THE NUMBER OF REPRESENTATIONS OF A NUMBER AS SUMS OF VARIOUS POLYGONAL NUMBERS

Nayandeep Deka Baruah
Department of Mathematical Sciences, Tezpur University, Napaam, Sonitpur, Assam, India
nayan@tezu.ernet.in
Bipul Kumar Sarmah
Department of Mathematical Sciences, Tezpur University, Napaam, Sonitpur, Assam, India
bipul@tezu.ernet.in

Received: 9/22/11, Revised: 8/9/12, Accepted: 9/19/12, Published: 10/8/12

Abstract

In this paper, we present twenty-five analogues of Jacobi's two-square theorem which involve squares, triangular numbers, pentagonal numbers, heptagonal numbers, octagonal numbers, decagonal numbers, hendecagonal numbers, dodecagonal numbers, and octadecagonal numbers.

1. Introduction

Jacobi's celebrated two-square theorem is as follows.
Theorem 1.1. ([7]). Let $r\{\square+\square\}(n)$ denote the number of representations of n as a sum of two squares and $d_{i, j}(n)$ denote the number of positive divisors of n congruent to i modulo j. Then

$$
\begin{equation*}
r\{\square+\square\}(n)=4\left(d_{1,4}(n)-d_{3,4}(n)\right) \tag{1}
\end{equation*}
$$

Simple proofs of (1) can be seen in [2] and [4]. Similar representation theorems involving squares and triangular numbers were found by Dirichlet [3], Lorenz [10], Legendre [9], and Ramanujan [1]. For example, another classical result due to Lorenz [10] is stated below.

Theorem 1.2. Let $r\{l \square+m \square\}(n)$ denote the number of representations of n as a sum of l times a square and m times a square. Then

$$
\begin{equation*}
r\{\square+3 \square\}(n)=2\left(d_{1,3}(n)-d_{2,3}(n)\right)+4\left(d_{4,12}(n)-d_{8,12}(n)\right) . \tag{2}
\end{equation*}
$$

In [5], M.D. Hirschhorn obtained sixteen identities (including those obtained by Legendre and Ramanujan) simply by dissecting the q-series representations of the identities obtained by Jacobi, Dirichlet and Lorenz. Hirschhorn [6] further extended his work and obtained twenty-nine more identities involving squares, triangular numbers, pentagonal numbers and octagonal numbers. For more work on this topic one can see [8], [11] and [12]. In [12], R. S. Melham presented an informal account of analogues of Jacobi's two-square theorem which are verified using computer algorithms.

In this paper, we find twenty-five more such identities involving squares, triangular numbers, pentagonal numbers, heptagonal numbers, octagonal numbers, decagonal numbers, hendecagonal numbers, dodecagonal numbers, and octadecagonal numbers, by employing Ramanujan's theta function identities.

For $k \geq 3$, the $n^{t h} k$-gonal number $F_{k}(n)$ is given by

$$
F_{k}:=F_{k}(n)=\frac{(k-2) n^{2}-(k-4) n}{2}
$$

By allowing the domain for $F_{k}(n)$ to be the set of all integers, we see that the generating function $G_{k}(q)$ of $F_{k}(n)$ is given by

$$
G_{k}(q)=\sum_{n=-\infty}^{\infty} q^{F_{k}}=\sum_{n=-\infty}^{\infty} q \frac{(k-2) n^{2}-(k-4) n}{2}
$$

We note an exception for the case $k=3$. We observe that $G_{3}(q)$ generates each triangular number twice while $G_{6}(q)$ generates each only once. As such, we take $G_{6}(q)$ as the generating function for triangular numbers instead of $G_{3}(q)$. We further observe that

$$
\begin{equation*}
G_{k}(q)=f\left(q, q^{k-3}\right) \tag{3}
\end{equation*}
$$

where $f(a, b)$ is Ramanujan's general theta function defined by [1, p. 34, Eq. (18.1)]:

$$
f(a, b):=\sum_{n=-\infty}^{\infty} a^{n(n+1) / 2} b^{n(n-1) / 2}, \quad|a b|<1
$$

Two important special cases of $f(a, b)$ are

$$
\begin{aligned}
& \varphi(q):=f(q, q) \\
& \psi(q):=f\left(q, q^{3}\right)
\end{aligned}
$$

In view of (3), the respective generating functions of squares, triangular numbers, pentagonal numbers, heptagonal numbers, octagonal numbers, decagonal numbers,
hendecagonal numbers, dodecagonal numbers, and octadecagonal numbers are

$$
\begin{aligned}
G_{4}(q) & =f(q, q)=\varphi(q), \\
G_{6}(q) & =f\left(q, q^{3}\right)=\psi(q), \\
G_{5}(q) & =f\left(q, q^{2}\right), \\
G_{7}(q) & =f\left(q, q^{4}\right), \\
G_{8}(q) & =f\left(q, q^{5}\right), \\
G_{10}(q) & =f\left(q, q^{7}\right), \\
G_{11}(q) & =f\left(q, q^{8}\right), \\
G_{12}(q) & =f\left(q, q^{9}\right),
\end{aligned}
$$

and

$$
G_{18}(q)=f\left(q, q^{15}\right)
$$

In Section 2, we give dissections of $\varphi(q), \psi(q), G_{5}(q)$, and $G_{12}(q)$ and recall some identities established in [5] and [6]. In the remaining five sections, we successively present sets of identities involving decagonal numbers, hendecagonal numbers, dodecagonal numbers, heptagonal numbers, and octadecagonal numbers.

