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Abstract

In a recent paper, for “large” (but otherwise unspecified) subsets A,B, C,D of Fq,
Gyarmati and Sárközy (2008) showed the solvability of the equations a + b = cd,
and ab + 1 = cd with a ∈ A, b ∈ B, c ∈ C, d ∈ D. They asked whether one
can extend these results to every k ∈ N in the following way: for large subsets
A,B, C,D of Fq, there are a1, . . . , ak, a

�
1, . . . , a

�
k ∈ A, b1, . . . , bk, b

�
1, . . . , b

�
k ∈ B with

ai +bj , a
�
ib
�
j +1 ∈ CD (for 1 � i, j � k). In this paper, we give an affirmative answer

to this question.

1. Introduction

In [6] and [5], Sárközy proved that if A, B, C, D are “large” subsets of Zp, more
precisely, |A||B||C||D|� p

3, then the equation

a + b = cd, (1)

respectively
ab + 1 = cd, (2)

can be solved with a ∈ A, b ∈ B, c ∈ C and d ∈ D. Gyarmati and Sárközy
[4] generalized the results on the solvability of equation (1) to finite fields. Using
bounds of multiplicative character sums, Shparlinski [7] extended the class of sets
which satisfy this property. Furthermore, Garaev [2, 3] considered the equations (1)
and (2) over some special sets A,B, C,D to obtain new results on the sum-product
problem in finite fields.

At the end of [4], Gyarmati and Sárközy proposed some open problems related
to the above equations. They asked whether one can extend the solvability of the
equations (1) and (2) in the following way: for every k ∈ N, there are c = c(k) > 0
and q0 = q0(k) such that if q > q0, A,B, C,D ⊆ Fq, |A||B||C||D| > q

4−c then there
are a1, . . . , ak, a

�
1, . . . , a

�
k ∈ A, b1, . . . , bk, b

�
1, . . . , b

�
k ∈ B with ai + bj , a

�
ib
�
j + 1 ∈ CD
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for 1 � i, j � k. In this paper, we give an affirmative answer to this question. More
precisely, our results are the following.

Theorem 1. Let k ∈ N. If A,B, C,D ⊆ Fq with |A||B||C||D| � q
4− 1

2(k+2) , then

there are a1, . . . , ak ∈ A, b1, . . . , bk ∈ B with ai + bj ∈ CD for 1 � i, j � k.

Theorem 2. Let k ∈ N. If A,B, C,D ⊆ Fq with |A||B||C||D| � q
4− 1

2(k+2) , then

there are a1, . . . , ak ∈ A, b1, . . . , bk ∈ B with aibj + 1 ∈ CD for 1 � i, j � k.

In [4], Gyarmati and Sárközy also studied the solvability of other (higher de-
gree) algebraic equations with solutions restricted to “large” subsets of Fq. They
considered the following equations:

a + b = f(c, d), a ∈ A, b ∈ B, c ∈ C, d ∈ D;

and
ab = f(c, d), a ∈ A, b ∈ B, c ∈ C, d ∈ D,

with f(x, y) ∈ Fq[x, y], A,B, C,D ⊂ Fq. We generalize Theorems 1 and 2 in this
direction. We have the following result for the sum problem.

Theorem 3. Suppose that f(x, y) ∈ Fq[x, y], and f(x, y) is not of the form g(x) +
h(y). We write f(x, y) in the form

f(x, y) =
m�

i=0

gi(x)yi
,

with gi(x) ∈ Fq[x], and let I denote the greatest i value with the property that gi(x) is

not identically constant. Assume that (I, q) = 1. For every k ∈ N, if A,B, C,D ⊆ Fq

with |A||B||C||D| � q
4− 1

4(k+2) , then there are a1, . . . , ak ∈ A, b1, . . . , bk ∈ B with

ai + bj ∈ f(C,D) for 1 � i, j � k (where f(C,D) = {f(c, d) : c ∈ C, d ∈ D}).

Before formulating the next theorem, we need to take some definitions from [4].

Definition 4. A polynomial

F (x, y) =
n�

i=1

Gi(y)xi =
m�

j=0

Hj(x)yj ∈ Fq[x, y]

is said to be primitive in x if (G0(y), . . . , Gn(y)) = 1, and it is said to be primitive

in y if
(H0(x), . . . ,Hm(x)) = 1.

