NEWMAN POLYNOMIALS, REDUCIBILITY, AND ROOTS ON THE UNIT CIRCLE

Idris Mercer
Department of Mathematical Sciences, University of Delaware, Newark, Delaware
idmercer@math.udel.edu

Received: 7/11/11, Accepted: 12/14/11, Published: 1/2/12

Abstract

A length k Newman polynomial is any polynomial of the form $z^{a_{1}}+\cdots+z^{a_{k}}$ (where $a_{1}<\cdots<a_{k}$). Some Newman polynomials are reducible over the rationals, and some are not. Some Newman polynomials have roots on the unit circle, and some do not. Defining, in a natural way, what we mean by the "proportion" of length k Newman polynomials with a given property, we prove that

- $1 / 4$ of length 3 Newman polynomials are reducible over the rationals
- $1 / 4$ of length 3 Newman polynomials have roots on the unit circle
- $3 / 7$ of length 4 Newman polynomials are reducible over the rationals
- $3 / 7$ of length 4 Newman polynomials have roots on the unit circle

We also show that certain plausible conjectures imply that the proportion of length 5 Newman polynomials with roots on the unit circle is $909 / 9464$.

1. Introduction

A Newman polynomial of length k is any polynomial of the form

$$
P(z)=z^{a_{1}}+z^{a_{2}}+\cdots+z^{a_{k}} \quad\left(a_{1}<a_{2}<\cdots<a_{k}\right)
$$

and \mathbb{S} denotes the unit circle in the complex plane. Some Newman polynomials have roots on \mathbb{S}, and some do not. Some are reducible, and some are not. (Throughout this paper, "reducible" means "reducible over \mathbb{Q} " and hence also "reducible over \mathbb{Z} ".)

If $a_{1}>0$, then $P(z)$ is trivially reducible. The factor $1+z^{a_{2}-a_{1}}+\cdots+z^{a_{k}-a_{1}}$ has the same roots as $P(z)$ except for a root at 0 . Thus, we will sometimes restrict our attention to the case $a_{1}=0$.

Other authors have explored necessary or sufficient conditions for Newman polynomials of small length to be reducible $[2,3,6,8,10]$. In this paper, we are interested
in the questions: (1) What proportion of Newman polynomials are reducible? (2) What proportion of Newman polynomials have roots on the unit circle?

To make this more precise, we introduce some notation. If N is a positive integer, we define

$$
\begin{aligned}
& \operatorname{Newm}_{3}(N)=\left\{1+z^{a}+z^{b} \mid 1 \leq a<b \leq N\right\} \\
& \operatorname{Newm}_{4}(N)=\left\{1+z^{a}+z^{b}+z^{c} \mid 1 \leq a<b<c \leq N\right\} \\
& \operatorname{Newm}_{k}(N)=\left\{1+z^{a_{1}}+\cdots+z^{a_{k-1}} \mid 1 \leq a_{1}<\cdots<a_{k-1} \leq N\right\}
\end{aligned}
$$

so $\left|\operatorname{Newm}_{k}(N)\right|=\binom{N}{k-1}$. We also define $\operatorname{Newm}_{k}(\infty)=\bigcup_{N} \operatorname{Newm}_{k}(N)$.
A root on \mathbb{S} is a root of unit modulus, or a unimodular root. A polynomial with at least one unimodular root will sometimes be called a $U R$ polynomial. We then define

$$
\begin{aligned}
\operatorname{NewmRed}_{k}(N) & =\left\{P(z) \in \operatorname{Newm}_{k}(N) \mid P(z) \text { is reducible }\right\} \\
\operatorname{NewmUR}_{k}(N) & =\left\{P(z) \in \operatorname{Newm}_{k}(N) \mid P(z) \text { is UR }\right\}
\end{aligned}
$$

as well as

$$
\begin{aligned}
& \operatorname{NewmRed}_{k}(\infty)=\bigcup_{N} \operatorname{NewmRed}_{k}(N) \\
& \operatorname{NewmUR}_{k}(\infty)=\bigcup_{N} \operatorname{NewmUR}_{k}(N)
\end{aligned}
$$

We further define

$$
\begin{aligned}
\operatorname{ProbRed}_{k}(N) & =\frac{\left|\operatorname{NewmRed}_{k}(N)\right|}{\left|\operatorname{Newm}_{k}(N)\right|} \\
\operatorname{ProbRed}_{k}(\infty) & =\lim _{N \rightarrow \infty} \operatorname{ProbRed}_{k}(N) \\
\operatorname{ProbUR}_{k}(N) & =\frac{\left|\operatorname{NewmUR}_{k}(N)\right|}{\left|\operatorname{Newm}_{k}(N)\right|} \\
\operatorname{ProbUR}_{k}(\infty) & =\lim _{N \rightarrow \infty} \operatorname{ProbUR}_{k}(N)
\end{aligned}
$$

which we can informally regard as the probability that a Newman polynomial of length k is reducible or UR, as appropriate.

Other authors [5, 9] have asked what proportion of Newman polynomials are reducible. However, they considered the set of all 2^{N} Newman polynomials of degree at most N, which in our notation would be $\bigcup_{k} \operatorname{Newm}_{k}(N)$. In this paper, we consider Newman polynomials of fixed length.

As the main results of this paper, we prove

$$
\begin{aligned}
& \operatorname{ProbUR}_{3}(\infty)=\operatorname{ProbRed}_{3}(\infty)=\frac{1}{4} \\
& \operatorname{ProbUR}_{4}(\infty)=\operatorname{ProbRed}_{4}(\infty)=\frac{3}{7}
\end{aligned}
$$

We also show that $\operatorname{ProbUR}_{5}(\infty) \geq 0.096$ and explore some conjectures.

2. Notation and Terminology

We will use \mathbf{e}_{k} to denote $\exp (2 \pi i / k)$. Note that in general, $\mathbf{e}_{k}^{a}=\mathbf{e}_{k}^{b}$ if and only if $a \equiv b(\bmod k)$. We also always have $\mathbf{e}_{k}^{a}=\mathbf{e}_{t k}^{t a}$.