2. Preliminary Results

Let $U_{n}=a^{n(n+1) / 2} b^{n(n-1) / 2}$ and $V_{n}=a^{n(n-1) / 2} b^{n(n+1) / 2}$ for each integer n. Then we have [1, p. 48, Entry 31]

$$
f(a, b)=f\left(U_{1}, V_{1}\right)=\sum_{r=0}^{n-1} U_{r} f\left(\frac{U_{n+r}}{U_{r}}, \frac{V_{n-r}}{U_{r}}\right)
$$

Replacing a by q^{a} and b by q^{b}, we find that

$$
\begin{align*}
f\left(q^{a}, q^{b}\right)= & \sum_{r=0}^{n-1} q\left(\frac{a+b}{2}\right) r^{2}+\left(\frac{a-b}{2}\right) r \\
& \times f\left({ }_{q}\left(\frac{a+b}{2}\right) n^{2}+(a+b) n r+\left(\frac{a-b}{2}\right) n_{, q}\left(\frac{a+b}{2}\right) n^{2}-(a+b) n r-\left(\frac{a-b}{2}\right) n\right) \tag{4}
\end{align*}
$$

Setting $a=b=1$ and then letting $n=3,5$ and 8 in (4), we obtain

$$
\begin{align*}
& \varphi(q)=\varphi\left(q^{9}\right)+2 q G_{8}\left(q^{3}\right) \tag{5}\\
& \varphi(q)=\varphi\left(q^{25}\right)+2 q A\left(q^{5}\right)+2 q^{4} G_{12}\left(q^{5}\right) \tag{6}
\end{align*}
$$

and

$$
\begin{equation*}
\varphi(q)=\varphi\left(q^{64}\right)+2 q B\left(q^{16}\right)+2 q^{4} \psi\left(q^{32}\right)+2 q^{9} G_{10}\left(q^{16}\right)+2 q^{16} \psi\left(q^{128}\right) \tag{7}
\end{equation*}
$$

respectively, where $A(q)=f\left(q^{3}, q^{7}\right)$ and $B(q)=f\left(q^{3}, q^{5}\right)$.
Setting $a=1, b=3$ and then putting $n=2,4$ and 6 in (4), we deduce that

$$
\begin{align*}
& \psi(q)=B\left(q^{2}\right)+q G_{10}\left(q^{2}\right) \tag{8}\\
& \psi(q)=f\left(q^{28}, q^{36}\right)+q f\left(q^{20}, q^{44}\right)+q^{3} f\left(q^{12}, q^{52}\right)+q^{6} G_{18}\left(q^{4}\right) \tag{9}
\end{align*}
$$

and

$$
\begin{align*}
\psi(q)= & f\left(q^{66}, q^{78}\right)+q B\left(q^{18}\right)+q^{3} f\left(q^{42}, q^{102}\right)+q^{6} f\left(q^{30}, q^{114}\right) \\
& +q^{10} G_{10}\left(q^{18}\right)+q^{15} G_{26}\left(q^{6}\right) \tag{10}
\end{align*}
$$

respectively.
Setting $a=1, b=0$ and then choosing $n=3$ and 5 in (4) and noting that $\psi(q)=\frac{1}{2} f(1, q)$, we obtain

$$
\begin{equation*}
\psi(q)=G_{5}\left(q^{3}\right)+q \psi\left(q^{9}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(q)=C\left(q^{5}\right)+q G_{7}\left(q^{5}\right)+q^{3} \psi\left(q^{25}\right) \tag{12}
\end{equation*}
$$

respectively, where $C(q)=f\left(q^{2}, q^{3}\right)$.
Next, setting $a=1, b=2$ and $n=3$ in (4), we find that

$$
\begin{equation*}
G_{5}(q)=f\left(q^{12}, q^{15}\right)+q f\left(q^{6}, q^{21}\right)+q^{2} G_{11}\left(q^{3}\right) \tag{13}
\end{equation*}
$$

Again, setting $a=1, b=9$ and $n=2$ in (4), we obtain

$$
\begin{equation*}
G_{12}(q)=A\left(q^{4}\right)+q G_{7}\left(q^{8}\right) \tag{14}
\end{equation*}
$$

We also require a few identities deduced in [5] and [6]. Throughout the sequel, $r\left\{l F_{i}+m F_{j}\right\}(n)$ denotes the number of representations of n as a sum of l times a polygonal number F_{i} and m times a polygonal number F_{j}. Note that $r\{2 \square+\Delta\}(n)$ that appears in (16) is $r\left\{2 F_{4}+F_{6}\right\}(n)$. However, we have kept the former notation in those cases which involve squares and/or triangular numbers. The first seven of the following identities appeared in [5] as equations (1.1), (1.3), (1.4), (1.5), (1.11), (1.12), and (1.14), respectively, while the last six identities appeared in [6] as equations (1.2), (1.3), (1.4), (1.6), (1.13), and (1.14), respectively.

$$
\begin{align*}
r\{\triangle+\triangle\}(n) & =d_{1,4}(4 n+1)-d_{3,4}(4 n+1), \tag{15}\\
r\{2 \square+\triangle\}(n) & =d_{1,4}(8 n+1)-d_{3,4}(8 n+1), \tag{16}\\
r\{\triangle+4 \triangle\}(n)= & \frac{1}{2}\left(d_{1,4}(8 n+5)-d_{3,4}(8 n+5)\right), \tag{17}\\
r\{\triangle+2 \triangle\}(n)= & \frac{1}{2}\left(d_{1,8}(8 n+3)+d_{3,8}(8 n+3)-d_{5,8}(8 n+3)-d_{7,8}(8 n+3)\right), \tag{18}\\
r\{6 \square+\triangle\}(n)= & d_{1,3}(8 n+1)-d_{2,3}(8 n+1), \tag{19}\\
r\{\triangle+12 \triangle\}(n)= & \frac{1}{2}\left(d_{1,3}(8 n+13)-d_{2,3}(8 n+13)\right), \tag{20}\\
r\{3 \triangle+4 \triangle\}(n)= & \frac{1}{2}\left(d_{1,3}(8 n+7)-d_{2,3}(8 n+7)\right), \tag{21}\\
r\left\{\triangle+4 F_{5}\right\}(n)= & d_{1,24}(24 n+7)+d_{19,24}(24 n+7)-d_{5,24}(24 n+7) \\
& -d_{23,24}(24 n+7), \tag{22}\\
r\left\{3 \triangle+F_{5}\right\}(n)= & d_{1,12}(12 n+5)-d_{11,12}(12 n+5), \tag{23}\\
r\left\{3 \triangle+2 F_{5}\right\}(n)= & d_{1,8}(24 n+11)-d_{7,8}(24 n+11), \tag{24}\\
r\left\{6 \triangle+F_{5}\right\}(n)= & d_{1,8}(24 n+19)-d_{7,8}(24 n+19), \tag{25}\\
r\left\{3 \square+F_{5}\right\}(n)= & d_{1,8}(24 n+1)+d_{3,8}(24 n+1)-d_{5,8}(24 n+1) \\
& -d_{7,8}(24 n+1), \tag{26}\\
r\left\{3 \square+4 F_{5}\right\}(n)= & d_{1,8}(6 n+1)+d_{3,8}(6 n+1)-d_{5,8}(6 n+1)-d_{7,8}(6 n+1) . \tag{27}
\end{align*}
$$