Definition 5. Every polynomial f(x, y) ∈ Fq[x, y] can be written uniquely (apart
from constant factors) in the form

f(x, y) = F (x)G(x)H(x, y)

where H(x, y) is primitive in both x and y. The polynomial H(x, y) (uniquely
determined up to constant factors) is called the primitive kernel of f(x, y).
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We now can state an analog of Theorem 3 for the product problem.

Theorem 6. Suppose that f(x, y) ∈ Fq[x, y] and the primitive kernel H(x, y) of

f(x, y) is not of the form c(K(x, y))d
. For every k ∈ N, if A,B, C,D ⊂ Fq with

|A||B||C||D| � q
4− 1

4(k+2) , then there are a1, . . . , ak ∈ A, b1, . . . , bk ∈ B with aibj ∈
f(C,D) for 1 � i, j � k.

2. Pseudo-Randomness of Restricted-Sum Graphs

For any a ∈ A, c ∈ C, denote by N
c,D(a) the set of all b ∈ Fq such that a + b ∈

cD, and let N
c,D
B (a) = N

c,D(a) ∩ B. The following key estimate says that the
cardinalities of the N

c,D
B (a)’s are close to |B||D|

q when |B|, |D| are large.

Lemma 7. For all subsets A,B, C,D of Fq, we have

�

(a,c)∈F2
q

����Nc,D
B (a)

���−
|B||D|

q

�2

< q|B||D|.

Proof. For any set X, let X(·) denote the characteristic function of X. Let χ be
any non-trivial additive character of Fq. We have

|Nc,D
B (a)| =

�

(b,d)∈F2
q,a+b−cd=0

B(b)D(d)

=
�

(b,d)∈F2
q,s∈Fq

1
q
χ(s(a + b− cd))B(b)D(d)

=
|B||D|

q
+

1
q

�

(b,d)∈F2
q,s∈F∗

q

χ(s(a + b− cd))B(b)D(d).

Therefore
�

(a,c)∈F2
q

����Nc,D
B (a)

���−
|B||D|

q

�2

=
1
q2

�

(a,c)∈F2
q




�

(b,d)∈F2
q,s∈F∗

q

χ(s(a + b− cd))B(b)D(d)




2

=
1
q2

�

a,c,b,b�,d,d�∈Fq

s,s�∈F∗
q

χ((s− s
�)a)χ(sb− s

�
b
�)χ(c(s�d� − sd))B(b)D(d)B(b�)D(d�)

=
�

b,d,b�∈Fq,s=s�∈F∗
q

χ(s(b− b
�))B(b)D(d)B(b�)

= R1 + R2 , (3)
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where R1 is taken over b = b
� and R2 is taken over b �= b

� (the third line follows
from the orthogonality in a and c. Consider the second line as a sum over a, then
c implies that all summands vanish unless s = s

� and d = d
�). We have

R1 =
�

b=b�,d∈Fq,s=s�∈F∗
q

χ(s(b− b
�))B(b)D(d)B(b�)

= (q − 1)
�

b,d∈Fq

B(b)D(d) = (q − 1)|B||D|, (4)

and

R2 =
�

b�=b�,d∈Fq,s=s�∈F∗
q

χ(s(b− b
�))B(b)D(d)B(b�)

=
�

b,d∈Fq,s∈F∗
q ,t�=1∈Fq,b�=tb

χ(sb(1− t))B(b)D(d)B(tb)

= −
�

b,d∈Fq,t�=1

B(b)D(d)B(tb)

< 0. (5)

The lemma follows immediately from (3), (4) and (5).

The following result is an easy corollary of Lemma 7.

Corollary 8. For all subsets A,B, C,D of Fq and c ∈ C, let N
c,D(A,B) be the

number of pairs (a, b) ∈ A× B such that a + b ∈ cD. Then there exists c0 ∈ C such

that ����N
c0,D(A,B)− |D|

q
|A||B|

���� <

�
q|D|
|C|

�
|A||B|.

Proof. By the pigeon-hole principle, there exists c0 ∈ C such that

�

a∈A

����Nc0,D
B (a)

���−
|B||D|

q

�2

� 1
|C|

�

a∈A,c∈C

����Nc,D
B (a)

���−
|B||D|

q

�2

<
q|D||B|
|C| .