For any integer $m \geq 2$, we denote the integers modulo m by

$$
\mathbb{Z} / m=\{0,1, \ldots, m-1\} .
$$

Throughout this document, if we write coset with no further explanation, we mean a coset of some nontrivial subgroup of the additive group \mathbb{Z} / m. Sometimes the value of m will be understood from the context; if not, we will refer to a $\bmod m$ coset. For example, "mod 6 coset" means any of the following subsets of $\mathbb{Z} / 6$

$$
\{0,3\} \quad\{1,4\} \quad\{2,5\} \quad\{0,2,4\} \quad\{1,3,5\} \quad\{0,1,2,3,4,5\} .
$$

We note that if $A=\left\{a_{1}, \ldots, a_{k}\right\}$ is any $\bmod m$ coset, then $k \neq 1$ is a divisor of m, and we have

$$
\sum_{a \in A} \zeta^{a}=0
$$

if ζ is a primitive m th root of 1 .
We allow curly brackets to denote multisets, where multiplicity matters but order does not matter. For instance, we have

$$
\{0,2,3,4,0\}=\{0,0,2,3,4\} \neq\{0,2,3,4\} .
$$

The size of a multiset counts repetition, so we say $\{0,0,2,3,4\}$ has size 5 .
We use round brackets to denote tuples, where order matters. For example,

$$
(0,2,3,4,0) \neq(0,0,2,3,4)
$$

We define union of multisets in the obvious way. For example, we have

$$
\{0,2,4\} \cup\{0,3\}=\{0,0,2,3,4\} .
$$

For multisets $A=\left\{a_{1}, \ldots, a_{k}\right\}$ and $B=\left\{b_{1}, \ldots, b_{k}\right\}$, we say A and B are congruent $\bmod m$ if, after relabeling if necessary, we have $a_{i} \equiv b_{i}(\bmod m)$ for all i. We sometimes abbreviate this by $A \equiv_{m} B$. For example, we have

$$
\{0,0,2,3,4\} \equiv_{6}\{0,2,3,4,6\} .
$$

If $A=\left(a_{1}, \ldots, a_{k}\right)$ and $B=\left(b_{1}, \ldots, b_{k}\right)$ are tuples, we say A and B are congruent $\bmod m$ if we have $a_{i} \equiv b_{i}(\bmod m)$ for all i without relabeling. For example,

$$
(0,2,3,4,6) \equiv_{6}(0,2,3,4,0) \not \equiv_{6}(0,0,2,3,4)
$$

Let A and B be multisets. If $A \equiv_{m} B$ and ζ is any m th root of 1 , we have

$$
\sum_{a \in A} \zeta^{a}=\sum_{b \in B} \zeta^{b}
$$

Also, if ζ is a primitive m th root of 1 and A is a union of $\bmod m$ cosets, then

$$
\sum_{a \in A} \zeta^{a}=0
$$

(Interestingly, the converse is not true: $P(z)=1+z+z^{7}+z^{13}+z^{19}+z^{20}$ vanishes at \mathbf{e}_{30}, but $\{0,1,7,13,19,20\}$ is not a union of $\bmod 30$ cosets.)

In this paper, "polynomial" will always be understood to mean "over \mathbb{Q} ". Given a polynomial $P(z)$ of degree d, we define the reciprocal of $P(z)$ to be $\tilde{P}(z)=z^{d} P\left(z^{-1}\right)$. If $P(0) \neq 0$, then $\tilde{P}(z)$ has degree d, and the roots of $\tilde{P}(z)$ are the reciprocals of the roots of $P(z)$. If $P(z)=\tilde{P}(z)$, we say $P(z)$ is reciprocal.

3. Earlier Results

The following is well-known.
Lemma 1. If $P(z) \neq z-1$ is an irreducible $U R$ polynomial, then $P(z)$ is reciprocal.
Proof. If $P(z)=\kappa_{d} z^{d}+\cdots+\kappa_{0}$ is irreducible, then $\kappa_{0} \neq 0$. If $P(\zeta)=0$ for some $\zeta \in \mathbb{S}$, then $P(z)$ is the minimal polynomial for both ζ and $\bar{\zeta}$. Then $\tilde{P}(z)$ vanishes at $1 / \zeta=\bar{\zeta}$, so $\tilde{P}(z)$ must be a multiple of $P(z)$, which implies $\tilde{P}(z)=\left(\kappa_{0} / \kappa_{d}\right) P(z) \Longrightarrow$ $\kappa_{0}^{2}=\kappa_{d}^{2} \Longrightarrow \kappa_{0}= \pm \kappa_{d}$, so $\tilde{P}(z)= \pm P(z)$. If $\tilde{P}(z)=-P(z)$, we can conclude that $P(1)=0$.

We will let $\Phi_{k}(z)$ denote the k th cyclotomic polynomial, which is the minimal polynomial for \mathbf{e}_{k}. The roots of $\Phi_{k}(z)$ are the primitive k th roots of unity; there are $\phi(k)$ of those, where ϕ is the Euler totient function.

The next result follows straightforwardly from basic properties of cyclotomic polynomials. We omit the proof.

Lemma 2. We have

$$
\Phi_{k}(1)= \begin{cases}p & \text { if } k \text { is a prime power } p^{m} \\ 1 & \text { if } k \text { is divisible by more than one prime }\end{cases}
$$

Of interest to us is the following consequence.
Corollary 3. The polynomials in $\mathrm{Newm}_{3}(\infty)$ that are cyclotomic are the polynomials $\Phi_{3}(z), \Phi_{9}(z), \Phi_{27}(z), \ldots$. There are no polynomials in $\operatorname{Newm}_{4}(\infty)$ that are cyclotomic. The polynomials in $\mathrm{Newm}_{5}(\infty)$ that are cyclotomic are the polynomials $\Phi_{5}(z), \Phi_{25}(z), \Phi_{125}(z), \ldots$.

We also have the next result, which has a simple geometric proof. The second part of our Lemma 4 is equivalent to Lemma 1 in [1] and to Lemma 1 in [3], but our proof is different.

Lemma 4. Let α, β, γ denote complex numbers of modulus 1.

- If $1+\alpha+\beta=0$, then one of α, β is \mathbf{e}_{3}.
- If $1+\alpha+\beta+\gamma=0$, then one of α, β, γ is -1 .

Proof. Suppose $1+\alpha+\beta=0$. Note that $\alpha \neq \pm 1$. Thus the points 0,1 , and $1+\alpha$ form a triangle. The triangle has side lengths $1,|\alpha|,|\beta|$ and hence is equilateral. The first claim follows.

Now suppose $1+\alpha+\beta+\gamma=0$. If all of α, β, γ are ± 1, we are done, so suppose $\alpha \neq \pm 1$. Then the points $A=0, B=1, C=1+\alpha$ form a triangle. Note $A B$ has length 1 and $B C$ has length $|\alpha|=1$. Let D be the point $1+\alpha+\beta$. Note $C D$ has length $|\beta|=1$ and $D A$ has length $|\gamma|=1$. It follows that triangles $A B C$ and $A D C$ are congruent. Then $A B C$ and $A D C$ either coincide, or they form a rhombus. Either way, the second claim follows.

There is no counterpart to Lemma 4 for sums of five complex numbers. Note that $P(z)=1+z+z^{3}+z^{5}+z^{6}$ has roots on \mathbb{S} that are not roots of unity.

The next result appears in [6]. We omit the proof.
Proposition 5. If a Newman polynomial of length 3 or 4 is reducible, then it has a cyclotomic factor (equivalently, it vanishes at some root of unity).