3. Identities Involving Decagonal Numbers

Theorem 3.1. We have

$$
\begin{align*}
r\left\{\square+3 F_{10}\right\}(n) & =d_{1,3}(16 n+27)-d_{2,3}(16 n+27), \tag{28}\\
r\left\{2 \triangle+3 F_{10}\right\}(n) & =\frac{1}{2}\left(d_{1,3}(16 n+31)-d_{2,3}(16 n+31)\right), \tag{29}\\
r\left\{2 \triangle+F_{10}\right\}(n) & =\frac{1}{2}\left(d_{1,4}(16 n+13)-d_{3,4}(16 n+13)\right), \tag{30}\\
r\left\{\square+F_{10}\right\}(n) & =d_{1,4}(16 n+9)-d_{3,4}(16 n+9), \tag{31}\\
r\left\{6 \triangle+F_{10}\right\}(n) & =\frac{1}{2}\left(d_{1,3}(16 n+21)-d_{2,3}(16 n+21)\right), \tag{32}
\end{align*}
$$

$$
\begin{align*}
r\left\{3 \square+F_{10}\right\}(n)= & d_{1,3}(16 n+9)-d_{2,3}(16 n+9), \tag{33}\\
r\left\{F_{8}+F_{10}\right\}(n)= & \frac{1}{2}\left(d_{1,3}(48 n+43)-d_{2,3}(48 n+43)\right), \tag{34}\\
r\left\{F_{5}+3 F_{10}\right\}(n)= & d_{1,8}(48 n+83)-d_{7,8}(48 n+83), \tag{35}\\
r\left\{2 F_{5}+F_{10}\right\}(n)= & d_{1,24}(48 n+31)+d_{19,24}(48 n+31) \\
& -d_{5,24}(48 n+31)-d_{23,24}(48 n+31), \tag{36}\\
r\left\{\triangle+F_{10}\right\}(n)= & \frac{1}{2}\left(d_{1,8}(16 n+11)+d_{3,8}(16 n+11)\right. \\
& \left.-d_{5,8}(16 n+11)-d_{7,8}(16 n+11)\right) . \tag{37}
\end{align*}
$$

Proof. Identity (19) is equivalent to

$$
\begin{equation*}
\varphi\left(q^{6}\right) \psi(q)=\sum_{n \geq 0}\left(d_{1,3}(8 n+1)-d_{2,3}(8 n+1)\right) q^{n} \tag{38}
\end{equation*}
$$

Employing (10) in (38), we have

$$
\begin{align*}
& \varphi\left(q^{6}\right)\left(f\left(q^{66}, q^{78}\right)+q B\left(q^{18}\right)+q^{3} f\left(q^{42}, q^{102}\right)+q^{6} f\left(q^{30}, q^{114}\right)\right. \\
& \left.\quad+q^{10} G_{10}\left(q^{18}\right)+q^{15} G_{26}\left(q^{6}\right)\right)=\sum_{n \geq 0}\left(d_{1,3}(8 n+1)-d_{2,3}(8 n+1)\right) q^{n} \tag{39}
\end{align*}
$$

Extracting the terms involving $q^{6 n+4}$ in (39) and then dividing the resulting identity by q^{4} and replacing q^{6} by q, we find that

$$
\begin{equation*}
q \varphi(q) G_{10}\left(q^{3}\right)=\sum_{n \geq 0}\left(d_{1,3}(48 n+33)-d_{2,3}(48 n+33)\right) q^{n} \tag{40}
\end{equation*}
$$

Equating the coefficients of q^{n+1} on both sides of (40) and noting that $d_{1,3}(48 n+$ $33)=d_{1,3}(16 n+11)$ and $d_{2,3}(48 n+33)=d_{2,3}(16 n+11)$, we arrive at (28).

Next, (20) is equivalent to

$$
\psi(q) \psi\left(q^{12}\right)=\frac{1}{2} \sum_{n \geq 0}\left(d_{1,3}(8 n+13)-d_{2,3}(8 n+13)\right) q^{n}
$$

which, with the aid of (10), can be rewritten as

$$
\begin{align*}
& \psi\left(q^{12}\right)\left(f\left(q^{66}, q^{78}\right)\right.+q B\left(q^{18}\right)+q^{3} f\left(q^{42}, q^{102}\right)+q^{6} f\left(q^{30}, q^{114}\right) \\
&\left.+q^{10} G_{10}\left(q^{18}\right)+q^{15} G_{26}\left(q^{6}\right)\right) \\
&=\frac{1}{2} \sum_{n \geq 0}\left(d_{1,3}(8 n+13)-d_{2,3}(8 n+13)\right) q^{n} \tag{41}
\end{align*}
$$

Collecting the terms in (41) in which the power of q is congruent to 4 modulo 6 , we find that

$$
\begin{equation*}
q \psi\left(q^{2}\right) G_{10}\left(q^{3}\right)=\frac{1}{2} \sum_{n \geq 0}\left(d_{1,3}(48 n+45)-d_{2,3}(48 n+45)\right) q^{n} \tag{42}
\end{equation*}
$$

Equating the coefficients of q^{n+1} on both sides of (42) and noting that $d_{1,3}(48 n+$ $45)=d_{1,3}(16 n+15)$ and $d_{2,3}(48 n+45)=d_{2,3}(16 n+15)$, we arrive at (29).