By the Cauchy-Schwartz inequality,
����N

c0,D(A,B)− |D|
q
|A||B|

���� �
�

a∈A

����
���Nc0,D

B (a)
���−

|B||D|
q

����

�
�
|A|

����
�

a∈A

����Nc0,D
B (a)

���−
|B||D|

q

�2

�
�

q|D
|C|

�
|A||B|.
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As a consequence, for any two large subsets A,B of Fq, there are many pairs
(a, b) ∈ A× B with a + b ∈ CD.

Corollary 9. For all subsets A,B, C,D of Fq, let N
C,D(A,B) be the set of pairs

(a, b) ∈ A× B such that a + b ∈ CD. Then

N
C,D(A,B) � |D|

q
|A||B|−

�
q|D|
|C|

�
|A||B|.

Proof. It follows immediately from Corollary 8.

Note that Corollaries 8 and 9 can be derived directly from Theorem 1 in [4].
However, Theorem 1 in [4] is also an easy corollary of Lemma 7 above.

Theorem 10. (cf. Theorem 1 in [4]) For any subsets A,B, C,D ⊆ Fq, denote by

N(A,B, C,D) the number of solutions of Eq. (1). Then we have

����N(A,B, C,D)− |A||B||C||D|
q

���� <

�
q|A||B||C||D|.

Proof. By Lemma 7, we have

�

a∈A,c∈C

����Nc,D
B (a)

���−
|B||D|

q

�2

≤
�

(a,c)∈F2
q

����Nc,D
B (a)

���−
|B||D|

q

�2

< q|B||D|.

By the Cauchy-Schwartz inequality,
����N(A,B, C,D)− |A||B||C||D|

q

���� �
�

(a,c)∈F2
q

����
���Nc,D

B (a)
���−

|B||D|
q

����

�
�
|A||C|

����
�

a∈A,c∈C

����Nc,D
B (a)

���−
|B||D|

q

�2

�
�

q|A||B||C||D|.

3. Pseudo-Randomness of Restricted-Product Graphs

For any a ∈ A, c ∈ C, let T
c,D(a) be the set of all b ∈ Fq such that ab+1 ∈ cD, and

let T
c,D
B (a) = T

c,D(a)∩B. The following key estimate says that the cardinalities of
the T

c
B(a)’s are close to |B||D|

q when |B|, |D| are large.
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Lemma 11. For all subsets A,B, C,D of Fq, we have

�

(a,c)∈F2
q

����T c,D
B (a)

���−
|B||D|

q

�2

< q|B||D|.

Proof. For any set X, let X(·) denote the characteristic function of X. Let χ be
any non-trivial additive character of Fq. We have

|T c,D
B (a)| =

�

(b,d)∈F2
q,ab−cd+1=0

B(b)D(d)

=
�

(b,d)∈F2
q,s∈Fq

1
q
χ(s(ab− cd + 1))B(b)D(d)

=
|B||D|

q
+

1
q

�

(b,d)∈F2
q,s∈F∗

q

χ(s(ab− cd + 1))B(b)D(d).

Therefore
�

(a,c)∈F2
q

����T c,D
B (a)

���−
|B||D|

q

�2

=
1
q2

�

(a,c)∈F2
q




�

(b,d)∈F2
q,s∈F∗

q

χ(s(ab− cd + 1))B(b)D(d)




2

=
1
q2

�

a,c,b,b�,d,d�∈Fq

s,s�∈F∗
q

χ(a(sb− s
�
b
�))χ(c(s�d� − sd))χ(s− s

�)B(b)D(d)B(b�)D(d�)

=
1
q2

(R1 + R2), (6)

where R1 is taken over s = s
� and R2 is taken over s �= s

�. We have

R1 =
�

a,c,b,b�,d,d�∈Fq,s=s�∈F∗
q

χ(as(b− b
�))χ(cs(d− d

�))B(b)D(d)B(b�)D(d�)

= (q − 1)q2|B||D|, (7)

where the last line follows from the orthogonality in a and then c. Considering the
sum over a and then over b, this implies that all summands with b �= b

� or d �= d
�

vanish. Now we compute R2.