The proof of Proposition 5 does not seem to generalize to the length 5 case. However, I cannot find a reducible length 5 Newman polynomial without a cyclotomic factor.

Conjecture 6. If a Newman polynomial of length 5 is reducible, then it has a cyclotomic factor.

Conjecture 6 is true for all length 5 Newman polynomials of degree up to 24 . From Theorem 1 in [2], we know that for a reducible length 5 Newman polynomial, at most one of its irreducible factors is non-reciprocal.

4. Main Results

Theorem 7. We have the following four results.

1. $\mathrm{NewmUR}_{3}(\infty)=$

$$
\left\{1+z^{a}+z^{b} \mid\{0, a, b\} \equiv\left\{0,3^{k-1}, 2 \cdot 3^{k-1}\right\}\left(\bmod 3^{k}\right) \text { for some } k\right\}
$$

2. $\operatorname{NewmRed}_{3}(\infty)=\operatorname{NewmUR}_{3}(\infty) \backslash\left\{\Phi_{3}(z), \Phi_{9}(z), \Phi_{27}(z), \ldots\right\}$
3. $\operatorname{NewmRed}_{4}(\infty)=$

$$
\left\{1+z^{a}+z^{b}+z^{c} \mid\{0, a, b, c\} \equiv\left\{0,0,2^{k-1}, 2^{k-1}\right\}\left(\bmod 2^{k}\right) \text { for some } k\right\}
$$

4. $\operatorname{NewmUR}_{4}(\infty)=\operatorname{NewmRed}_{4}(\infty)$.

Result 1 is equivalent to part 1 of Theorem 3 in [10], where it is stated without proof. Result 3 is equivalent to part 1 of Theorem 2 in [3]. Our proof of Theorem 7 at one point uses a crucial trick taken from the proof of Theorem 2 in [3].

Proof. We will prove results 1 and 2 first. For brevity, define

$$
A=\left\{1+z^{a}+z^{b} \mid\{0, a, b\} \equiv\left\{0,3^{k-1}, 2 \cdot 3^{k-1}\right\}\left(\bmod 3^{k}\right) \text { for some } k\right\}
$$

Note that $A \subseteq \mathrm{NewmUR}_{3}(\infty)$ because a polynomial in A must vanish at $\mathbf{e}_{3^{k}}$. Next, suppose $P(z)=1+z^{a}+z^{b} \in \operatorname{NewmUR}_{3}(\infty)$. To show $\operatorname{NewmUR}_{3}(\infty) \subseteq A$, we must show $\{0, a, b\} \equiv\left\{0,3^{k-1}, 2 \cdot 3^{k-1}\right\}\left(\bmod 3^{k}\right)$ for some k. Let $a=3^{k} a^{\prime}, b=3^{k} b^{\prime}$, where a^{\prime}, b^{\prime} are not both divisible by 3 . Since $P(z)$ is UR, we have $1+\zeta^{a}+\zeta^{b}=0$ for some $\zeta \in \mathbb{S}$. By Lemma $4, \zeta^{a}$ and ζ^{b} are equal to \mathbf{e}_{3} and \mathbf{e}_{3}^{2} in some order; say $\zeta^{a}=\mathbf{e}_{3}$ and $\zeta^{b}=\mathbf{e}_{3}^{2}$. Then note that $\zeta^{2 b}=\mathbf{e}_{3}$. Thus,

$$
\mathbf{e}_{3}^{a^{\prime}}=\left(\zeta^{2 b}\right)^{a^{\prime}}=\left(\zeta^{a}\right)^{2 b^{\prime}}=\mathbf{e}_{3}^{2 b^{\prime}}
$$

so $a^{\prime} \equiv 2 b^{\prime}(\bmod 3)$. Then either $\left(a^{\prime}, b^{\prime}\right) \equiv_{3}(1,2)$ or $\left(a^{\prime}, b^{\prime}\right) \equiv_{3}(2,1)$, implying $\{0, a, b\} \equiv_{3^{k}}\left\{0,3^{k-1}, 2 \cdot 3^{k-1}\right\}$ as required. This proves result 1. Note that we have also shown that if $P(z) \in \operatorname{NewmUR}_{3}(\infty)$, then $P(z)$ vanishes at $\mathbf{e}_{3^{k}}$ for some k, so $P(z)$ is divisible by $\Phi_{3^{k}}(z)$. So if $P(z)$ is not itself of the form $\Phi_{3^{k}}(z)$, then $P(z)$ is reducible. We have thus shown

$$
\operatorname{NewmUR}_{3}(\infty) \backslash\left\{\Phi_{3}(z), \Phi_{9}(z), \Phi_{27}(z), \ldots\right\} \subseteq \operatorname{NewmRed}_{3}(\infty)
$$

and the reverse inclusion follows from Proposition 5 (note that a reducible polynomial is not cyclotomic). This proves result 2.

Next, we prove results 3 and 4 . Define

$$
B=\left\{1+z^{a}+z^{b}+z^{c} \mid\{0, a, b, c\} \equiv\left\{0,0,2^{k-1}, 2^{k-1}\right\}\left(\bmod 2^{k}\right) \text { for some } k\right\}
$$

If $P(z) \in B$, then $P(z)$ vanishes at $\mathbf{e}_{2^{k}}$, so $P(z)$ is divisible by the cyclotomic polynomial $\Phi_{2^{k}}(z)$. By Corollary $3, P(z)$ is not itself cyclotomic. Therefore $P(z)$ is reducible. We have thus shown

$$
B \subseteq \operatorname{NewmUR}_{4}(\infty) \subseteq \operatorname{NewmRed}_{4}(\infty)
$$

Next, we show the reverse inclusions. If $P(z) \in$ NewmRed $_{4}(\infty)$, then by Proposition 5 , we must have $P(z) \in \operatorname{NewmUR}_{4}(\infty)$. Now suppose $P(z)=1+z^{a}+z^{b}+z^{c} \in$ $\mathrm{NewmUR}_{4}(\infty)$. We must show $\{0, a, b, c\} \equiv\left\{0,0,2^{k-1}, 2^{k-1}\right\}\left(\bmod 2^{k}\right)$ for some k. Let $a=2^{k-1} a^{\prime}, b=2^{k-1} b^{\prime}, c=2^{k-1} c^{\prime}$, where not all of $a^{\prime}, b^{\prime}, c^{\prime}$ are divisible by 2 . It suffices to show $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \equiv \equiv_{2}\{0,1,1\}$, i.e. exactly one of $a^{\prime}, b^{\prime}, c^{\prime}$ is even. Since $P(z)$ is UR, then $1+\zeta^{a}+\zeta^{b}+\zeta^{c}=0$ for some $\zeta \in \mathbb{S}$. By Lemma 4 , one of $\zeta^{a}, \zeta^{b}, \zeta^{c}$ is -1 ; say $\zeta^{a}=-1$. Then also $\zeta^{b}+\zeta^{c}=0$, implying $\zeta^{c-b}=-1$. As in the proof of Theorem 2 in [3], we then have

$$
(-1)^{a^{\prime}}=\left(\zeta^{c-b}\right)^{a^{\prime}}=\left(\zeta^{a}\right)^{c^{\prime}-b^{\prime}}=(-1)^{c^{\prime}-b^{\prime}}
$$

so $a^{\prime} \equiv{ }_{2} c^{\prime}-b^{\prime}$. If a^{\prime} is even, then b^{\prime}, c^{\prime} have the same parity. They cannot both be even, so $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \equiv 2\{0,1,1\}$. On the other hand, if a^{\prime} is odd, then b^{\prime}, c^{\prime} have opposite parity. So again $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \equiv \equiv_{2}\{0,1,1\}$. This completes the proof of results 3 and 4.