Identity (1) is equivalent to

$$
\begin{equation*}
\varphi^{2}(q)=1+4 \sum_{n \geq 1}\left(d_{1,4}(n)-d_{3,4}(n)\right) q^{n} \tag{43}
\end{equation*}
$$

which can be rewritten, with the aid of (7), as

$$
\begin{align*}
& \left(\varphi\left(q^{64}\right)+2 q B\left(q^{16}\right)+2 q^{4} \psi\left(q^{32}\right)+2 q^{9} G_{10}\left(q^{16}\right)+2 q^{16} \psi\left(q^{128}\right)\right)^{2} \\
& =1+4 \sum_{n \geq 1}\left(d_{1,4}(n)-d_{3,4}(n)\right) q^{n} \tag{44}
\end{align*}
$$

Now, we extract those terms in (44) where the power of q is congruent to 13 modulo 16 , divide the resulting identity by q^{13} and replace q^{16} by q, to obtain

$$
\psi\left(q^{2}\right) G_{10}(q)=\frac{1}{2} \sum_{n \geq 0}\left(d_{1,4}(16 n+13)-d_{3,4}(16 n+13)\right) q^{n}
$$

which readily yields (30).
Next, extracting those terms in (44) where the power of q is congruent to 9 modulo 16 , then dividing the resulting identity by q^{9} and replacing q^{16} by q, we have

$$
\begin{equation*}
G_{10}(q)\left(\varphi\left(q^{4}\right)+2 q \psi\left(q^{8}\right)\right)=\sum_{n \geq 0}\left(d_{1,4}(16 n+9)-d_{3,4}(16 n+9)\right) q^{n} \tag{45}
\end{equation*}
$$

But, setting $a=b=1$ and $n=2$ in (4), or from [1, p. 40, Entries 25(i) and 25(ii)], we have

$$
\begin{equation*}
\varphi(q)=\varphi\left(q^{4}\right)+2 q \psi\left(q^{8}\right) \tag{46}
\end{equation*}
$$

Employing (46) in (45), we find that

$$
\varphi(q) G_{10}(q)=\sum_{n \geq 0}\left(d_{1,4}(16 n+9)-d_{3,4}(16 n+9)\right) q^{n}
$$

which implies (31).
Now, (2) is equivalent to

$$
\begin{align*}
\varphi(q) \varphi\left(q^{3}\right) & =1+2 \sum_{n \geq 1}\left(d_{1,3}(n)-d_{2,3}(n)\right) q^{n}+4 \sum_{n \geq 1}\left(d_{4,12}(n)-d_{8,12}(n)\right) q^{n} \\
& =1+2 \sum_{n \geq 1}\left(d_{1,3}(n)-d_{2,3}(n)\right) q^{n}+4 \sum_{n \geq 1}\left(d_{1,3}(n)-d_{2,3}(n)\right) q^{4 n} \tag{47}
\end{align*}
$$

Employing (7) in (47), we have

$$
\begin{align*}
& \left(\varphi\left(q^{64}\right)+2 q B\left(q^{16}\right)+2 q^{4} \psi\left(q^{32}\right)+2 q^{9} G_{10}\left(q^{16}\right)+2 q^{16} \psi\left(q^{128}\right)\right) \\
& \times\left(\varphi\left(q^{192}\right)+2 q^{3} B\left(q^{48}\right)+2 q^{12} \psi\left(q^{96}\right)+2 q^{27} G_{10}\left(q^{48}\right)+2 q^{48} \psi\left(q^{384}\right)\right) \\
& \quad=1+2 \sum_{n \geq 1}\left(d_{1,3}(n)-d_{2,3}(n)\right) q^{n}+4 \sum_{n \geq 1}\left(d_{1,3}(n)-d_{2,3}(n)\right) q^{4 n} \tag{48}
\end{align*}
$$

Extracting the terms in (48) involving $q^{16 n+5}$, then dividing the resulting identity by q^{5} and replacing q^{16} by q, we find that

$$
q \psi\left(q^{6}\right) G_{10}(q)=\frac{1}{2} \sum_{n \geq 0}\left(d_{1,3}(16 n+5)-d_{2,3}(16 n+5)\right) q^{n}
$$

from which (32) can be easily deduced.
Again, using (5) in (40), we have

$$
\begin{equation*}
q\left(\varphi\left(q^{9}\right)+2 q G_{8}\left(q^{3}\right)\right) G_{10}\left(q^{3}\right)=\sum_{n \geq 0}\left(d_{1,3}(16 n+11)-d_{2,3}(16 n+11)\right) q^{n} \tag{49}
\end{equation*}
$$

Separating the terms involving $q^{3 n+1}$ and $q^{3 n+2}$ in (49), we obtain

$$
\begin{equation*}
\varphi\left(q^{3}\right) G_{10}(q)=\sum_{n \geq 0}\left(d_{1,3}(48 n+27)-d_{2,3}(48 n+27)\right) q^{n} \tag{50}
\end{equation*}
$$

and

$$
\begin{equation*}
2 G_{8}(q) G_{10}(q)=\sum_{n \geq 0}\left(d_{1,3}(48 n+43)-d_{2,3}(48 n+43)\right) q^{n} \tag{51}
\end{equation*}
$$

respectively. Now the identities (33) and (34) follow easily from (50) and (51), respectively.

