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Abstract
In this paper, we investigate arithmetic progressions in the polygonal numbers with
a fixed number of sides. We first show that four-term arithmetic progressions cannot
exist. We then describe explicitly how to find all three-term arithmetic progressions.
Finally, we show that not only are there infinitely many three-term arithmetic
progressions, but that there are infinitely many three-term arithmetic progressions
starting with an arbitrary polygonal number. Special attention is paid to the case
of squares and triangular numbers.

1. Introduction

We recall that an arithmetic progression with a common difference d is a sequence
of numbers, finite or infinite, such that the difference of any two consecutive terms
is a constant d. Throughout this paper, let s be a fixed integer with s ≥ 3. We will
use the notation Ps(n) to represent the n-th s-gonal number – that is, the number
of points that are needed to create a regular s-gon with each side being of length
n− 1. See Figure 1. This number is given by Ps(n) = (s/2− 1)n2 − (s/2− 2)n.

We will show that four-term arithmetic progressions with common difference
d #= 0 in the polygonal numbers do not exist. We then show that not only are there
infinitely many three-term arithmetic progressions with common difference d > 0,
but that there are infinitely many such progressions starting with an arbitrary
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Figure 1: Examples of Polygonal Numbers for s = 3, 4, 5 and n = 1, 2, 3, 4.

polygonal number. Finally, we describe explicitly how to find all such three-term
arithmetic progressions with common difference d > 0.

A natural question that arises from the results in this paper is to consider arith-
metic progressions in the polyhedral numbers and then to generalize this to analyz-
ing arithmetic progressions in the figurative numbers.

For a more general problem one could ask about arithmetic progressions in the
sequence f(n) for positive integers n and an arbitrary integer polynomial f(x). This
appears to be far from trivial, however. In particular, we note that if f(x) = x3,
then finding three-term arithmetic progressions with common difference d #= 0 in
{f(n) : n ∈ Z+} would amount to solving the Diophantine equation A3+C3 = 2B3

in positive integers A < B < C. That there are no such three-term arithmetic
progressions for third-powers follows then from [4, Theorem 3, p. 126]. On the
other hand, if instead f(x) = x3 − x, then the numbers f(1) = 0, f(4) = 60
and f(5) = 120 form a three-term arithmetic progression with common difference
d = 60.

2. Four-Term Arithmetic Progressions

We first show that four-term arithmetic progressions with a common difference
d #= 0 cannot occur in the polygonal numbers. To do this, we will reference the
following result from [4, pages 21–22] and [5, page 75]:

Theorem. (Mordell 1969; Sierpiński 1964) There cannot be four squares in arith-
metic progression with common difference d #= 0.

Using this, we have the following result.

Theorem 1. Let s be a fixed integer with s ≥ 3 Then there cannot be four s-gonal
numbers in arithmetic progression with common difference d #= 0.

Proof. Let s be a fixed integer with s ≥ 3. By way of contradiction, suppose that
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there is a four-term arithmetic progression with common difference d #= 0 in the
s-gonal numbers. Then there exists positive integers n, a, b, and c satisfying

Ps(a)− Ps(n) = Ps(b)− Ps(a) = Ps(c)− Ps(b) = d #= 0.

First, we consider any two adjacent terms in the arithmetic progression, say
Ps(n) and Ps(a). We have that

Ps(a) = (s/2− 1)a2 − (s/2− 2)a and Ps(n) = (s/2− 1)n2 − (s/2− 2)n.

By assumption, we also have that d = Ps(a)− Ps(n), so that

2d = 2Ps(a)− 2Ps(n) = a2(s− 2)− a(s− 4)− n2(s− 2) + n(s− 4).

We now consider (2a(s− 2)− (s− 4))2 and (2n(s− 2)− (s− 4))2. We see that

(2a(s− 2)− (s− 4))2 − (2n(s− 2)− (s− 4))2

= 4(s− 2)
(
a2(s− 2)− a(s− 4)− n2(s− 2) + n(s− 4)

)

= 8(s− 2)d.

Similarly, we have that

(2b(s− 2)− (s− 4))2 − (2a(s− 2)− (s− 4))2 = 8(s− 2)d

and (2c(s− 2)− (s− 4))2 − (2b(s− 2)− (s− 4))2 = 8(s− 2)d.

This contradicts Sierpiński’s and Mordell’s theorem, completing the proof.