From Theorem 7, we conclude that if $P(z)=1+z^{a}+z^{b}$ is a UR Newman polynomial of length 3 , then one of the following conditions must hold:

$$
\begin{aligned}
& \{0, a, b\} \equiv_{3}\{0,1,2\} \\
& \{0, a, b\} \equiv_{9}\{0,3,6\} \\
& \{0, a, b\} \equiv_{27}\{0,9,18\} .
\end{aligned}
$$

Note that this list of conditions is pairwise disjoint. Similarly, we conclude that if $P(z)=1+z^{a}+z^{b}+z^{c}$ is a UR Newman polynomial of length 4 , then one of the following conditions must hold:

$$
\begin{aligned}
\{0, a, b, c\} & \equiv_{2}\{0,0,1,1\} \\
\{0, a, b, c\} & \equiv_{4}\{0,0,2,2\} \\
\{0, a, b, c\} & \equiv_{8}\{0,0,4,4\} . \\
& \vdots
\end{aligned}
$$

This list of conditions is also pairwise disjoint.
That is what allows us to find the proportion of polynomials in $\operatorname{Newm}_{3}(N)$ or $\mathrm{Newm}_{4}(N)$ that are UR. To state this precisely, we introduce more notation. If N
is a positive integer, we define

$$
\operatorname{Perm}_{k}(N)=\left\{\left(a_{1}, \ldots, a_{k-1}\right) \mid \text { the } a_{i} \text { are distinct and } 1 \leq a_{i} \leq N\right\}
$$

where we do not assume $a_{1}<a_{2}<\cdots$. Note that $\left|\operatorname{Perm}_{k}(N)\right|=(k-1)!\binom{N}{k-1}$. We then define a function $F: \operatorname{Perm}_{k}(N) \rightarrow \operatorname{Newm}_{k}(N)$ by

$$
F\left(\left(a_{1}, \ldots, a_{k-1}\right)\right)=1+z^{a_{1}}+\cdots+z^{a_{k-1}}
$$

The pre-image of each polynomial in $\operatorname{Newm}_{k}(N)$ consists of $(k-1)$! different tuples in $\operatorname{Perm}_{k}(N)$.

Lemma 8. Let \mathcal{P} be any property of the form

$$
\left\{a_{1}, \ldots, a_{k-1}\right\} \equiv_{m}\left\{u_{1}, \ldots, u_{k-1}\right\}
$$

where m and the u_{i} are constants. Let $\operatorname{GoodPerm}_{k}(N)$ be the set of tuples in $\operatorname{Perm}_{k}(N)$ that satisfy \mathcal{P}, and let $\operatorname{GoodNewm}_{k}(N)$ be the set of polynomials in $\operatorname{Newm}_{k}(N)$ that satisfy \mathcal{P}. Then

$$
\frac{\left|\operatorname{GoodNewm}_{k}(N)\right|}{\left|\operatorname{Newm}_{k}(N)\right|}=\frac{\left|\operatorname{GoodPerm}_{k}(N)\right|}{\left|\operatorname{Perm}_{k}(N)\right|} .
$$

Proof. A polynomial $P(z) \in \operatorname{Newm}_{k}(N)$ satisfies \mathcal{P} if and only if all $(k-1)$! tuples in $F^{-1}(P(z))$ satisfy \mathcal{P}. Therefore

$$
\left|\operatorname{GoodPerm}_{k}(N)\right|=(k-1)!\left|\operatorname{GoodNewm}_{k}(N)\right| .
$$

Since also $\left|\operatorname{Perm}_{k}(N)\right|=(k-1)!\left|\operatorname{Newm}_{k}(N)\right|$, the result follows.
Lemma 9. Let \mathcal{P} be any property of the form

$$
\left(a_{1}, \ldots, a_{k-1}\right) \equiv_{m}\left(u_{1}, \ldots, u_{k-1}\right)
$$

where m and the u_{i} are constants. Let $\operatorname{GoodPerm}_{k}(N)$ be the set of tuples in $\operatorname{Perm}_{k}(N)$ that satisfy \mathcal{P}. Then

$$
\lim _{N \rightarrow \infty} \frac{\left|\operatorname{GoodPerm}_{k}(N)\right|}{\left|\operatorname{Perm}_{k}(N)\right|}=\frac{1}{m^{k-1}}
$$

Proof. Construct such a $(k-1)$-tuple by first choosing a_{1}, then choosing a_{2}, and so on. We must have $1 \leq a_{1} \leq N$ and $a_{1} \equiv_{m} u_{1}$. If W_{1} is the number of ways to choose a_{1}, we have

$$
\frac{N}{m}-1 \leq\left\lfloor\frac{N}{m}\right\rfloor \leq W_{1} \leq\left\lceil\frac{N}{m}\right\rceil \leq \frac{N}{m}+1
$$

Next, we must have $1 \leq a_{2} \leq N, a_{2} \equiv_{m} u_{2}$, and $a_{2} \neq a_{1}$. If W_{2} is the number of ways to choose a_{2}, we have

$$
\frac{N}{m}-2 \leq\left\lfloor\frac{N}{m}\right\rfloor-1 \leq W_{2} \leq\left\lceil\frac{N}{m}\right\rceil \leq \frac{N}{m}+1
$$

Continuing in this way, we find that

$$
\left(\frac{N}{m}-1\right)\left(\frac{N}{m}-2\right) \cdots\left(\frac{N}{m}-k+1\right) \leq\left|\operatorname{GoodPerm}_{k}(N)\right| \leq\left(\frac{N}{m}+1\right)^{k-1}
$$

The upper and lower bound are both of the form

$$
\frac{1}{m^{k-1}} N^{k-1}+O\left(N^{k-2}\right)
$$

whereas $\left|\operatorname{GoodPerm}_{k}(N)\right| \sim N^{k-1}$. The result follows.
Theorem 10. We have

$$
\begin{aligned}
& \operatorname{ProbUR}_{3}(\infty)=\lim _{N \rightarrow \infty} \frac{\left|\operatorname{NewmUR}_{3}(N)\right|}{\left|\operatorname{Newm}_{3}(N)\right|}=\frac{1}{4} \\
& \operatorname{ProbUR}_{4}(\infty)=\lim _{N \rightarrow \infty} \frac{\left|\operatorname{NewmUR}_{4}(N)\right|}{\left|\operatorname{Newm}_{4}(N)\right|}=\frac{3}{7}
\end{aligned}
$$

