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Abstract
In this paper, we present twenty-five analogues of Jacobi’s two-square theorem which

involve squares, triangular numbers, pentagonal numbers, heptagonal numbers, oc-

tagonal numbers, decagonal numbers, hendecagonal numbers, dodecagonal num-

bers, and octadecagonal numbers.

1. Introduction

Jacobi’s celebrated two-square theorem is as follows.

Theorem 1.1. ([7]). Let r{✷ + ✷}(n) denote the number of representations of n
as a sum of two squares and di,j(n) denote the number of positive divisors of n
congruent to i modulo j. Then

r{✷ + ✷}(n) = 4(d1,4(n)− d3,4(n)). (1)

Simple proofs of (1) can be seen in [2] and [4]. Similar representation theorems

involving squares and triangular numbers were found by Dirichlet [3], Lorenz [10],

Legendre [9], and Ramanujan [1]. For example, another classical result due to

Lorenz [10] is stated below.

Theorem 1.2. Let r{l✷ + m✷}(n) denote the number of representations of n as a
sum of l times a square and m times a square. Then

r{✷ + 3✷}(n) = 2(d1,3(n)− d2,3(n)) + 4(d4,12(n)− d8,12(n)). (2)
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In [5], M.D. Hirschhorn obtained sixteen identities (including those obtained

by Legendre and Ramanujan) simply by dissecting the q-series representations of

the identities obtained by Jacobi, Dirichlet and Lorenz. Hirschhorn [6] further

extended his work and obtained twenty-nine more identities involving squares, tri-

angular numbers, pentagonal numbers and octagonal numbers. For more work on

this topic one can see [8], [11] and [12]. In [12], R. S. Melham presented an infor-

mal account of analogues of Jacobi’s two-square theorem which are verified using

computer algorithms.

In this paper, we find twenty-five more such identities involving squares, tri-

angular numbers, pentagonal numbers, heptagonal numbers, octagonal numbers,

decagonal numbers, hendecagonal numbers, dodecagonal numbers, and octadecago-

nal numbers, by employing Ramanujan’s theta function identities.

For k ≥ 3, the nth k-gonal number Fk(n) is given by

Fk := Fk(n) =
(k − 2)n2 − (k − 4)n

2
.

By allowing the domain for Fk(n) to be the set of all integers, we see that the

generating function Gk(q) of Fk(n) is given by

Gk(q) =

∞�

n=−∞
qFk =

∞�

n=−∞
q

(k − 2)n2 − (k − 4)n

2 .

We note an exception for the case k = 3. We observe that G3(q) generates each

triangular number twice while G6(q) generates each only once. As such, we take

G6(q) as the generating function for triangular numbers instead of G3(q). We

further observe that

Gk(q) = f(q, qk−3
), (3)

where f(a, b) is Ramanujan’s general theta function defined by [1, p. 34, Eq. (18.1)]:

f(a, b) :=

∞�

n=−∞
an(n+1)/2bn(n−1)/2, |ab| < 1.

Two important special cases of f(a, b) are

ϕ(q) := f(q, q),

ψ(q) := f(q, q3
).

In view of (3), the respective generating functions of squares, triangular numbers,

pentagonal numbers, heptagonal numbers, octagonal numbers, decagonal numbers,
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hendecagonal numbers, dodecagonal numbers, and octadecagonal numbers are

G4(q) = f(q, q) = ϕ(q),

G6(q) = f(q, q3
) = ψ(q),

G5(q) = f(q, q2
),

G7(q) = f(q, q4
),

G8(q) = f(q, q5
),

G10(q) = f(q, q7
),

G11(q) = f(q, q8
),

G12(q) = f(q, q9
),

and

G18(q) = f(q, q15
).

In Section 2, we give dissections of ϕ(q), ψ(q), G5(q), and G12(q) and recall some

identities established in [5] and [6]. In the remaining five sections, we successively

present sets of identities involving decagonal numbers, hendecagonal numbers, do-

decagonal numbers, heptagonal numbers, and octadecagonal numbers.

2. Preliminary Results

Let Un = an(n+1)/2bn(n−1)/2
and Vn = an(n−1)/2bn(n+1)/2

for each integer n. Then

we have [1, p. 48, Entry 31]

f(a, b) = f(U1, V1) =

n−1�

r=0

Urf

�
Un+r

Ur
,
Vn−r

Ur

�
.

