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Abstract
For positive integers m and n, define f(m,n) to be the smallest integer such that

any subset A of the m × n integer grid with |A| ≥ f(m,n) contains a rectangle;

that is, there are x ∈ [m] and y ∈ [n] and d1, d2 ∈ Z+ such that all four points

(x, y), (x + d1, y), (x, y + d2), and (x + d1, y + d2) are contained in A. In 1954,

Kövari, Sós, and Turán showed that lim
k→∞

f(k, k)

k3/2
= 1. They also showed that

f(p2, p2 + p) = p2(p + 1) + 1 whenever p is a prime number. We recover their

asymptotic result and strengthen the second, providing cleaner proofs which exploit

a connection to projective planes, first noticed by Mendelsohn. We also provide an

explicit lower bound for f(k, k) which holds for all k.

1. Introduction and Motivation

For a positive integer n, let [n] = {1, 2, . . . , n}. For m,n ∈ Z+, define f(m,n) to be

the least integer such that if A ⊆ [m] × [n] with |A| ≥ f(m,n), then A contains a

rectangle; that is, there is x ∈ [m], y ∈ [n], and d1, d2 ∈ Z+ such that all four points

(x, y), (x + d1, y), (x, y + d2), and (x + d1, y + d2) are contained in A. For ease in

notation, let f(k) = f(k, k). For c ∈ Z+, a c-coloring of a set S is a surjective map

χ : S → [c]. If χ is constant on a set A ⊂ S, we say that A is monochromatic.
We will write g(k) ∼ h(k) to mean that functions g and h are asymptotically

equal ; that is, lim
k→∞

g(k)

h(k)
= 1. Also, notice that f(m,n) = f(n,m) for any choice of
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n and m.

The problem of finding bounds or exact values of f(m,n) finds its roots in the

famous theorem of van der Waerden from [21], which states that given any positive

integers c and d, there exists an integer N such that any c-coloring of [N ] contains a

monochromatic arithmetic progression of length d. Szemerédi proved a density ver-

sion of this theorem in [20], using the now well-known Regularity Lemma. Progress

in this area is still being made. For instance, in [3], Axenovich and the second

author try to find the smallest k so that in any 2-coloring of [k] × [k] there is a

monochromatic square; i.e., a rectangle with d1 = d2. While the upper bounds are

enormous, they proved k ≥ 13; in [4], Bacher and Eliahou show that k = 15. In [10],

the authors are interested in finding OBSc, which is the collection of [m]× [n] grids

which cannot be colored in c colors without a monochromatic rectangle, but every

proper subgrid can be; see also [7]. For a more complete survey on van der Waerden

type problems, see [11].

Zarankiewicz introduced the problem of finding f(m,n) in [22] using the language

of minors of (0,1)-matrices. In [12], Kövari, Sós, and Turán show that f(k) ∼ k3/2

and that whenever p is a prime number, we have f(p2 + p, p2) = p2(p + 1) + 1. In

this manuscript, we will recover this asymptotic result and strengthen the second

result.

In [17], Reiman achieved the bound of

f(m,n) ≤ 1

2

�
m +

�
m2 + 4mn(n− 1)

�
+ 1. (1)

Notice that by setting m = p2 + p and n = p2, the right hand side of (1) becomes

p2(p + 1) + 1, so the result of Kövari, Sós, and Turán implies that the inequality is

sharp. Reiman showed equality in (1) in the case that m = n = q2+q+1, provided q
is a prime power. In [14], Mendelsohn recovers and strengthens the equality result

of Reiman by noticing the connection of the Zarankiewicz problem to projective

planes.

A k × k (0, 1)-matrix A corresponds to a subset SA ⊂ [k]× [k] by

(i, j) ∈ S if and only if the (i, j) entry of A is 1.

Notice that the set SA contains a rectangle if and only if the matrix AT A has

an entry off the main diagonal which is not equal to 0 or 1. Also notice that

tr(AT A) = |SA|.
Such (0, 1)-matrices arise in the study of projective planes. A projective plane

of order n is an incidence structure consisting of n2 + n + 1 points and n2 + n + 1

lines such that

(i) any two distinct points lie on exactly one line;

(ii) any two distinct lines intersect in exactly one point;
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(iii) each line contains exactly n + 1 points; and

(iv) there is a set of 4 points such that no 3 of these points lie on the same line.