Proof. The set NewmUR ${ }_{3}(N)$ is the disjoint union of the sets

$$
\begin{aligned}
A_{1} & =\left\{1+z^{a}+z^{b} \in \operatorname{Newm}_{3}(N) \mid\{a, b\} \equiv_{3}\{1,2\}\right\} \\
A_{2} & =\left\{1+z^{a}+z^{b} \in \operatorname{Newm}_{3}(N) \mid\{a, b\} \equiv_{9}\{3,6\}\right\} \\
A_{3} & =\left\{1+z^{a}+z^{b} \in \operatorname{Newm}_{3}(N) \mid\{a, b\} \equiv_{27}\{9,18\}\right\} \\
& \vdots
\end{aligned}
$$

so we have

$$
\frac{\left|\operatorname{NewmUR}_{3}(N)\right|}{\left|\operatorname{Newm}_{3}(N)\right|}=\frac{\left|A_{1}\right|}{\left|\operatorname{Newm}_{3}(N)\right|}+\frac{\left|A_{2}\right|}{\left|\operatorname{Newm}_{3}(N)\right|}+\frac{\left|A_{3}\right|}{\left|\operatorname{Newm}_{3}(N)\right|}+\cdots
$$

By Lemma 8, we have

$$
\frac{\left|A_{k}\right|}{\left|\operatorname{Newm}_{3}(N)\right|}=\frac{\left|B_{k}\right|}{\left|\operatorname{Perm}_{3}(N)\right|}
$$

where

$$
B_{k}=\left\{(a, b) \in \operatorname{Perm}_{3}(N) \mid\{a, b\} \equiv_{3^{k}}\left\{3^{k-1}, 2 \cdot 3^{k-1}\right\}\right\}
$$

Each set B_{k} is the disjoint union of the sets

$$
\begin{aligned}
& C_{k}=\left\{(a, b) \in \operatorname{Perm}_{3}(N) \mid(a, b) \equiv_{3^{k}}\left(3^{k-1}, 2 \cdot 3^{k-1}\right)\right\}, \\
& D_{k}=\left\{(a, b) \in \operatorname{Perm}_{3}(N) \mid(a, b) \equiv_{3^{k}}\left(2 \cdot 3^{k-1}, 3^{k-1}\right)\right\} .
\end{aligned}
$$

We conclude that $\frac{\left|\operatorname{NewmUR}_{3}(N)\right|}{\left|\operatorname{Newm}_{3}(N)\right|}=$

$$
\frac{\left|C_{1}\right|}{\left|\operatorname{Perm}_{3}(N)\right|}+\frac{\left|D_{1}\right|}{\left|\operatorname{Perm}_{3}(N)\right|}+\frac{\left|C_{2}\right|}{\left|\operatorname{Perm}_{3}(N)\right|}+\frac{\left|D_{2}\right|}{\left|\operatorname{Perm}_{3}(N)\right|}+\cdots
$$

By Lemma 9 , when $N \rightarrow \infty$, the terms of this series approach

$$
\frac{1}{3^{2}}+\frac{1}{3^{2}}+\frac{1}{9^{2}}+\frac{1}{9^{2}}+\frac{1}{27^{2}}+\frac{1}{27^{2}}+\cdots=\frac{1}{4}
$$

Similarly, the set $\operatorname{NewmUR}_{4}(N)$ is the disjoint union of the sets

$$
\begin{aligned}
E_{1} & =\left\{1+z^{a}+z^{b}+z^{c} \in \operatorname{Newm}_{4}(N) \mid\{a, b, c\} \equiv_{2}\{0,1,1\}\right\} \\
E_{2} & =\left\{1+z^{a}+z^{b}+z^{c} \in \operatorname{Newm}_{4}(N) \mid\{a, b, c\} \equiv_{4}\{0,2,2\}\right\} \\
E_{3} & =\left\{1+z^{a}+z^{b}+z^{c} \in \operatorname{Newm}_{4}(N) \mid\{a, b, c\} \equiv_{8}\{0,4,4\}\right\} \\
& \vdots
\end{aligned}
$$

so we have

$$
\frac{\left|\operatorname{NewmUR}_{4}(N)\right|}{\left|\operatorname{Newm}_{4}(N)\right|}=\frac{\left|E_{1}\right|}{\left|\operatorname{Newm}_{4}(N)\right|}+\frac{\left|E_{2}\right|}{\left|\operatorname{Newm}_{4}(N)\right|}+\frac{\left|E_{3}\right|}{\left|\operatorname{Newm}_{4}(N)\right|}+\cdots
$$

By Lemma 8, we have

$$
\frac{\left|E_{k}\right|}{\left|\operatorname{Newm}_{4}(N)\right|}=\frac{\left|F_{k}\right|}{\left|\operatorname{Perm}_{4}(N)\right|},
$$

where

$$
F_{k}=\left\{(a, b, c) \in \operatorname{Perm}_{4}(N) \mid\{a, b, c\} \equiv_{2^{k}}\left\{0,2^{k-1}, 2^{k-1}\right\}\right\}
$$

Each set F_{k} is the disjoint union of the sets

$$
\begin{aligned}
G_{k} & =\left\{(a, b, c) \in \operatorname{Perm}_{4}(N) \mid(a, b, c) \equiv_{2^{k}}\left(0,2^{k-1}, 2^{k-1}\right)\right\} \\
H_{k} & =\left\{(a, b, c) \in \operatorname{Perm}_{4}(N) \mid(a, b, c) \equiv_{2^{k}}\left(2^{k-1}, 0,2^{k-1}\right)\right\} \\
I_{k} & =\left\{(a, b, c) \in \operatorname{Perm}_{4}(N) \mid(a, b, c) \equiv_{2^{k}}\left(2^{k-1}, 2^{k-1}, 0\right)\right\}
\end{aligned}
$$

We conclude that $\frac{\left|\operatorname{NewmUR}_{4}(N)\right|}{\left|\operatorname{Newm}_{4}(N)\right|}=\frac{\left|G_{1}\right|+\left|H_{1}\right|+\left|I_{1}\right|}{\left|\operatorname{Perm}_{4}(N)\right|}+\frac{\left|G_{2}\right|+\left|H_{2}\right|+\left|I_{2}\right|}{\left|\operatorname{Perm}_{4}(N)\right|}+\cdots$.