Replacing a by qa
and b by qb

, we find that

f(qa, qb
) =

n−1�

r=0

q




a + b

2



r2+




a− b

2



r

× f



q




a + b

2



n2+(a+b)nr+




a− b

2



n

, q




a + b

2



n2−(a+b)nr−




a− b

2



n



 .

(4)

Setting a = b = 1 and then letting n = 3, 5 and 8 in (4), we obtain

ϕ(q) = ϕ(q9
) + 2qG8(q

3
), (5)

ϕ(q) = ϕ(q25
) + 2qA(q5

) + 2q4G12(q
5
), (6)
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and

ϕ(q) = ϕ(q64
) + 2qB(q16

) + 2q4ψ(q32
) + 2q9G10(q

16
) + 2q16ψ(q128

), (7)

respectively, where A(q) = f(q3, q7
) and B(q) = f(q3, q5

).

Setting a = 1, b = 3 and then putting n = 2, 4 and 6 in (4), we deduce that

ψ(q) = B(q2
) + qG10(q

2
), (8)

ψ(q) = f(q28, q36
) + qf(q20, q44

) + q3f(q12, q52
) + q6G18(q

4
), (9)

and

ψ(q) = f(q66, q78
) + qB(q18

) + q3f(q42, q102
) + q6f(q30, q114

)

+ q10G10(q
18

) + q15G26(q
6
), (10)

respectively.

Setting a = 1, b = 0 and then choosing n = 3 and 5 in (4) and noting that

ψ(q) =
1

2
f(1, q), we obtain

ψ(q) = G5(q
3
) + qψ(q9

) (11)

and

ψ(q) = C(q5
) + qG7(q

5
) + q3ψ(q25

), (12)

respectively, where C(q) = f(q2, q3
).

Next, setting a = 1, b = 2 and n = 3 in (4), we find that

G5(q) = f(q12, q15
) + qf(q6, q21

) + q2G11(q
3
). (13)

Again, setting a = 1, b = 9 and n = 2 in (4), we obtain

G12(q) = A(q4
) + qG7(q

8
). (14)

We also require a few identities deduced in [5] and [6]. Throughout the sequel,

r{lFi + mFj}(n) denotes the number of representations of n as a sum of l times a

polygonal number Fi and m times a polygonal number Fj . Note that r{2✷+�}(n)

that appears in (16) is r{2F4 +F6}(n). However, we have kept the former notation

in those cases which involve squares and/or triangular numbers. The first seven

of the following identities appeared in [5] as equations (1.1), (1.3), (1.4), (1.5),

(1.11), (1.12), and (1.14), respectively, while the last six identities appeared in [6]

as equations (1.2), (1.3), (1.4), (1.6), (1.13), and (1.14), respectively.
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r{�+�}(n) = d1,4(4n + 1)− d3,4(4n + 1), (15)

r{2✷ +�}(n) = d1,4(8n + 1)− d3,4(8n + 1), (16)

r{�+ 4�}(n) =
1

2
(d1,4(8n + 5)− d3,4(8n + 5)), (17)

r{�+ 2�}(n) =
1

2
(d1,8(8n + 3) + d3,8(8n + 3)− d5,8(8n + 3)− d7,8(8n + 3)),

(18)

r{6✷ +�}(n) = d1,3(8n + 1)− d2,3(8n + 1), (19)

r{�+ 12�}(n) =
1

2
(d1,3(8n + 13)− d2,3(8n + 13)), (20)

r{3�+ 4�}(n) =
1

2
(d1,3(8n + 7)− d2,3(8n + 7)), (21)

r{�+ 4F5}(n) = d1,24(24n + 7) + d19,24(24n + 7)− d5,24(24n + 7)

− d23,24(24n + 7), (22)

r{3�+ F5}(n) = d1,12(12n + 5)− d11,12(12n + 5), (23)

r{3�+ 2F5}(n) = d1,8(24n + 11)− d7,8(24n + 11), (24)

r{6�+ F5}(n) = d1,8(24n + 19)− d7,8(24n + 19), (25)

r{3✷ + F5}(n) = d1,8(24n + 1) + d3,8(24n + 1)− d5,8(24n + 1)