Next, (24) is equivalent to

$$
\begin{equation*}
\psi\left(q^{3}\right) G_{5}\left(q^{2}\right)=\sum_{n \geq 0}\left(d_{1,8}(24 n+11)-d_{7,8}(24 n+11)\right) q^{n} \tag{52}
\end{equation*}
$$

Invoking (8) in (52), we have

$$
\begin{equation*}
\left(B\left(q^{6}\right)+q^{3} G_{10}\left(q^{6}\right)\right) G_{5}\left(q^{2}\right)=\sum_{n \geq 0}\left(d_{1,8}(24 n+11)-d_{7,8}(24 n+11)\right) q^{n} \tag{53}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ in (53), we obtain

$$
\begin{equation*}
q G_{10}\left(q^{3}\right) G_{5}(q)=\sum_{n \geq 0}\left(d_{1,8}(48 n+35)-d_{7,8}(48 n+35)\right) q^{n} \tag{54}
\end{equation*}
$$

Comparing the coefficients of q^{n+1} on both sides of (54), we arrive at (35). Identity (22) is equivalent to

$$
\begin{align*}
& \psi(q) G_{5}\left(q^{4}\right) \\
& \quad=\sum_{n \geq 0}\left(d_{1,24}(24 n+7)+d_{19,24}(24 n+7)-d_{5,24}(24 n+7)-d_{23,24}(24 n+7)\right) q^{n} \tag{55}
\end{align*}
$$

Using (8) in (55), we have

$$
\begin{align*}
\left(B\left(q^{2}\right)+q G_{10}\left(q^{2}\right)\right) G_{5}\left(q^{4}\right)= & \sum_{n \geq 0}\left(d_{1,24}(24 n+7)+d_{19,24}(24 n+7)\right. \\
& \left.-d_{5,24}(24 n+7)-d_{23,24}(24 n+7)\right) q^{n} \tag{56}
\end{align*}
$$

Extracting the terms involving odd powers of q in (56), we obtain

$$
\begin{aligned}
& G_{10}(q) G_{5}\left(q^{2}\right) \\
& =\sum_{n \geq 0}\left(d_{1,24}(48 n+31)+d_{19,24}(48 n+31)-d_{5,24}(48 n+31)-d_{23,24}(48 n+31)\right) q^{n}
\end{aligned}
$$

which readily yields (36).
Identity (18) is equivalent to

$$
\psi(q) \psi\left(q^{2}\right)=\frac{1}{2} \sum_{n \geq 0}\left(d_{1,8}(8 n+3)+d_{3,8}(8 n+3)-d_{5,8}(8 n+3)-d_{7,8}(8 n+3)\right) q^{n}
$$

which, with the aid of (8), can be written as

$$
\begin{align*}
& \left(B\left(q^{2}\right)+q G_{10}\left(q^{2}\right)\right) \psi\left(q^{2}\right) \\
& \quad=\frac{1}{2} \sum_{n \geq 0}\left(d_{1,8}(8 n+3)+d_{3,8}(8 n+3)-d_{5,8}(8 n+3)-d_{7,8}(8 n+3)\right) q^{n} \tag{57}
\end{align*}
$$

Extracting the terms involving $q^{2 n+1}$ in (57), we obtain

$$
\begin{align*}
& G_{10}(q) \psi(q) \\
& \quad=\frac{1}{2} \sum_{n \geq 0}\left(d_{1,8}(16 n+11)+d_{3,8}(16 n+11)-d_{5,8}(16 n+11)-d_{7,8}(16 n+11)\right) q^{n} \tag{58}
\end{align*}
$$

Equating the coefficients of q^{n} on both sides of (58), we arrive at (37).

4. Identities Involving Hendecagonal Numbers

Theorem 4.1. We have

$$
\begin{align*}
r\left\{\triangle+F_{11}\right\}(n)= & d_{1,12}(36 n+29)-d_{11,12}(36 n+29), \tag{59}\\
r\left\{\triangle+2 F_{11}\right\}(n)= & d_{1,8}(72 n+107)-d_{7,8}(72 n+107), \tag{60}\\
r\left\{2 \triangle+F_{11}\right\}(n)= & d_{1,8}(72 n+67)-d_{7,8}(72 n+67), \tag{61}\\
r\left\{\square+F_{11}\right\}(n)= & d_{1,8}(72 n+49)+d_{3,8}(72 n+49) \\
& -d_{5,8}(72 n+49)-d_{7,8}(72 n+49), \tag{62}
\end{align*}
$$

$$
r\left\{\square+4 F_{11}\right\}(n)=d_{1,8}(18 n+49)+d_{3,8}(18 n+49)
$$

$$
\begin{equation*}
-d_{5,8}(18 n+49)-d_{7,8}(18 n+49) \tag{63}
\end{equation*}
$$

$$
\begin{equation*}
r\left\{F_{10}+F_{11}\right\}(n)=d_{1,8}(144 n+179)-d_{7,8}(144 n+179) \tag{64}
\end{equation*}
$$

Proof. Identity (23) is equivalent to

$$
\psi\left(q^{3}\right) G_{5}(q)=\sum_{n \geq 0}\left(d_{1,12}(12 n+5)-d_{11,12}(12 n+5)\right) q^{n}
$$

which we rewrite, by (13), as

$$
\begin{align*}
\psi\left(q^{3}\right)\left(f\left(q^{12}, q^{15}\right)+q\right. & \left.f\left(q^{6}, q^{21}\right)+q^{2} G_{11}\left(q^{3}\right)\right) \\
& =\sum_{n \geq 0}\left(d_{1,12}(12 n+5)-d_{11,12}(12 n+5)\right) q^{n} \tag{65}
\end{align*}
$$

Extracting the terms involving $q^{3 n+2}$ in (65), we obtain

$$
\psi(q) G_{11}(q)=\sum_{n \geq 0}\left(d_{1,12}(36 n+29)-d_{11,12}(36 n+29)\right) q^{n}
$$

which readily yields (59).
Next, (24) is equivalent to

$$
\begin{equation*}
\psi\left(q^{3}\right) G_{5}\left(q^{2}\right)=\sum_{n \geq 0}\left(d_{1,8}(24 n+11)-d_{7,8}(24 n+11)\right) q^{n} \tag{66}
\end{equation*}
$$

Invoking (13) in (66), we find that

$$
\begin{align*}
\psi\left(q^{3}\right)\left(f\left(q^{24}, q^{30}\right)+q^{2}\right. & \left.f\left(q^{12}, q^{42}\right)+q^{4} G_{11}\left(q^{6}\right)\right) \\
& =\sum_{n \geq 0}\left(d_{1,8}(24 n+11)-d_{7,8}(24 n+11)\right) q^{n} \tag{67}
\end{align*}
$$