3. Three-Term Arithmetic Progressions

In order to examine three-term arithmetic progressions with common difference d
in the polygonal numbers, we first prove a short lemma. To simplify the proof of
the lemma, we will momentarily consider Ps to be a continuous function from C
into C.

Lemma 1. Let s be a fixed integer with s ≥ 3 and n, a, and b be complex numbers.
Then Ps(n), Ps(a), and Ps(b) satisfy Ps(a)− Ps(n) = Ps(b)− Ps(a) if and only if

N = 2(s− 2)n− (s− 4), A = 2(s− 2)a− (s− 4), and B = 2(s− 2)b− (s− 4)

satisfy the equation B2 − 2A2 = −N2.

Proof. Let s be a fixed integer with s ≥ 3. Suppose that n, a, and b are complex
numbers such that Ps(a)− Ps(n) = Ps(b)− Ps(a). It follows that

(s
2
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(s
2
− 2

)
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2
− 1
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n2 +

(s
2
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− 1
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(s
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− 2
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(s
2
− 1
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a2 +

(s
2
− 2

)
a. (1)
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Multiplying both sides of (1) by 8(s − 2) and rearranging, we obtain that (1) is
equivalent to B2 − 2A2 = −N2, where N,A, and B are as defined in the statement
of the lemma.

Since these steps work in reverse, the converse is immediate. This proves the
lemma.

We get an immediate consequence of Lemma 1 if we revert to viewing Ps as a
function from N into N. If Ps(n), Ps(a), and Ps(b) form a three-term arithmetic
progression for positive integers n, a, and b with n ≤ a ≤ b, then B2 − 2A2 = −N2

is satisfied for N,A, and B as given in Lemma 1. Conversely, every positive integer
solution N,A, and B to B2 − 2A2 = −N2 where

n =
N + (s− 4)

2(s− 2)
, a =

A+ (s− 4)

2(s− 2)
, and b =

B + (s− 4)

2(s− 2)

are positive integers with n ≤ a ≤ b gives us that Ps(n), Ps(a), and Ps(b) form a
three-term arithmetic progression in the s-gonal numbers.

We now show that there are infinitely many three-term arithmetic progressions
with common difference d > 0 starting at a given polygonal number, which is our
second theorem. The proof of this theorem uses some basic algebraic number theory
as detailed in [2] or [3].

Theorem 2. Let s be a fixed integer with s ≥ 3. Let n be an arbitrary positive
integer. Then there exist infinitely many integers d > 0 such that there is a three-
term arithmetic progressions with a common difference d in the s-gonal numbers
beginning with Ps(n).

Proof. Let s be a fixed integer with s ≥ 3. Let n be an arbitrary positive integer.
Let N = 2(s− 2)n− (s− 4) as in Lemma 1.

Suppose that X and Y are positive integers satisfying

X2 − 2Y 2 = −1, X ≡ 1 (mod 2(s− 2)), and Y ≡ 1 (mod 2(s− 2)). (2)

Notice that X = 1 and Y = 1 satisfy (2), so such X and Y exist.

Observe that by multiplying the equation in (2) by N2 we have

(NX)2 − 2(NY )2 = −N2.

Our goal is to apply Lemma 1.

Now let

a =
NY + (s− 4)

2(s− 2)
= nY +

(1− Y )(s− 4)

2(s− 2)
(3)

and

b =
NX + (s− 4)

2(s− 2)
= nX +

(1−X)(s− 4)

2(s− 2)
. (4)
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Since s ≥ 3 and Y ≡ 1 (mod 2(s− 2)), we may write Y = 1+2(s− 2)k for some
integer k ≥ 0. Thus, from (3),

a = n(1 + 2(s− 2)k)− (s− 4)k = n+ (2n(s− 2)− (s− 4))k ≥ n+ 2k > 0.

Hence, a is a positive integer.

Similarly from (4), b is also a positive integer.

As already noted, we have (NX)2−2(NY )2 = −N2. Observe that if X > Y > 1
then n < a < b. Thus, by the comments after Lemma 1, Ps(n), Ps(a), and Ps(b)
would form a three-term arithmetic progression with common difference d > 0 in
the s-gonal numbers. Therefore it suffices to show that there are infinitely many
positive integers X and Y satisfying (2) with X > Y > 1.