− d7,8(24n + 1), (26)

r{3✷ + 4F5}(n) = d1,8(6n + 1) + d3,8(6n + 1)− d5,8(6n + 1)− d7,8(6n + 1). (27)

3. Identities Involving Decagonal Numbers

Theorem 3.1. We have

r{✷ + 3F10}(n) = d1,3(16n + 27)− d2,3(16n + 27), (28)

r{2�+ 3F10}(n) =
1

2
(d1,3(16n + 31)− d2,3(16n + 31)), (29)

r{2�+ F10}(n) =
1

2
(d1,4(16n + 13)− d3,4(16n + 13)), (30)

r{✷ + F10}(n) = d1,4(16n + 9)− d3,4(16n + 9), (31)

r{6�+ F10}(n) =
1

2
(d1,3(16n + 21)− d2,3(16n + 21)), (32)
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r{3✷ + F10}(n) = d1,3(16n + 9)− d2,3(16n + 9), (33)

r{F8 + F10}(n) =
1

2
(d1,3(48n + 43)− d2,3(48n + 43)), (34)

r{F5 + 3F10}(n) = d1,8(48n + 83)− d7,8(48n + 83), (35)

r{2F5 + F10}(n) = d1,24(48n + 31) + d19,24(48n + 31)

− d5,24(48n + 31)− d23,24(48n + 31), (36)

r{�+ F10}(n) =
1

2
(d1,8(16n + 11) + d3,8(16n + 11)

− d5,8(16n + 11)− d7,8(16n + 11)). (37)

Proof. Identity (19) is equivalent to

ϕ(q6
)ψ(q) =

�

n≥0

(d1,3(8n + 1)− d2,3(8n + 1))qn. (38)

Employing (10) in (38), we have

ϕ(q6
)(f(q66, q78

) + qB(q18
) + q3f(q42, q102

) + q6f(q30, q114
)

+ q10G10(q
18

) + q15G26(q
6
)) =

�

n≥0

(d1,3(8n + 1)− d2,3(8n + 1))qn. (39)

Extracting the terms involving q6n+4
in (39) and then dividing the resulting identity

by q4
and replacing q6

by q, we find that

qϕ(q)G10(q
3
) =

�

n≥0

(d1,3(48n + 33)− d2,3(48n + 33))qn. (40)

Equating the coefficients of qn+1
on both sides of (40) and noting that d1,3(48n +

33) = d1,3(16n + 11) and d2,3(48n + 33) = d2,3(16n + 11), we arrive at (28).

Next, (20) is equivalent to

ψ(q)ψ(q12
) =

1

2

�

n≥0

(d1,3(8n + 13)− d2,3(8n + 13))qn,

which, with the aid of (10), can be rewritten as

ψ(q12
)
�
f(q66, q78

) + qB(q18
) + q3f(q42, q102

) + q6f(q30, q114
)

+ q10G10(q
18

) + q15G26(q
6
)
�

=
1

2

�

n≥0

(d1,3(8n + 13)− d2,3(8n + 13))qn. (41)

Collecting the terms in (41) in which the power of q is congruent to 4 modulo 6, we

find that

qψ(q2
)G10(q

3
) =

1

2

�

n≥0

(d1,3(48n + 45)− d2,3(48n + 45))qn. (42)
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Equating the coefficients of qn+1
on both sides of (42) and noting that d1,3(48n +

45) = d1,3(16n + 15) and d2,3(48n + 45) = d2,3(16n + 15), we arrive at (29).

Identity (1) is equivalent to

ϕ2
(q) = 1 + 4

�

n≥1

(d1,4(n)− d3,4(n))qn, (43)

which can be rewritten, with the aid of (7), as

(ϕ(q64
) + 2qB(q16

) + 2q4ψ(q32
) + 2q9G10(q

16
) + 2q16ψ(q128

))
2

= 1 + 4

�

n≥1

(d1,4(n)− d3,4(n))qn. (44)

Now, we extract those terms in (44) where the power of q is congruent to 13 modulo

16, divide the resulting identity by q13
and replace q16

by q, to obtain

ψ(q2
)G10(q) =

1

2

�

n≥0

(d1,4(16n + 13)− d3,4(16n + 13))qn,

which readily yields (30).