Extracting the terms involving $q^{3 n+1}$ in (67), we obtain

$$
\begin{equation*}
q \psi(q) G_{11}\left(q^{2}\right)=\sum_{n \geq 0}\left(d_{1,8}(72 n+35)-d_{7,8}(72 n+35)\right) q^{n} \tag{68}
\end{equation*}
$$

from which (60) follows.
Again, (25) is equivalent to

$$
\begin{equation*}
\psi\left(q^{6}\right) G_{5}(q)=\sum_{n \geq 0}\left(d_{1,8}(24 n+19)-d_{7,8}(24 n+19)\right) q^{n} \tag{69}
\end{equation*}
$$

Using (13) in (69), we have

$$
\begin{align*}
\psi\left(q^{6}\right)\left(f\left(q^{12}, q^{15}\right)+q\right. & \left.f\left(q^{6}, q^{21}\right)+q^{2} G_{11}\left(q^{3}\right)\right) \\
& =\sum_{n \geq 0}\left(d_{1,8}(24 n+19)-d_{7,8}(24 n+19)\right) q^{n} \tag{70}
\end{align*}
$$

Extracting the terms involving $q^{3 n+2}$ in (70), we obtain

$$
\psi\left(q^{2}\right) G_{11}(q)=\sum_{n \geq 0}\left(d_{1,8}(72 n+67)-d_{7,8}(72 n+67)\right) q^{n}
$$

which gives (61).
Identity (26) is equivalent to

$$
\varphi\left(q^{3}\right) G_{5}(q)=\sum_{n \geq 0}\left(d_{1,8}(24 n+1)+d_{3,8}(24 n+1)-d_{5,8}(24 n+1)-d_{7,8}(24 n+1)\right) q^{n}
$$

and by (13), we have

$$
\begin{align*}
& \varphi\left(q^{3}\right)\left(f\left(q^{12}, q^{15}\right)+q f\left(q^{6}, q^{21}\right)+q^{2} G_{11}\left(q^{3}\right)\right) \\
& \quad=\sum_{n \geq 0}\left(d_{1,8}(24 n+1)+d_{3,8}(24 n+1)-d_{5,8}(24 n+1)-d_{7,8}(24 n+1)\right) q^{n} \tag{71}
\end{align*}
$$

Extracting the terms involving $q^{3 n+2}$ in (71), we obtain

$$
\begin{aligned}
& \varphi(q) G_{11}(q) \\
& \quad=\sum_{n \geq 0}\left(d_{1,8}(72 n+49)+d_{3,8}(72 n+49)-d_{5,8}(72 n+49)-d_{7,8}(72 n+49)\right) q^{n}
\end{aligned}
$$

which readily yields (62).
Identity (27) is equivalent to

$$
\begin{equation*}
\varphi\left(q^{3}\right) G_{5}\left(q^{4}\right)=\sum_{n \geq 0}\left(d_{1,8}(6 n+1)+d_{3,8}(6 n+1)-d_{5,8}(6 n+1)-d_{7,8}(6 n+1)\right) q^{n} \tag{72}
\end{equation*}
$$

Using (13) in (72), we have

$$
\begin{align*}
& \varphi\left(q^{3}\right)\left(f\left(q^{48}, q^{60}\right)+q^{4} f\left(q^{24}, q^{84}\right)+q^{8} G_{11}\left(q^{12}\right)\right) \\
& \quad=\sum_{n \geq 0}\left(d_{1,8}(6 n+1)+d_{3,8}(6 n+1)-d_{5,8}(6 n+1)-d_{7,8}(6 n+1)\right) q^{n} \tag{73}
\end{align*}
$$

Extracting the terms involving $q^{3 n+2}$ in (73), we find that

$$
\begin{aligned}
q^{2} \varphi(q) G_{11}\left(q^{4}\right)= & \sum_{n \geq 0}\left(d_{1,8}(18 n+13)+d_{3,8}(18 n+13)\right. \\
& \left.-d_{5,8}(18 n+13)-d_{7,8}(18 n+13)\right) q^{n}
\end{aligned}
$$

which readily yields (63).
Again, employing (8) in (68), we obtain

$$
\begin{equation*}
q\left(B\left(q^{2}\right)+q G_{10}\left(q^{2}\right)\right) G_{11}\left(q^{2}\right)=\sum_{n \geq 0}\left(d_{1,8}(72 n+35)-d_{7,8}(72 n+35)\right) q^{n} \tag{74}
\end{equation*}
$$

Comparing the terms in (74) where the powers of q are even, we find that

$$
\begin{equation*}
q G_{10}(q) G_{11}(q)=\sum_{n \geq 0}\left(d_{1,8}(144 n+35)-d_{7,8}(144 n+35)\right) q^{n} \tag{75}
\end{equation*}
$$

Equating the coefficients of q^{n+1} in (75), we arrive at (64).

5. Identities Involving Dodecagonal Numbers

Theorem 5.1. We have

$$
\begin{align*}
r\left\{5 \square+F_{12}\right\}(n) & =d_{1,4}(5 n+4)-d_{3,4}(5 n+4), \tag{76}\\
r\left\{F_{12}+F_{12}\right\}(n) & =d_{1,4}(5 n+8)-d_{3,4}(5 n+8), \tag{77}\\
r\left\{5 \triangle+F_{12}\right\}(n) & =\frac{1}{2}\left(d_{1,4}(20 n+17)-d_{3,4}(20 n+17)\right) . \tag{78}
\end{align*}
$$

Proof. Employing (6) in (43), we find that

$$
\begin{equation*}
\left(\varphi\left(q^{25}\right)+2 q A\left(q^{5}\right)+2 q^{4} G_{12}\left(q^{5}\right)\right)^{2}=1+4 \sum_{n \geq 1}\left(d_{1,4}(n)-d_{3,4}(n)\right) q^{n} \tag{79}
\end{equation*}
$$