The solutions to X2 − 2Y 2 = −1 with X and Y being positive integers are given
by X + Y

√
2 =

(
1 +

√
2
)m

where m is an odd positive integer. We know that

G =
(
(Z/(2(s− 2))Z)

[√
2
])×

is a finite group and 1 +
√
2 is an element of G. Letting m be 1 plus any even

multiple of the order of 1+
√
2 in G gives us that

(
1 +

√
2
)m

is equivalent to 1+
√
2

in G. Thus, for any such m, X+Y
√
2 =

(
1 +

√
2
)m

satisfies X ≡ 1 (mod 2(s−2))
and Y ≡ 1 (mod 2(s − 2)). With the exception of X = Y = 1, we have that
X > Y > 1. This guarantees that Ps(a)− Ps(n) = Ps(b)− Ps(a) = d with d > 0.

This completes the proof of the theorem.

4. Concluding Remarks

We conclude with a few comments on Theorem 2. The special cases of s = 3 and
s = 4, corresponding to the triangular numbers and squares respectively, provide
interesting examples. For s = 3, integers X and Y satisfying the equation in (2)
give solutions a and b to (1) given by (3) and (4). In other words,

a = nY +
Y − 1

2
and b = nX +

X − 1

2
.

It is easy to show, however, that for every integral solution X and Y to the equation
in (2), both X and Y are odd. Thus every integral solution to the equation in (2)
gives us integral solutions a and b to (1).

With s = 4, the integral solutions X and Y to (2) give solutions a and b to (1)
by a = nY and b = nX . Again, we have integral solutions a and b to (1) for every
integral solution X and Y to (2).

For both s = 3 and s = 4, every integral solution to the equation in (2) gives an
integral solution to (1). However, for each s ≥ 5 this is no longer the case. Take
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s = 5 and n = 1, for example, and consider arithmetic progressions with common
difference d in the pentagonal numbers starting with P5(1) = 1. Here X = 7 and
Y = 5 is the first non-trivial solution to the equation in (2), but this does not give
an integral solution to (1). In fact, the first non-trivial solution to the equation
in (2) that does give an integral solution to (1) is X = 1393 and Y = 985, which
gives us the three-term arithmetic progression P5(1) = 1, P5(821) = 1010651, and
P5(1161) = 2021301 with the common difference of 1010650.

Furthermore, not every integral solution to (1) is given by a solution to (2). Take
the case of s = 3 and n = 3. Here P3(3) = 6, P3(8) = 36, and P3(11) = 66 is an
arithmetic progression with common difference of 30, but a = 8 and b = 11 are
not given by a solution to (2). This choice of a and b do arise, however, from the
discussion after the proof of Lemma 1 with A = 17 and B = 23, as illustrated next.

We wish to find all three-term arithmetic progressions beginning with P3(3) as
discussed after Lemma 1. Thus we want to find all positive solutions A and B to
the Pell equation B2 − 2A2 = −N2, where N = 7.

For every divisor δ of N = 7, we have the associated Pell equation

X2 − 2Y 2 = −
(
N

δ

)2

,

where B = δX , A = δY , and we wish for X and Y to be relatively prime. In our
case N = 7, so we consider the two equations

X2 − 2Y 2 = −1 (5)

and X2 − 2Y 2 = −49. (6)

In the case of (5), we have δ = 7; and in the case of (6), we have δ = 1.

Equation (5) as previously noted has the solution X = 1 and Y = 1. All other
solutions X +Y

√
2 are given by

(
1 +

√
2
)m

for any odd positive integer m. Again,
we note that the solution X = 1 and Y = 1 gives the trivial arithmetic progression
with common difference d = 0.

The solutions X and Y , with X and Y relatively prime, for equation (6) are
given by X = |U | and Y = |V | where U + V

√
2 = (1 + 5

√
2 )(1 +

√
2 )r , where r

is an even integer, possibly negative. Since δ = 1 in this case, if we set r = 2, we
obtain the values A = 17 and B = 23 as previously mentioned.

We note that in general there may not be any relatively prime solutions to a Pell
equation, as in the case of X2 − 2Y 2 = −9.

We can explicitly describe in a finite number of steps all three-term arithmetic
progressions in the s-gonal numbers for any fixed s ≥ 3 beginning with Ps(n) for any
positive integer n. One method for achieving this is through the use of continued
fractions, as presented in [1, pages 423-527]. Of special importance to note is that
the algorithm that is presented in [1] terminates in a finite number of steps, giving a
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description of all solutions to a Pell equation in terms of certain constructed general
solutions to the Pell equation.
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