Next, extracting those terms in (44) where the power of q is congruent to 9

modulo 16, then dividing the resulting identity by q9
and replacing q16

by q, we

have

G10(q)(ϕ(q4
) + 2qψ(q8

)) =

�

n≥0

(d1,4(16n + 9)− d3,4(16n + 9))qn. (45)

But, setting a = b = 1 and n = 2 in (4), or from [1, p. 40, Entries 25(i) and

25(ii)], we have

ϕ(q) = ϕ(q4
) + 2qψ(q8

). (46)

Employing (46) in (45), we find that

ϕ(q)G10(q) =

�

n≥0

(d1,4(16n + 9)− d3,4(16n + 9))qn,

which implies (31).

Now, (2) is equivalent to

ϕ(q)ϕ(q3
) = 1 + 2

�

n≥1

(d1,3(n)− d2,3(n))qn
+ 4

�

n≥1

(d4,12(n)− d8,12(n))qn

= 1 + 2

�

n≥1

(d1,3(n)− d2,3(n))qn
+ 4

�

n≥1

(d1,3(n)− d2,3(n))q4n. (47)
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Employing (7) in (47), we have

(ϕ(q64
) + 2qB(q16

) + 2q4ψ(q32
) + 2q9G10(q

16
) + 2q16ψ(q128

))

× (ϕ(q192
) + 2q3B(q48

) + 2q12ψ(q96
) + 2q27G10(q

48
) + 2q48ψ(q384

))

= 1 + 2

�

n≥1

(d1,3(n)− d2,3(n))qn
+ 4

�

n≥1

(d1,3(n)− d2,3(n))q4n. (48)

Extracting the terms in (48) involving q16n+5
, then dividing the resulting identity

by q5
and replacing q16

by q, we find that

qψ(q6
)G10(q) =

1

2

�

n≥0

(d1,3(16n + 5)− d2,3(16n + 5))qn,

from which (32) can be easily deduced.

Again, using (5) in (40), we have

q(ϕ(q9
) + 2qG8(q

3
))G10(q

3
) =

�

n≥0

(d1,3(16n + 11)− d2,3(16n + 11))qn. (49)

Separating the terms involving q3n+1
and q3n+2

in (49), we obtain

ϕ(q3
)G10(q) =

�

n≥0

(d1,3(48n + 27)− d2,3(48n + 27))qn
(50)

and

2G8(q)G10(q) =

�

n≥0

(d1,3(48n + 43)− d2,3(48n + 43))qn, (51)

respectively. Now the identities (33) and (34) follow easily from (50) and (51),

respectively.

Next, (24) is equivalent to

ψ(q3
)G5(q

2
) =

�

n≥0

(d1,8(24n + 11)− d7,8(24n + 11))qn. (52)

Invoking (8) in (52), we have

(B(q6
) + q3G10(q

6
))G5(q

2
) =

�

n≥0

(d1,8(24n + 11)− d7,8(24n + 11))qn. (53)

Extracting the terms involving q2n+1
in (53), we obtain

qG10(q
3
)G5(q) =

�

n≥0

(d1,8(48n + 35)− d7,8(48n + 35))qn. (54)
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Comparing the coefficients of qn+1
on both sides of (54), we arrive at (35).

Identity (22) is equivalent to

ψ(q)G5(q
4
)

=

�

n≥0

(d1,24(24n + 7) + d19,24(24n + 7)− d5,24(24n + 7)− d23,24(24n + 7))qn.

(55)

Using (8) in (55), we have

(B(q2
) + qG10(q

2
))G5(q

4
) =

�

n≥0

(d1,24(24n + 7) + d19,24(24n + 7)

− d5,24(24n + 7)− d23,24(24n + 7))qn. (56)

Extracting the terms involving odd powers of q in (56), we obtain

G10(q)G5(q
2
)

=

�

n≥0

(d1,24(48n + 31) + d19,24(48n + 31)− d5,24(48n + 31)− d23,24(48n + 31))qn,

which readily yields (36).