Extracting those terms in (79) in which the power of q is congruent to 4 modulo 5 , we obtain

$$
\varphi\left(q^{5}\right) G_{12}(q)=\sum_{n \geq 0}\left(d_{1,4}(5 n+4)-d_{3,4}(5 n+4)\right) q^{n}
$$

from which (76) follows.
Again, extracting the terms involving $q^{5 n+3}$ in (79), we have

$$
\begin{equation*}
q G_{12}^{2}(q)=\sum_{n \geq 0}\left(d_{1,4}(5 n+3)-d_{3,4}(5 n+3)\right) q^{n} \tag{80}
\end{equation*}
$$

which immediately gives (77).
Furthermore, extracting the terms involving $q^{5 n+2}$ in (79), we find that

$$
\begin{equation*}
A^{2}(q)=\sum_{n \geq 0}\left(d_{1,4}(5 n+2)-d_{3,4}(5 n+2)\right) q^{n} \tag{81}
\end{equation*}
$$

But, from [1, p. 46, Entries 30(v) and 30(vi)], we have

$$
\begin{equation*}
A^{2}(q)=f^{2}\left(q^{3}, q^{7}\right)=A\left(q^{2}\right) \varphi\left(q^{10}\right)+2 q^{3} G_{12}\left(q^{4}\right) \psi\left(q^{20}\right) \tag{82}
\end{equation*}
$$

From (81) and (82), we obtain

$$
\begin{equation*}
A\left(q^{2}\right) \varphi\left(q^{10}\right)+2 q^{3} G_{12}\left(q^{4}\right) \psi\left(q^{20}\right)=\sum_{n \geq 0}\left(d_{1,4}(5 n+2)-d_{3,4}(5 n+2)\right) q^{n} \tag{83}
\end{equation*}
$$

Collecting the terms involving $q^{4 n+3}$ in (83), we find that

$$
2 G_{12}(q) \psi\left(q^{5}\right)=\sum_{n \geq 0}\left(d_{1,4}(20 n+17)-d_{3,4}(20 n+17)\right) q^{n}
$$

which readily yields (78).

6. Identities Involving Heptagonal Numbers

Theorem 6.1. We have

$$
\begin{align*}
r\left\{F_{7}+F_{7}\right\}(n) & =d_{1,4}(20 n+9)-d_{3,4}(20 n+9), \tag{84}\\
r\left\{5 \triangle+F_{7}\right\}(n) & =\frac{1}{2}\left(d_{1,4}(20 n+17)-d_{3,4}(20 n+17)\right), \tag{85}\\
r\left\{2 F_{12}+F_{7}\right\}(n) & =\frac{1}{2}\left(d_{1,4}(40 n+73)-d_{3,4}(40 n+73)\right) . \tag{86}
\end{align*}
$$

Proof. With the aid of (14), we rewrite (80) as

$$
\begin{equation*}
q\left(A\left(q^{4}\right)+q G_{7}\left(q^{8}\right)\right)^{2}=\sum_{n \geq 0}\left(d_{1,4}(5 n+3)-d_{3,4}(5 n+3)\right) q^{n} \tag{87}
\end{equation*}
$$

Extracting the terms involving $q^{8 n+3}$ in (87), we find that

$$
\begin{equation*}
G_{7}^{2}(q)=\sum_{n \geq 0}\left(d_{1,4}(40 n+18)-d_{3,4}(40 n+18)\right) q^{n} \tag{88}
\end{equation*}
$$

Equating the coefficients of q^{n} in (88) and noting the fact that $d_{1,4}(40 n+18)=$ $d_{1,4}(20 n+9)$ and $d_{3,4}(40 n+18)=d_{3,4}(20 n+9)$, we arrive at (84).

Next, (15) is equivalent to

$$
\begin{equation*}
\psi^{2}(q)=\sum_{n \geq 0}\left(d_{1,4}(4 n+1)-d_{3,4}(4 n+1)\right) q^{n} \tag{89}
\end{equation*}
$$

Invoking (12) in (89), we obtain

$$
\begin{equation*}
\left(C\left(q^{5}\right)+q G_{7}\left(q^{5}\right)+q^{3} \psi\left(q^{25}\right)\right)^{2}=\sum_{n \geq 0}\left(d_{1,4}(4 n+1)-d_{3,4}(4 n+1)\right) q^{n} \tag{90}
\end{equation*}
$$

Extracting the terms involving $q^{5 n+4}$ in (90), we get

$$
\begin{equation*}
2 G_{7}(q) \psi\left(q^{5}\right)=\sum_{n \geq 0}\left(d_{1,4}(20 n+17)-d_{3,4}(20 n+17)\right) q^{n} \tag{91}
\end{equation*}
$$

Equating the coefficients of q^{n} in (91), we easily arrive at (85).
Next, (16) is equivalent to

$$
\begin{equation*}
\varphi\left(q^{2}\right) \psi(q)=\sum_{n \geq 0}\left(d_{1,4}(8 n+1)-d_{3,4}(8 n+1)\right) q^{n} \tag{92}
\end{equation*}
$$

Using (6) and (12) in (92), we find that

$$
\begin{align*}
& \left(\varphi\left(q^{50}\right)+2 q^{2} A\left(q^{10}\right)+2 q^{8} G_{12}\left(q^{10}\right)\right)\left(C\left(q^{5}\right)+q G_{7}\left(q^{5}\right)+q^{3} \psi\left(q^{25}\right)\right) \\
& =\sum_{n \geq 0}\left(d_{1,4}(8 n+1)-d_{3,4}(8 n+1)\right) q^{n} \tag{93}
\end{align*}
$$

Extracting the terms involving $q^{5 n+4}$ in (93), we obtain

$$
2 q G_{12}\left(q^{2}\right) G_{7}(q)=\sum_{n \geq 0}\left(d_{1,4}(40 n+33)-d_{3,4}(40 n+33)\right) q^{n}
$$

from which (86) can be deduced by equating the coefficients of q^{n+1}.