By Lemma 9 , when $N \rightarrow \infty$, the terms of this series approach

$$
\frac{3}{2^{3}}+\frac{3}{4^{3}}+\frac{3}{8^{3}}+\cdots=\frac{3}{7}
$$

Corollary 11. We have

$$
\begin{aligned}
& \operatorname{ProbRed}_{3}(\infty)=\lim _{N \rightarrow \infty} \frac{\left|\operatorname{NewmRed}_{3}(N)\right|}{\left|\operatorname{Newm}_{3}(N)\right|}=\frac{1}{4} \\
& \operatorname{ProbRed}_{4}(\infty)=\lim _{N \rightarrow \infty} \frac{\left|\operatorname{NewmRed}_{4}(N)\right|}{\left|\operatorname{Newm}_{4}(N)\right|}=\frac{3}{7}
\end{aligned}
$$

Proof. The second claim follows immediately from Theorem 10 and from result 4 in Theorem 7. As for the first claim, note that because of result 2 in Theorem 7, it would suffice to prove

$$
\lim _{N \rightarrow \infty} \frac{\left|\operatorname{Cyc}_{3}(N)\right|}{\left|\operatorname{Newm}_{3}(N)\right|}=0
$$

where $\operatorname{Cycl}_{3}(N)$ is the set of polynomials in $\operatorname{Newm}_{3}(N)$ that are cyclotomic. But the polynomials in $\mathrm{Cycl}_{3}(N)$ are the polynomials of the form

$$
1+z^{3^{k-1}}+z^{2 \cdot 3^{k-1}}
$$

where $2 \cdot 3^{k-1} \leq N$, so $k \leq 1+\log _{3}(N / 2)$. That is, we have $\left|\operatorname{Cycl}_{3}(N)\right| \sim \log _{3} N$, whereas $\left|\operatorname{Newm}_{3}(N)\right| \sim N^{2} / 2$. The result follows.

5. The Length 5 Case

It is conceivable that there is no simple necessary and sufficient condition for a polynomial in $\mathrm{Newm}_{5}(\infty)$ to be UR. However, we can exhibit some particular families of polynomials in $\mathrm{Newm}_{5}(\infty)$ that are UR.

We define

$$
\begin{aligned}
A_{N} & =\left\{P(z) \in \operatorname{Newm}_{5}(N) \mid P(z) \text { is reciprocal }\right\} \\
& =\left\{1+z^{m-k}+z^{m}+z^{m+k}+z^{2 m} \left\lvert\, 2 \leq m \leq\left\lfloor\frac{N}{2}\right\rfloor\right., 1 \leq k \leq m-1\right\}
\end{aligned}
$$

and then define $A=\bigcup_{N} A_{N}$. Such polynomials are always UR. (See, for example, Corollary 2 in [4] or Corollary 5 in [7].)

Notice that A is a "small" set. We have $\left|A_{N}\right|=O\left(N^{2}\right)$ because there are at most $N / 2$ ways to choose m and at most $N / 2$ ways to choose k. It follows that $\left|A_{N}\right| /\left|\operatorname{Newm}_{5}(N)\right|$ approaches 0 as $N \rightarrow \infty$.

We also define $B_{1}, B_{2}, B_{3}, \ldots$ to be the sets of polynomials $1+z^{a}+z^{b}+z^{c}+z^{d}$ in $\mathrm{Newm}_{5}(\infty)$ that satisfy, respectively, the conditions

$$
\begin{aligned}
& \{0, a, b, c, d\} \equiv_{5}\{0,1,2,3,4\} \\
& \{0, a, b, c, d\} \equiv_{25}\{0,5,10,15,20\} \\
& \{0, a, b, c, d\} \equiv_{125}\{0,25,50,75,100\}
\end{aligned}
$$

Each polynomial in B_{k} is UR because it vanishes at $\mathbf{e}_{5^{k}}$.
We also define $C_{6}, C_{12}, C_{18}, C_{24}, C_{36}, \ldots$ (the subscripts are of the form $2^{k} 3^{\ell}$) to be the sets of polynomials $1+z^{a}+z^{b}+z^{c}+z^{d}$ in $\operatorname{Newm}_{5}(\infty)$ that satisfy, respectively, the conditions

$$
\begin{aligned}
& \{0, a, b, c, d\} \equiv_{6}(\text { some coset of }\{0,3\}) \cup(\text { some coset of }\{0,2,4\}) \\
& \{0, a, b, c, d\} \equiv_{12}(\text { some coset of }\{0,6\}) \cup(\text { some coset of }\{0,4,8\}) \\
& \{0, a, b, c, d\} \equiv_{18}(\text { some coset of }\{0,9\}) \cup(\text { some coset of }\{0,6,12\}) \\
& \{0, a, b, c, d\} \equiv_{24}(\text { some coset of }\{0,12\}) \cup(\text { some coset of }\{0,8,16\}) \\
& \{0, a, b, c, d\} \equiv_{36}(\text { some coset of }\{0,18\}) \cup(\text { some coset of }\{0,12,24\})
\end{aligned}
$$

Each polynomial in $C_{2^{k} 3^{\ell}}$ is UR because it vanishes at $\mathbf{e}_{2^{k} 3^{\ell}}$.
We thus have $A \cup\left(B_{1} \cup B_{2} \cup \cdots\right) \cup\left(C_{6} \cup C_{12} \cup \cdots\right) \subseteq \operatorname{NewmUR}_{5}(\infty)$.
For brevity, define $B=B_{1} \cup B_{2} \cup \cdots$ and $C=C_{6} \cup C_{12} \cup \cdots$. Also for brevity, if S is any subset of $\mathrm{Newm}_{5}(\infty)$, we refer to

$$
\lim _{N \rightarrow \infty} \frac{\left|S \cap \operatorname{Newm}_{5}(N)\right|}{\left|\operatorname{Newm}_{5}(N)\right|}
$$

as the "probability" that a length 5 Newman polynomial is in S, or even more briefly, the "measure" of S.

Since $A \cup B \cup C \subseteq \operatorname{NewmUR}_{5}(\infty)$, a lower bound for $\operatorname{ProbUR}_{5}(\infty)$ will be the measure of $A \cup B \cup C$. The remarks after the definition of A show that the measure of A is 0 . Therefore we are interested in the measure of $B \cup C$.

It is possible to prove that the measure of $B \cup C$ is

$$
\begin{aligned}
& (\text { measure of } B)+(\text { measure of } C)-(\text { measure of } B \cap C) \\
& \quad=\frac{1}{26}+\frac{109}{1820}-\frac{1}{26} \cdot \frac{109}{1820}=\frac{909}{9464} \approx 0.096
\end{aligned}
$$

We give a sketch of the proof later.
At this point, we assemble a few facts and conjectures.

Conjecture 12. NewmUR $\mathrm{N}_{5}(\infty)=A \cup B \cup C$.
Conjecture 13. If $P(z) \in \operatorname{NewmUR}_{5}(\infty)$ has a cyclotomic factor, then $P(z) \in$ $B \cup C$.