R2 =
�

a,c,b,b�,d,d�∈Fq

s∈F∗
q ,t�=1∈Fq

χ(as(b− tb))χ(cs(d− td))χ(s(1− t))B(b)D(d)B(b�)D(d�)

= −
�

a,c,b�=tb,d�=td∈Fq,s∈F∗
q ,t�=1

B(b)D(d)B(b�)D(d�)

< 0, (8)
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where the last line follows from the orthogonality in a and c. By considering the
sum over a, and then over b, this implies that all summands with b

� �= tb or d
� �= td

vanish. The lemma follows immediately from (6), (7) and (8).

Corollary 12. For all subsets A,B, C,D of Fq and c ∈ C, let T
c,D(A,B) be the set

of pairs (a, b) ∈ A× B such that ab + 1 ∈ cD. Then there exists c0 ∈ C such that

����T
c0,D(A,B)− |D|

q
|A||B|

���� <

�
q|D|
|C|

�
|A||B|.

Proof. The proof of this corollary is similar to that of Corollary 8, except that we
use Lemma 11 instead of Lemma 7.

We also have an analog of Corollary 9 in the shifted-product problem.

Corollary 13. For all subsets A,B, C,D of Fq, let N
C,D(A,B) be the set of pairs

(a, b) ∈ A× B such that ab + 1 ∈ CD. Then

T
C,D(A,B) � |D|

q
|A||B|−

�
q|D|
|C|

�
|A||B|.

Similarly as in the previous section, slightly weaker (but still useful) versions of
Corollaries 12 and 13 can be derived directly from Theorem 2 in [4].

4. Proof of Theorems 1

We now give a proof of Theorem 1.1. The key tool is the following lemma.

Lemma 14. Suppose that A, B, C, D of Fq with

|A|, |B|�

�
q|D|
|C|

�
q

|D|

�k

.

Then there are a1, . . . , ak ∈ A, b1, . . . , bk ∈ B such that ai + bj ∈ CD for all

1 � i, j � k.

Proof. The proof proceeds by induction on k. The base case, k = 1, follows im-
mediately from Corollary 9. Suppose that the theorem holds for all l < k. From
Corollary 9, we have

N
C,D(A,B) � |D|

q
|A||B|−

�
q|D|
|C|

�
|A||B| = (1 + o(1))

|D|
q
|A||B|.
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By the pigeon-hole principle, there exists a1 ∈ A such that

N
C,D(a1,B) � (1 + o(1))

|D|
q
|B|�

�
q|D|
|C|

�
q

|D|

�k−1

. (9)

Let B1 be the set of all b ∈ B such that a1 + b ∈ CD. From Corollary 9, we have

N
C,D(A,B1) � |D|

q
|A||B1|−

�
q|D|
|C|

�
|A||B1| = (1 + o(1))

|D|
q
|A||B1|.

By the pigeon-hole principle, there exists b1 ∈ B1 such that

N
C,D(A, b1) � (1 + o(1))

|D|
q
|A|�

�
q|D|
|C|

�
q

|D|

�k−1

. (10)

Let A1 be the set of all a ∈ A such that a + b1 ∈ CD. Set A∗ = A\{a1} and
B∗ = B1\{b1}. It follows from (9) and (10) that

|A∗|, |B∗|�

�
q|D|
|C|

�
q

|D|

�k−1

.

Thus, by the induction hypothesis, there are a2, . . . , ak ∈ A∗, b2, . . . , bk ∈ B∗ such
that ai + bj ∈ CD for all 2 � i, j � k. We also have a1 + bi, aj + b1 ∈ CD for all
i, j = 1, . . . , k. This completes the proof of the lemma.

Let c = c(k) = 1
2(k+2) and q � 1. Then |A|, |B|, |C|, |D|� q

1−c. It follows that
�

q|D|
|C|

�
q

|D|

�k

� q
(1+c)/2+ck � q

1−c � |A|, |B|. (11)

Therefore, Theorem 1 follows immediately from Lemma 14. Note that the upper
bound for the left hand side of (11) can be estimated by q

1/2+kc. This can improve
the bound of Theorem 1 to |A||B||C||D|� q

4− 1
2k+2 .

5. Proof of Theorem 2

Similar to the previous section, we can obtain the following result from Corollary
13.

Lemma 15. Suppose that A, B, C, D of Fq with

|A|, |B|�

�
q|D|
|C|

�
q

|D|

�k

.