Identity (18) is equivalent to

ψ(q)ψ(q2
) =

1

2

�

n≥0

(d1,8(8n + 3) + d3,8(8n + 3)− d5,8(8n + 3)− d7,8(8n + 3))qn,

which, with the aid of (8), can be written as

(B(q2
) + qG10(q

2
))ψ(q2

)

=
1

2

�

n≥0

(d1,8(8n + 3) + d3,8(8n + 3)− d5,8(8n + 3)− d7,8(8n + 3))qn. (57)

Extracting the terms involving q2n+1
in (57), we obtain

G10(q)ψ(q)

=
1

2

�

n≥0

(d1,8(16n + 11) + d3,8(16n + 11)− d5,8(16n + 11)− d7,8(16n + 11))qn.

(58)

Equating the coefficients of qn
on both sides of (58), we arrive at (37).
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4. Identities Involving Hendecagonal Numbers

Theorem 4.1. We have

r{�+ F11}(n) = d1,12(36n + 29)− d11,12(36n + 29), (59)

r{�+ 2F11}(n) = d1,8(72n + 107)− d7,8(72n + 107), (60)

r{2�+ F11}(n) = d1,8(72n + 67)− d7,8(72n + 67), (61)

r{✷ + F11}(n) = d1,8(72n + 49) + d3,8(72n + 49)

− d5,8(72n + 49)− d7,8(72n + 49), (62)

r{✷ + 4F11}(n) = d1,8(18n + 49) + d3,8(18n + 49)

− d5,8(18n + 49)− d7,8(18n + 49), (63)

r{F10 + F11}(n) = d1,8(144n + 179)− d7,8(144n + 179). (64)

Proof. Identity (23) is equivalent to

ψ(q3
)G5(q) =

�

n≥0

(d1,12(12n + 5)− d11,12(12n + 5))qn,

which we rewrite, by (13), as

ψ(q3
)(f(q12, q15

) + qf(q6, q21
) + q2G11(q

3
))

=

�

n≥0

(d1,12(12n + 5)− d11,12(12n + 5))qn. (65)

Extracting the terms involving q3n+2
in (65), we obtain

ψ(q)G11(q) =

�

n≥0

(d1,12(36n + 29)− d11,12(36n + 29))qn,

which readily yields (59).

Next, (24) is equivalent to

ψ(q3
)G5(q

2
) =

�

n≥0

(d1,8(24n + 11)− d7,8(24n + 11))qn. (66)

Invoking (13) in (66), we find that

ψ(q3
)(f(q24, q30

) + q2f(q12, q42
) + q4G11(q

6
))

=

�

n≥0

(d1,8(24n + 11)− d7,8(24n + 11))qn. (67)
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Extracting the terms involving q3n+1
in (67), we obtain

qψ(q)G11(q
2
) =

�

n≥0

(d1,8(72n + 35)− d7,8(72n + 35))qn, (68)

from which (60) follows.

Again, (25) is equivalent to

ψ(q6
)G5(q) =

�

n≥0

(d1,8(24n + 19)− d7,8(24n + 19))qn. (69)

Using (13) in (69), we have

ψ(q6
)(f(q12, q15

) + qf(q6, q21
) + q2G11(q

3
))

=

�

n≥0

(d1,8(24n + 19)− d7,8(24n + 19))qn. (70)

Extracting the terms involving q3n+2
in (70), we obtain

ψ(q2
)G11(q) =

�

n≥0

(d1,8(72n + 67)− d7,8(72n + 67))qn,

which gives (61).

Identity (26) is equivalent to

ϕ(q3
)G5(q) =

�

n≥0

(d1,8(24n + 1) + d3,8(24n + 1)− d5,8(24n + 1)− d7,8(24n + 1))qn,

and by (13), we have

ϕ(q3
)(f(q12, q15

) + qf(q6, q21
) + q2G11(q

3
))

=

�

n≥0

(d1,8(24n + 1) + d3,8(24n + 1)− d5,8(24n + 1)− d7,8(24n + 1))qn. (71)

Extracting the terms involving q3n+2
in (71), we obtain

ϕ(q)G11(q)

=

�

n≥0

(d1,8(72n + 49) + d3,8(72n + 49)− d5,8(72n + 49)− d7,8(72n + 49))qn,

which readily yields (62).

Identity (27) is equivalent to

ϕ(q3
)G5(q

4
) =

�

n≥0

(d1,8(6n + 1) + d3,8(6n + 1)− d5,8(6n + 1)− d7,8(6n + 1))qn.

