{|\mathcal{D}|}\right)^{k}
$$

Then there are $a_{1}, \ldots, a_{k} \in \mathcal{A}, b_{1}, \ldots, b_{k} \in \mathcal{B}$ such that $a_{i} b_{j} \in f(\mathcal{C}, \mathcal{D})$ for all $1 \leqslant i, j \leqslant k$.

Let $c=c(k)=\frac{1}{4(k+2)}$ and $q \gg 1$. Then $|\mathcal{A}|,|\mathcal{B}|,|\mathcal{C}|,|\mathcal{D}| \gg q^{1-c}$. It follows that

$$
\frac{4 n^{1 / 2} q^{3 / 4}}{m} \sqrt{\frac{|\mathcal{D}|}{|\mathcal{C}|}}\left(\frac{m q}{|\mathcal{D}|}\right)^{k} \ll q^{3 / 4} q^{c / 2+k c} \ll q^{1-c} \ll|\mathcal{A}|,|\mathcal{B}|
$$

Theorem 6 now follows from Lemma 21.

8. Another problem

In [1], Csikvári, Sárközy and Gyarmati proposed some further related problems. One of these problems is the following (Problem 4 in [1]):

Is it true that for all $\varepsilon>0$, there is a $k_{0}=k_{0}(\varepsilon)$ such that if $k \in \mathbb{N}, k>k_{0}$, $p>p_{0}=p_{0}(\varepsilon, k)$ and $\mathcal{A}, \mathcal{B} \subset \mathbb{F}_{q}$ with

$$
\min \{|\mathcal{A}|,|\mathcal{B}|\}>q^{\varepsilon},
$$

then

$$
\begin{equation*}
a_{1}+a_{2}=b_{1} \ldots b_{k}, a_{1}, a_{2} \in \mathcal{A}, b_{1}, \ldots, b_{k} \in \mathcal{B} \tag{12}
\end{equation*}
$$

can be solved?
In this section, we give a negative answer for this question by proving the following theorem.

Theorem 22. For all $\varepsilon<1 / 2, k \in \mathbb{N}$, there exists two sets $\mathcal{A}, \mathcal{B} \subset \mathbb{F}_{q}$ with

$$
|\mathcal{A}|,|\mathcal{B}|>q^{\varepsilon}
$$

such that Eq. (12) cannot be solved.
Proof. Let ν be a generator of \mathbb{F}_{q}^{*} and $t=\left\lceil q^{\varepsilon}\right\rceil+1$. We choose $\mathcal{B}=\left\{1, \nu, \ldots, \nu^{t}\right\}$. Then $|\mathcal{B}|>q^{\varepsilon}$ and $\mathcal{B}^{k}=\left\{b_{1} \ldots b_{k}: b_{i} \in \mathcal{B}\right\}=\left\{1, \nu, \ldots, \nu^{k t}\right\}$. Now we choose elements of \mathcal{A} inductively. Let $\mathcal{T}_{0}=\mathcal{B} / 2=\{b / 2: b \in \mathcal{B}\}, \mathcal{A}_{0}=\left\{a_{0}\right\}$ with $a_{0} \notin \mathcal{T}_{0}$. Suppose that we have \mathcal{T}_{i} and $\mathcal{A}_{i}=\left\{a_{0}, \ldots, a_{i}\right\}$. We then construct \mathcal{T}_{i+1} and \mathcal{A}_{i+1} as follows:

$$
\mathcal{T}_{i+1}=\mathcal{T}_{i} \cup\left(\mathcal{B}^{k}-a_{i}\right) \cup\left\{a_{i}\right\}, \mathcal{A}_{i+1}=\mathcal{A}_{i} \cup\left\{a_{i+1}\right\}
$$

for some $a_{i+1} \notin \mathcal{T}_{i+1}$. It is easy to check that under this construction, $\left(\mathcal{A}_{i}+\right.$ $\left.\mathcal{A}_{i}\right) \cap \mathcal{B}^{k}=\emptyset$ for all i. Since $\left|\mathcal{T}_{i+1}\right| \leqslant\left|\mathcal{T}_{i}\right|+\left|\mathcal{B}^{k}\right|+1 \leqslant\left|\mathcal{T}_{i}\right|+t k+1$, we can continue the process until $i(t k+1)<q$. Therefore, we can choose a set \mathcal{A}, such that $|\mathcal{A}| \geqslant\lceil(q-1) /(k t+1)\rceil \gg q^{\varepsilon}$ and $(\mathcal{A}+\mathcal{A}) \cap \mathcal{B}^{k}=\emptyset$. This completes the proof of the theorem.

If \mathbb{F}_{q} is not a prime field, we can do slightly better. Suppose that $q=p^{2}$ for some prime power p. We construct the Paley sum graph P_{q}^{+}with the vertex set \mathbb{F}_{q}, and two vertices a, b are adjacent if and only if $a+b$ is a square residue. It is well known that the maximal clique of P_{q}^{+}has size p. Since P_{q}^{+}is self-symmetric, the maximal independent set of P_{q}^{+}also has size p. Therefore, we can find a set \mathcal{A} with $|\mathcal{A}|=q^{1 / 2}$ such that $a+a^{\prime}$ is square non-residue for all $a, a^{\prime} \in \mathbb{F}_{q}$. Let \mathcal{B} be the set of all square residues, then $|\mathcal{B}|=q / 2$ and Eq. (12) is not solvable in \mathcal{A}, \mathcal{B}.

References

[1] P. Csikvári, A. Sárközy and K. Gyarmati, Density and Ramsey type results on algebraic equations with restricted solution sets, Combinatorica, to appear.
[2] M. Z. Garaev, The sum-product estimate for large subsets of prime fields, Proc. Amer. Math. Soc. 136 (2008), 2735-2739.
[3] M. Z. Garaev and V. Garcia, The equation $x_{1} x_{2}=x_{3} x_{4}+\lambda$ in fields of prime order and applications, J. Number Theory 128(9) (2008), 2520-2537.
[4] K. Gyarmati and A. Sárközy, Equations in finite fields with restricted solution sets, II (algebraic equations), Acta Math. Hungar. 119 (2008), 259-280.
[5] A. Sárközy, On sums and products of residues modulo p, Acta. Arith. 118 (2005), 403-409.
[6] A. Sárközy, On products and shifted products of residues modulo p, Integers $\mathbf{8}(2)$ (2008), A9.
[7] I. E. Shparlinski, On the solvability of bilinear equations in finite fields, Glasgow Math J 50 (2008), 523-529.