Then there are a1, . . . , ak ∈ A, b1, . . . , bk ∈ B such that aibj + 1 ∈ CD for all

1 � i, j � k.
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Let c = c(k) = 1
2(k+2) and q � 1, then |A|, |B|, |C|, |D|� q

1−c. It follows that
�

q|D|
|C|

�
q

|D|

�k

� q
(1+c)/2+ck � q

1−c � |A|, |B|.

Theorem 2 now follows from Lemma 15.

6. Proof of Theorem 3

We write f(x, y) in the form

f(x, y) =
m�

i=0

gi(x)yi
,

where gi(x) ∈ Fq[x]. Let I denote the greatest i value with the property that gi(x)
is not identically constant: gI(x) �≡ c, and either I = m or gI+1(x), . . . , gn(x) are
identically constant. Since f(x, y) is not of the form g(x)+h(y), I > 0. Denote the
degree of the polynomial gI(y) by D so that D > 0. Assume that (I, q) = 1. The
following theorem is due to Gyarmati and Sárközy [4].

Theorem 16. (cf. Theorem 3 in [4]) If A,B, C,D ⊂ Fq, and the number of solu-

tions of

a + b = f(c, d), a ∈ A, b ∈ B, c ∈ C, d ∈ D,

is denoted by N , then we have

����N − |A||B||C||D|
q

���� �
�
q(D + (I − 1)q1/2)|A||B||C||D|

�1/2
.

The following result is an analog of Corollary 9.

Corollary 17. For all subsets A,B, C,D ⊂ Fq, let N
C,D
f (A,B) be the number of

pairs (a, b) ∈ A× B such that a + b ∈ f(C,D). Then

N
C,D
f (A,B) � |D|

mq
|A||B|− 1

m

�

q(D + (I − 1)q1/2)
|D|
|C|

�
|A||B|.

Proof. For any c ∈ C, let N
c
f (A,B,D) denote the number of triples (a, b, d) ∈

A×B×D such that a + b = f(c, d). By the pigeon-hole principle and Theorem 16,
there exists c0 ∈ C such that

N
c0
f (A,B,D) � |D|

q
|A||B|−

�

q(D + (I − 1)q1/2)
|D|
|C|

�
|A||B|.

Besides, for any fixed a, b and c0, f(c0, d)− a− b is a polynomial of degree m on d.
Therefore, the number of d such that a + b = f(c0, d) is at most m. The corollary
follows.
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As a consequence, we have the following lemma.

Lemma 18. Suppose that A,B, C,D ⊂ Fq with

|A|, |B|� 1
m

�

q(D + (I − 1)q1/2)
|D|
|C|

�
mq

|D|

�k

.

Then there are a1, . . . , ak ∈ A, b1, . . . , bk ∈ B such that ai + bj ∈ f(C,D) for all

1 � i, j � k.

Proof. The proof of this lemma is similar to that of Lemma 14, except that we use
Corollary 17 instead of Corollary 9

Let c = c(k) = 1
4(k+2) and q � 1, then |A|, |B|, |C|, |D|� q

1−c. It follows that

1
m

�

q(D + (I − 1)q1/2)
|D|
|C|

�
mq

|D|

�k

� q
3/4

q
c/2+kc � q

1−c � |A|, |B|.

Theorem 3 now follows from Lemma 18

7. Proof of Theorem 6

Using multiplicative character sums, Gyarmati and Sárközy [4] proved the following
theorem.

Theorem 19. rm (cf. Theorem 4 in [4]) Suppose that f(x, y) ∈ Fq[x, y] and

that the primitive kernel H(x, y) of f(x, y) is not of the form c(K(x, y))d
. Write

f(x, y) = F (x)G(y)H(x, y) in a unique way up to constant factors. Let r, s, n, m

be the degrees of F , G, f(x, y) in x, f(x, y) in y, respectively. If A,B, C,D ⊂ Fq

and the number of solutions of

ab = f(c, d), a ∈ A, b ∈ B, c ∈ C, d ∈ D,

is denoted by N , then we have

����N − |A||B||C||D|
q

���� < 4n1/2
q
3/4(|A||B||C||D|)1/2 + 7(r + s + n + (nm)1/2)q5/2

.

Similar to the previous sections, we have the following corollary.