(72)
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Using (13) in (72), we have

ϕ(q3
)(f(q48, q60

) + q4f(q24, q84
) + q8G11(q

12
))

=

�

n≥0

(d1,8(6n + 1) + d3,8(6n + 1)− d5,8(6n + 1)− d7,8(6n + 1))qn. (73)

Extracting the terms involving q3n+2
in (73), we find that

q2ϕ(q)G11(q
4
) =

�

n≥0

(d1,8(18n + 13) + d3,8(18n + 13)

− d5,8(18n + 13)− d7,8(18n + 13))qn,

which readily yields (63).

Again, employing (8) in (68), we obtain

q(B(q2
) + qG10(q

2
))G11(q

2
) =

�

n≥0

(d1,8(72n + 35)− d7,8(72n + 35))qn. (74)

Comparing the terms in (74) where the powers of q are even, we find that

qG10(q)G11(q) =

�

n≥0

(d1,8(144n + 35)− d7,8(144n + 35))qn. (75)

Equating the coefficients of qn+1
in (75), we arrive at (64).

5. Identities Involving Dodecagonal Numbers

Theorem 5.1. We have

r{5✷ + F12}(n) = d1,4(5n + 4)− d3,4(5n + 4), (76)

r{F12 + F12}(n) = d1,4(5n + 8)− d3,4(5n + 8), (77)

r{5�+ F12}(n) =
1

2
(d1,4(20n + 17)− d3,4(20n + 17)). (78)

Proof. Employing (6) in (43), we find that

(ϕ(q25
) + 2qA(q5

) + 2q4G12(q
5
))

2
= 1 + 4

�

n≥1

(d1,4(n)− d3,4(n))qn. (79)

Extracting those terms in (79) in which the power of q is congruent to 4 modulo 5,

we obtain

ϕ(q5
)G12(q) =

�

n≥0

(d1,4(5n + 4)− d3,4(5n + 4))qn,
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from which (76) follows.

Again, extracting the terms involving q5n+3
in (79), we have

qG2
12(q) =

�

n≥0

(d1,4(5n + 3)− d3,4(5n + 3))qn, (80)

which immediately gives (77).

Furthermore, extracting the terms involving q5n+2
in (79), we find that

A2
(q) =

�

n≥0

(d1,4(5n + 2)− d3,4(5n + 2))qn. (81)

But, from [1, p. 46, Entries 30(v) and 30(vi)], we have

A2
(q) = f2

(q3, q7
) = A(q2

)ϕ(q10
) + 2q3G12(q

4
)ψ(q20

). (82)

From (81) and (82), we obtain

A(q2
)ϕ(q10

) + 2q3G12(q
4
)ψ(q20

) =

�

n≥0

(d1,4(5n + 2)− d3,4(5n + 2))qn. (83)

Collecting the terms involving q4n+3
in (83), we find that

2G12(q)ψ(q5
) =

�

n≥0

(d1,4(20n + 17)− d3,4(20n + 17))qn,

which readily yields (78).

6. Identities Involving Heptagonal Numbers

Theorem 6.1. We have

r{F7 + F7}(n) = d1,4(20n + 9)− d3,4(20n + 9), (84)

r{5�+ F7}(n) =
1

2
(d1,4(20n + 17)− d3,4(20n + 17)), (85)

r{2F12 + F7}(n) =
1

2
(d1,4(40n + 73)− d3,4(40n + 73)). (86)

Proof. With the aid of (14), we rewrite (80) as

q(A(q4
) + qG7(q

8
))

2
=

�

n≥0

(d1,4(5n + 3)− d3,4(5n + 3))qn. (87)

Extracting the terms involving q8n+3
in (87), we find that

G2
7(q) =

�

n≥0

(d1,4(40n + 18)− d3,4(40n + 18))qn. (88)



INTEGERS: 12 (2012) 14

Equating the coefficients of qn
in (88) and noting the fact that d1,4(40n + 18) =

d1,4(20n + 9) and d3,4(40n + 18) = d3,4(20n + 9), we arrive at (84).