Proposition 14. If Conjecture 6 and Conjecture 13 are both true, then Conjecture 12 is true.

Proof. Suppose $P(z) \in \operatorname{NewmUR}_{5}(\infty)$. Either $P(z)$ is reducible, or $P(z)$ is irreducible. If the former, then Conjecture 6 implies $P(z)$ has a cyclotomic factor, and then Conjecture 13 implies $P(z) \in B \cup C$. If the latter, then Lemma 1 implies $P(z)$ is reciprocal, so $P(z) \in A$.

Proposition 15. For any k, we have $\operatorname{ProbUR}_{k}(\infty) \leq \operatorname{ProbRed}_{k}(\infty)$.
Proof. We sketch a proof. It suffices to show $\operatorname{NewmUR}_{k}(\infty)$ is "almost" a subset of $N^{N e w m R e d}{ }_{k}(\infty)$, in the sense that "most" UR Newman polynomials are reducible. But this follows because a UR Newman polynomial that is irreducible must be reciprocal by Lemma 1. And the set of reciprocal Newman polynomials of length k has essentially $k / 2$ "degrees of freedom" as in the remarks after the definition of the set A.

Note that there are reducible Newman polynomials that are not UR, such as

$$
1+z+z^{3}+z^{4}+z^{5}+z^{7}+z^{9}+z^{10}+z^{12}=\left(1+z+z^{3}\right)\left(1+z^{4}+z^{9}\right)
$$

It is thus conceivable that $\operatorname{ProbUR}_{k}(\infty)<\operatorname{ProbRed}_{k}(\infty)$ for some k.
We close by sketching a proof of the following result.
Proposition 16. If B and C are as defined earlier, then the "measure" of $B \cup C$ is 909/9464. Therefore $\operatorname{ProbUR}_{5}(\infty) \geq 909 / 9464$.

Proof. We sketch a proof. Note that the conditions defining the B_{i}

$$
\begin{aligned}
& \{a, b, c, d\} \equiv_{5}\{1,2,3,4\} \\
& \{a, b, c, d\} \equiv_{25}\{5,10,15,20\} \\
& \{a, b, c, d\} \equiv_{125}\{25,50,75,100\}
\end{aligned}
$$

are pairwise disjoint. Therefore the measure of B is the sum of the measures of the B_{i}, as in the proof of Theorem 10 . We also claim that the conditions defining the C_{j} are pairwise disjoint. This is less obvious; we sketch the proof of that later.

We also claim that for each i and j, the condition defining B_{i} is "independent" from the condition defining C_{j} (as far as asymptotics are concerned). We omit a precise definition of this; the key is that if \mathcal{P}_{1} and \mathcal{P}_{2} are two properties of the form

$$
\begin{aligned}
\left\{a_{1}, \ldots, a_{k}\right\} & \equiv_{m_{1}}\left\{u_{1}, \ldots, u_{k}\right\} \\
\left\{a_{1}, \ldots, a_{k}\right\} & \equiv_{m_{2}}\left\{v_{1}, \ldots, v_{k}\right\}
\end{aligned}
$$

where m_{1}, m_{2} are relatively prime, then \mathcal{P}_{1} and \mathcal{P}_{2} are "independent" in an asymptotic sense. (The asymptotic probability of \mathcal{P}_{1} is $1 / m_{1}^{k}$, the asymptotic probability of \mathcal{P}_{2} is $1 / m_{2}^{k}$, and the event $\mathcal{P}_{1} \cap \mathcal{P}_{2}$ is a unique congruence modulo $m_{1} m_{2}$ by the Chinese Remainder Theorem, so $\mathcal{P}_{1} \cap \mathcal{P}_{2}$ has asymptotic probability $1 /\left(m_{1} m_{2}\right)^{k}$.)

To prove that the conditions defining C_{6}, C_{12}, \ldots are pairwise disjoint, we introduce a definition.

A mod $6 m$ "bicoset" is any multiset that contains 0 and is of the form
$($ some coset of $\{0,3 m\}) \cup($ some coset of $\{0,2 m, 4 m\})$
or equivalently, of the form

$$
\{0,3 m, w, w+2 m, w+4 m\} \text { or }\{w, w+3 m, 0,2 m, 4 m\}
$$

One can show that if $k \geq 1$ and $\ell \geq 1$, then the three conditions

$$
\begin{aligned}
& \{0, a, b, c, d\} \text { is congruent to some } \bmod 6 m \text { bicoset } \\
& \{0, a, b, c, d\} \text { is congruent to some } \bmod 6 m 2^{k} \text { bicoset } \\
& \{0, a, b, c, d\} \text { is congruent to some } \bmod 6 m 3^{\ell} \text { bicoset }
\end{aligned}
$$

are pairwise disjoint. We omit some details, but this follows because a $\bmod 6 m 2^{k}$ bicoset has the form

$$
\left\{0,3 m 2^{k}, x, x+2 m 2^{k}, x+4 m 2^{k}\right\} \text { or }\left\{x, x+3 m 2^{k}, 0,2 m 2^{k}, 4 m 2^{k}\right\}
$$

which, when taken modulo 6 m , becomes

$$
\{0,0, x, x+2 m, x+4 m\} \text { or }\{x, x, 0,2 m, 4 m\}
$$

and a $\bmod 6 m 3^{\ell}$ bicoset has the form

$$
\left\{0,3 m 3^{\ell}, y, y+2 m 3^{\ell}, y+4 m 3^{\ell}\right\} \text { or }\left\{y, y+3 m 3^{\ell}, 0,2 m 3^{\ell}, 4 m 3^{\ell}\right\}
$$

which, modulo $6 m$, becomes

$$
\{0,3 m, y, y, y\} \text { or }\{y, y+3 m, 0,0,0\}
$$

A case by case analysis then verifies our disjointness claim.

Now, the "measure" of $B \cup C$ is

$$
(\text { "measure" of } B)+(\text { "measure" of } C)-(\text { "measure" of } B \cap C)
$$

But the "independence" property implies that the measure of $B \cap C$ is the product of the measure of B and the measure of C. Now because of the disjointness properties previously observed, the remaining step is to find the measures/probabilities of the individual B_{i} and C_{j} and then sum them.