Corollary 20. For all subsets A,B, C,D ⊂ Fq, let N
C,D
f (A,B) be the number of

pairs (a, b) ∈ A× B such that ab = f(C,D). Then

N
C,D
f (A,B) � |D|

mq
|A||B|− 4n1/2

q
3/4

m

�
|D|
|C|

�
|A||B|− 7(r + s + n + (nm)1/2)q5/2

m|C| .



INTEGERS: 12 (2012) 11

Proof. For any c ∈ C, let N
c
f (A,B,D) denote the number of triples (a, b, d) ∈

A × B × D such that ab = f(c, d). By the pigeon-hole principle and Theorem 19,
there exists c0 ∈ C such that

N
c0
f (A,B,D) � |D|

mq
|A||B|− 4n1/2

q
3/4

m

�
|D|
|C|

�
|A||B|− 7(r + s + n + (nm)1/2)q5/2

m|C| .

Besides, for any fixed a, b and c0, f(c0, d) − ab is a polynomial of degree m on d.
Therefore, the number of d such that ab = f(c0, d) is at most m. The corollary
follows.

We following lemma follows from Corollary 20 in a similar way that Lemma 14
follows from Corollary 9.

Lemma 21. Suppose that A,B, C,D ⊂ Fq with

|A|, |B|� 4n1/2
q
3/4

m

�
|D|
|C|

�
mq

|D|

�k

.

Then there are a1, . . . , ak ∈ A, b1, . . . , bk ∈ B such that aibj ∈ f(C,D) for all

1 � i, j � k.

Let c = c(k) = 1
4(k+2) and q � 1. Then |A|, |B|, |C|, |D|� q

1−c. It follows that

4n1/2
q
3/4

m

�
|D|
|C|

�
mq

|D|

�k

� q
3/4

q
c/2+kc � q

1−c � |A|, |B|.

Theorem 6 now follows from Lemma 21.

8. Another problem

In [1], Csikvári, Sárközy and Gyarmati proposed some further related problems.
One of these problems is the following (Problem 4 in [1]):

Is it true that for all ε > 0, there is a k0 = k0(ε) such that if k ∈ N, k > k0,

p > p0 = p0(ε, k) and A,B ⊂ Fq with

min{|A|, |B|} > q
ε
,

then

a1 + a2 = b1 . . . bk, a1, a2 ∈ A, b1, . . . , bk ∈ B (12)

can be solved?

In this section, we give a negative answer for this question by proving the follow-
ing theorem.
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Theorem 22. For all ε < 1/2, k ∈ N, there exists two sets A,B ⊂ Fq with

|A|, |B| > q
ε

such that Eq. (12) cannot be solved.

Proof. Let ν be a generator of F∗q and t = �qε� + 1. We choose B = {1, ν, . . . , ν
t}.

Then |B| > q
ε and Bk = {b1 . . . bk : bi ∈ B} = {1, ν, . . . , ν

kt}. Now we choose
elements of A inductively. Let T0 = B/2 = {b/2 : b ∈ B}, A0 = {a0} with a0 /∈ T0.
Suppose that we have Ti and Ai = {a0, . . . , ai}. We then construct Ti+1 and Ai+1

as follows:
Ti+1 = Ti ∪ (Bk − ai) ∪ {ai},Ai+1 = Ai ∪ {ai+1},

for some ai+1 /∈ Ti+1. It is easy to check that under this construction, (Ai +
Ai) ∩ Bk = ∅ for all i. Since |Ti+1| � |Ti| + |Bk| + 1 � |Ti| + tk + 1, we can
continue the process until i(tk + 1) < q. Therefore, we can choose a set A, such
that |A| � �(q − 1)/(kt + 1)� � q

ε and (A+A)∩Bk = ∅. This completes the proof
of the theorem.

If Fq is not a prime field, we can do slightly better. Suppose that q = p
2 for

some prime power p. We construct the Paley sum graph P
+
q with the vertex set

Fq, and two vertices a, b are adjacent if and only if a + b is a square residue. It is
well known that the maximal clique of P

+
q has size p. Since P

+
q is self-symmetric,

the maximal independent set of P
+
q also has size p. Therefore, we can find a set A

with |A| = q
1/2 such that a + a

� is square non-residue for all a, a
� ∈ Fq. Let B be

the set of all square residues, then |B| = q/2 and Eq. (12) is not solvable in A,B.
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