Next, (15) is equivalent to

ψ2
(q) =

�

n≥0

(d1,4(4n + 1)− d3,4(4n + 1))qn. (89)

Invoking (12) in (89), we obtain

(C(q5
) + qG7(q

5
) + q3ψ(q25

))
2

=

�

n≥0

(d1,4(4n + 1)− d3,4(4n + 1))qn. (90)

Extracting the terms involving q5n+4
in (90), we get

2G7(q)ψ(q5
) =

�

n≥0

(d1,4(20n + 17)− d3,4(20n + 17))qn. (91)

Equating the coefficients of qn
in (91), we easily arrive at (85).

Next, (16) is equivalent to

ϕ(q2
)ψ(q) =

�

n≥0

(d1,4(8n + 1)− d3,4(8n + 1))qn. (92)

Using (6) and (12) in (92), we find that

(ϕ(q50
) + 2q2A(q10

) + 2q8G12(q
10

))(C(q5
) + qG7(q

5
) + q3ψ(q25

))

=

�

n≥0

(d1,4(8n + 1)− d3,4(8n + 1))qn. (93)

Extracting the terms involving q5n+4
in (93), we obtain

2qG12(q
2
)G7(q) =

�

n≥0

(d1,4(40n + 33)− d3,4(40n + 33))qn,

from which (86) can be deduced by equating the coefficients of qn+1
.

7. Identities Involving Octadecagonal Numbers

Theorem 7.1. We have

r{F5 + F18}(n) = d1,24(96n + 151) + d19,24(96n + 151)

− d5,24(96n + 151)− d23,24(96n + 151), (94)

r{�+ F18}(n) =
1

2
(d1,4(32n + 53)− d3,4(32n + 53)), (95)

r{3�+ F18}(n) =
1

2
(d1,3(32n + 61)− d2,3(32n + 61)). (96)
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Proof. Identity (22) is equivalent to

ψ(q)G5(q
4
)

=

�

n≥0

(d1,24(24n + 7) + d19,24(24n + 7)− d5,24(24n + 7)− d23,24(24n + 7))qn.

(97)

Employing (9) in (97), we have

(f(q28, q36
) + qf(q20, q44

) + q3f(q12, q52
) + q6G18(q

4
))G5(q

4
)

=

�

n≥0

(d1,24(24n + 7) + d19,24(24n + 7)− d5,24(24n + 7)− d23,24(24n + 7))qn.

(98)

Extracting those terms in (98) in which the power of q is congruent to 2 modulo 4,

we obtain

qG18(q))G5(q)

=

�

n≥0

(d1,24(96n + 55) + d19,24(96n + 55)− d5,24(96n + 55)− d23,24(96n + 55))qn,

which readily implies (94).

Again, (17) is equivalent to

ψ(q)ψ(q4
) =

1

2

�

n≥0

(d1,4(8n + 5)− d3,4(8n + 5))qn. (99)

Using (9) in (99), we have

(f(q28, q36
) + qf(q20, q44

) + q3f(q12, q52
) + q6G18(q

4
))ψ(q4

)

=
1

2

�

n≥0

(d1,4(8n + 5)− d3,4(8n + 5))qn. (100)

Extracting the terms involving q4n+2
from both sides of the above, we obtain

qG18(q)ψ(q) =
1

2

�

n≥0

(d1,4(32n + 21)− d3,4(32n + 21))qn,

which readily implies (95).

Next, (21) is equivalent to

ψ(q3
)ψ(q4

) =
1

2

�

n≥0

(d1,3(8n + 7)− d2,3(8n + 7))qn. (101)
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With the help of (9) and (11), we rewrite (101) as

(f(q84, q108
) + q3f(q60, q132

) + q9f(q36, q156
) + q18G18(q

12
))(G5(q

12
) + q4ψ(q36

))

=
1

2

�

n≥0

(d1,3(8n + 7)− d2,3(8n + 7))qn. (102)

Extracting the terms involving q12n+10
in (102), we obtain

qG18(q)ψ(q2
) =

1

2

�

n≥0

(d1,3(96n + 87)− d2,3(96n + 87))qn.

Equating the coefficients of qn+1
and noting that d1,3(96n + 87) = d1,3(32n + 29)

and d2,3(96n + 87) = d2,3(32n + 29), we deduce (96) to finish the proof.
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