That task is easier for the B_{i}. Informally, the probability of belonging to B_{1} is the probability that $\{a, b, c, d\} \equiv_{5}\{1,2,3,4\}$, which is the probability that (a, b, c, d) is congruent $(\bmod 5)$ to one of the 24 permutations of $(1,2,3,4)$, which is $24 / 5^{4}$. Similarly, the probability of belonging to B_{2} is $24 / 25^{4}$, and so on. So the measure of B is

$$
\frac{24}{5^{4}}+\frac{24}{25^{4}}+\frac{24}{125^{4}}+\cdots=\frac{1}{26}
$$

The C_{j} are more subtle. The event of belonging to C_{6} is the event that a, b, c, d satisfy one of the following:

$$
\begin{array}{lll}
\{0, a, b, c, d\} \equiv_{6}\{0,3,0,2,4\} & \text { if and only if } & \{a, b, c, d\} \equiv_{6}\{0,2,3,4\} \\
\{0, a, b, c, d\} \equiv_{6}\{0,3,1,3,5\} & \text { if and only if } & \{a, b, c, d\} \equiv_{6}\{1,3,3,5\} * \\
\{0, a, b, c, d\} \equiv_{6}\{1,4,0,2,4\} & \text { if and only if } & \{a, b, c, d\} \equiv_{6}\{1,2,4,4\} * \\
\{0, a, b, c, d\} \equiv_{6}\{2,5,0,2,4\} & \text { if and only if } & \{a, b, c, d\} \equiv_{6}\{2,2,4,5\} *
\end{array}
$$

(multisets with repeated elements are labeled with stars for convenience). The event of belonging to C_{12} is the event that a, b, c, d satisfy one of the following:

$$
\begin{aligned}
& \{0, a, b, c, d\} \equiv_{12}\{0,6,0,4,8\} \quad \text { if and only if }\{a, b, c, d\} \equiv_{12}\{0,4,6,8\} \\
& \{0, a, b, c, d\} \equiv_{12}\{0,6,1,5,9\} \quad \text { if and only if }\{a, b, c, d\} \equiv_{12}\{1,5,6,9\} \\
& \{0, a, b, c, d\} \equiv_{12}\{0,6,2,6,10\} \quad \text { if and only if }\{a, b, c, d\} \equiv_{12}\{2,6,6,10\} * \\
& \{0, a, b, c, d\} \equiv_{12}\{0,6,3,7,11\} \quad \text { if and only if }\{a, b, c, d\} \equiv_{12}\{3,6,7,11\} \\
& \{0, a, b, c, d\} \equiv_{12}\{1,7,0,4,8\} \quad \text { if and only if }\{a, b, c, d\} \equiv_{12}\{1,4,7,8\} \\
& \{0, a, b, c, d\} \equiv_{12}\{2,8,0,4,8\} \quad \text { if and only if }\{a, b, c, d\} \equiv_{12}\{2,4,8,8\} * \\
& \{0, a, b, c, d\} \equiv_{12}\{3,9,0,4,8\} \quad \text { if and only if }\{a, b, c, d\} \equiv_{12}\{3,4,8,9\} \\
& \{0, a, b, c, d\} \equiv_{12}\{4,10,0,4,8\} \quad \text { if and only if }\{a, b, c, d\} \equiv_{12}\{4,4,8,10\} * \\
& \{0, a, b, c, d\} \equiv_{12}\{5,11,0,4,8\} \quad \text { if and only if }\{a, b, c, d\} \equiv_{12}\{4,5,8,11\}
\end{aligned}
$$

(where again stars simply indicate that elements are repeated). In general, the event of belonging to $C_{6 m}$ is the event that $\{a, b, c, d\}$ is congruent modulo $6 m$ to one of a list of $3 m+2 m-1$ different multisets. Of those $5 m-1$ multisets, exactly 3 will be of the form $\{s, s, t, u\}$ (each of those can be permuted in 12 ways) and the remaining $5 m-4$ will be of the form $\{s, t, u, v\}$ (each of those can be permuted in 24 ways).

It follows that the probability of belonging to $C_{6 m}$ is

$$
\frac{3 \times 12+(5 m-4) \times 24}{(6 m)^{4}}=\frac{5}{54} \cdot \frac{1}{m^{3}}-\frac{5}{108} \cdot \frac{1}{m^{4}}
$$

It remains to sum this over all m of the form $2^{k} 3^{\ell}$ where $k \geq 0, \ell \geq 0$. But this can be done with the help of the identities

$$
\begin{aligned}
& \left(1+\frac{1}{2^{3}}+\frac{1}{4^{3}}+\frac{1}{8^{3}}+\cdots\right)\left(1+\frac{1}{3^{3}}+\frac{1}{9^{3}}+\frac{1}{27^{3}}+\cdots\right)=\frac{8}{7} \cdot \frac{27}{26}=\frac{108}{91} \\
& \left(1+\frac{1}{2^{4}}+\frac{1}{4^{4}}+\frac{1}{8^{4}}+\cdots\right)\left(1+\frac{1}{3^{4}}+\frac{1}{9^{4}}+\frac{1}{27^{4}}+\cdots\right)=\frac{16}{15} \cdot \frac{81}{80}=\frac{27}{25}
\end{aligned}
$$

The measure of C is thus $\frac{5}{54} \cdot \frac{108}{91}-\frac{5}{108} \cdot \frac{27}{25}=\frac{109}{1820}$.
So the measure of $B \cup C$ is $\frac{1}{26}+\frac{109}{1820}-\frac{1}{26} \cdot \frac{109}{1820}=\frac{909}{9464} \approx 0.096$.
It is perhaps worth mentioning that if we write a computer program that, for a large value of N, generates a large number of pseudorandom polynomials in $\operatorname{Newm}_{5}(N)$ and keeps track of the proportion that are UR, the results are consistent with a proportion around 0.096 .

Acknowledgment The author acknowledges the helpful comments of Michael Filaseta on an earlier draft of this paper.

References

[1] A. Dubickas, Nonreciprocal algebraic numbers of small measure, Comment. Math. Univ. Carolin. 45 (2004), no. 4, 693-697.
[2] M. Filaseta and I. Solan, An extension of a theorem of Ljunggren, Math. Scand. 84 (1999), no. $1,5-10$.
[3] C. Finch and L. Jones, On the irreducibility of $\{-1,0,1\}$-quadrinomials, Integers 6 (2006), A16, 4 pp.
[4] J. Konvalina and V. Matache, Palindrome-polynomials with roots on the unit circle, C. R. Math. Acad. Sci. Soc. R. Can. 26 (2004), no. 2, 39-44.
[5] S. Konyagin, On the number of irreducible polynomials with 0,1 coefficients, Acta Arith. 88 (1999), no. 4, 333-350.
[6] W. Ljunggren, On the irreducibility of certain trinomials and quadrinomials, Math. Scand. 8 (1960), 65-70.
[7] I. Mercer, Unimodular roots of special Littlewood polynomials, Canad. Math. Bull. 49 (2006), no. $3,438-447$.
[8] W. Mills, The factorization of certain quadrinomials, Math. Scand. 57 (1985), no. 1, 44-50.
[9] A. Odlyzko and B. Poonen, Zeros of polynomials with 0,1 coefficients, Enseign. Math. (2) 39 (1993), no. 3-4, 317-348.
[10] E. Selmer, On the irreducibility of certain trinomials, Math. Scand. 4 (1956), 287-302.