7. Identities Involving Octadecagonal Numbers

Theorem 7.1. We have

$$
\begin{align*}
r\left\{F_{5}+F_{18}\right\}(n)= & d_{1,24}(96 n+151)+d_{19,24}(96 n+151) \\
& -d_{5,24}(96 n+151)-d_{23,24}(96 n+151) \tag{94}\\
r\left\{\triangle+F_{18}\right\}(n)= & \frac{1}{2}\left(d_{1,4}(32 n+53)-d_{3,4}(32 n+53)\right), \tag{95}\\
r\left\{3 \triangle+F_{18}\right\}(n)= & \frac{1}{2}\left(d_{1,3}(32 n+61)-d_{2,3}(32 n+61)\right) . \tag{96}
\end{align*}
$$

Proof. Identity (22) is equivalent to

$$
\begin{align*}
& \psi(q) G_{5}\left(q^{4}\right) \\
& \quad=\sum_{n \geq 0}\left(d_{1,24}(24 n+7)+d_{19,24}(24 n+7)-d_{5,24}(24 n+7)-d_{23,24}(24 n+7)\right) q^{n} \tag{97}
\end{align*}
$$

Employing (9) in (97), we have

$$
\begin{align*}
& \left(f\left(q^{28}, q^{36}\right)+q f\left(q^{20}, q^{44}\right)+q^{3} f\left(q^{12}, q^{52}\right)+q^{6} G_{18}\left(q^{4}\right)\right) G_{5}\left(q^{4}\right) \\
& \quad=\sum_{n \geq 0}\left(d_{1,24}(24 n+7)+d_{19,24}(24 n+7)-d_{5,24}(24 n+7)-d_{23,24}(24 n+7)\right) q^{n} \tag{98}
\end{align*}
$$

Extracting those terms in (98) in which the power of q is congruent to 2 modulo 4, we obtain

$$
\left.q G_{18}(q)\right) G_{5}(q)
$$

$$
=\sum_{n \geq 0}\left(d_{1,24}(96 n+55)+d_{19,24}(96 n+55)-d_{5,24}(96 n+55)-d_{23,24}(96 n+55)\right) q^{n}
$$

which readily implies (94).
Again, (17) is equivalent to

$$
\begin{equation*}
\psi(q) \psi\left(q^{4}\right)=\frac{1}{2} \sum_{n \geq 0}\left(d_{1,4}(8 n+5)-d_{3,4}(8 n+5)\right) q^{n} \tag{99}
\end{equation*}
$$

Using (9) in (99), we have

$$
\begin{align*}
\left(f\left(q^{28}, q^{36}\right)+q f\left(q^{20}, q^{44}\right)+q^{3} f\right. & \left.\left(q^{12}, q^{52}\right)+q^{6} G_{18}\left(q^{4}\right)\right) \psi\left(q^{4}\right) \\
& =\frac{1}{2} \sum_{n \geq 0}\left(d_{1,4}(8 n+5)-d_{3,4}(8 n+5)\right) q^{n} \tag{100}
\end{align*}
$$

Extracting the terms involving $q^{4 n+2}$ from both sides of the above, we obtain

$$
q G_{18}(q) \psi(q)=\frac{1}{2} \sum_{n \geq 0}\left(d_{1,4}(32 n+21)-d_{3,4}(32 n+21)\right) q^{n}
$$

which readily implies (95).
Next, (21) is equivalent to

$$
\begin{equation*}
\psi\left(q^{3}\right) \psi\left(q^{4}\right)=\frac{1}{2} \sum_{n \geq 0}\left(d_{1,3}(8 n+7)-d_{2,3}(8 n+7)\right) q^{n} \tag{101}
\end{equation*}
$$

With the help of (9) and (11), we rewrite (101) as

$$
\begin{align*}
& \left(f\left(q^{84}, q^{108}\right)+q^{3} f\left(q^{60}, q^{132}\right)+q^{9} f\left(q^{36}, q^{156}\right)+q^{18} G_{18}\left(q^{12}\right)\right)\left(G_{5}\left(q^{12}\right)+q^{4} \psi\left(q^{36}\right)\right) \\
& =\frac{1}{2} \sum_{n \geq 0}\left(d_{1,3}(8 n+7)-d_{2,3}(8 n+7)\right) q^{n} \tag{102}
\end{align*}
$$

Extracting the terms involving $q^{12 n+10}$ in (102), we obtain

$$
q G_{18}(q) \psi\left(q^{2}\right)=\frac{1}{2} \sum_{n \geq 0}\left(d_{1,3}(96 n+87)-d_{2,3}(96 n+87)\right) q^{n}
$$

Equating the coefficients of q^{n+1} and noting that $d_{1,3}(96 n+87)=d_{1,3}(32 n+29)$ and $d_{2,3}(96 n+87)=d_{2,3}(32 n+29)$, we deduce (96) to finish the proof.

Acknowledgment. The authors would like to thank the referee for his/her helpful comments.

References

[1] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991.
[2] S. Bhargava, C. Adiga, Simple proofs of Jacobi's two and four square theorems, Int. J. Math. Educ. Sci. Technol. 19(1988), 779-782.
[3] P. G. L. Dirichlet, J. Math. 21 (1840) 3, 6; Werke 463, 466.
[4] M. D. Hirschhorn, A simple proof of Jacobi's two-square theorem, Amer. Math. Monthly, 92(1985), 579-580.
[5] M. D. Hirschhorn, The number of representation of a number by various forms, Discrete Math. 298 (2005) 205-211.
[6] M. D. Hirschhorn, The number of representation of a number by various forms involving triangles, squares, pentagons and octagons, in: Ramanujan Rediscovered, N.D. Baruah, B.C. Berndt, S. Cooper, T. Huber, M. Schlosser (eds.), RMS Lecture Note Series, No. 14, Ramanujan Mathematical Society, 2010, 113-124.
[7] C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum (1829) 107; Werke I 162-163; Letter to Legendre 9/9/1828, Werke I 424.
[8] H. Y. Lam, The number of representations by sums of squares and triangular numbers, Integers 7(2007), A28.
[9] A. M. Legendre, Traité des fonctions elliptiques et des intégrales Euleriennes, t. III, HuzardCourcier, Paris, 1828, 133-134.
[10] L. Lorenz, Tidsskrift for Mathematik 3 (1) (1871), 106-108.
[11] R. S. Melham, Analogues of two classical theorems on the representation of a number, Integers 8(2008), A51.
[12] R. S. Melham, Analogues of Jacobi's two-square theorem: An informal account, Integers 10(2010), 83-100, A8.