It is not known for which positive integers n there exists a projective plane of

order n; projective planes have been constructed for all prime-power orders, but for

no others. In the well-known paper [5], Bruck and Ryser show that if the square-free

part of n is divisible by a prime of the form 4k + 3, and if n is congruent to 1 or 2

modulo 4, then there is no projective plane of order n; see also [6]. More recently,

the authors in [8] draw a connection between the existence of projective planes of

order greater than or equal to 157 and the number of cycles in n×n bipartite graphs

of girth at least 6. In 1989, a computer search conducted by the authors in [13]

showed that there is no projective plane of order 10. The smallest order for which

it is still not known whether there is a projective plane is 12, although the results

in [15, 19, 16, 1, 2] suggest that there is no such structure.

Next we state a lemma which appears in [14] connecting projective planes to the

Zarankiewicz problem.

Lemma 1. If n is a positive integer such that there exists a projective plane of
order n, then f(n2 + n + 1) = (n + 1)(n2 + n + 1) + 1.

We will include a proof of Lemma 1 both for completeness and since we will

reference the lower bound construction in the proof of Theorem 4.

Proof of Lemma 1. Let n be a positive integer such that there is a projective plane

of that order. For ease in notation, set N = n2 + n + 1. First we will show that

f(N) ≥ (n + 1)N + 1.

We begin by constructing a N × N (0, 1)-matrix A. There exists a projective

plane P of order n; so let A be the N × N matrix whose rows correspond to the

points of P and whose columns correspond to the lines of P where the (i, j) entry

of A is equal to 1 if and only if the point indexed by i lies on the line indexed by j.
Since any two distinct lines have exactly one point in common, the scalar product

of any two distinct columns must be 1; hence, SA does not contain a rectangle.

Since each line contains exactly (n + 1) points, |SA| = tr(AT A) = (n + 1)N , so

f(N) ≥ (n + 1)N + 1.

Now, suppose A is any N×N (0, 1)-matrix with (n+1)N +1 nonzero entries, and

let ai denote the number of 1s in row i. The number of pairs of 1s in row i is

�
ai

2

�
,

so the total number of pairs of 1s from each row is

N�

i=1

�
ai

2

�
. The number of pairs

of distinct column indices is

�
N

2

�
. If

N�

i=1

�
ai

2

�
>

�
N

2

�
, the pigeonhole principle
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implies that there is a pair of column indices such that there are two distinct rows

which have 1s in both of those columns; i.e., SA contains a rectangle.

To see that

N�

i=1

�
ai

2

�
>

�
N

2

�
, recall that the Cauchy-Schwarz inequality gives

�
N�

i=1

ai

�2

≤
N�

i=1

a2
i

N�

i=1

1
2. (2)

Since

N�

i=1

ai = (n + 1)N + 1 by assumption, the bound in (2) gives

(n + 1)
2N + 2(n + 1) +

1

N
≤

�

i=1

a2
i . (3)

Since

N�

i=1

a2
i =

N�

i=1

ai(ai − 1) +

N�

i=1

ai = 2

N�

i=1

�
ai

2

�
+ (n + 1)N + 1, inequality (3)

gives

N
�
(n + 1)

2 − (n + 1)
�

+ 2(n + 1) +
1

N
− 1 ≤ 2

N�

i=1

�
ai

2

�
. (4)

Since (n+1)2− (n+1) = n2 +n+1−1 = N −1, inequality (4) can be rewritten as

N(N − 1)

2
+ n +

1

N
+

1

2
≤

N�

i=1

�
ai

2

�
, (5)

and since n > 0, the left hand side of (5) is bound from below by

�
N

2

�
, as desired.

It is interesting to note that we have equality in (2) just in case all of the ai are

equal; that is, each row and column contain the same number of 1s.

2. Main Results

Our main lemma is below, a useful proposition for dealing with asymptotic behavior

of functions when some explicit values of the functions are known. A version of this

lemma is used in [12], but it is neither proved nor explicitly stated.

Lemma 2. Suppose g and h are monotonically increasing functions. If an is a
strictly increasing sequence of positive integers such that
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(i) lim
n→∞

an+1

an
= 1;

(ii) lim
n→∞

h (an+1)

h (an)
= 1; and

(iii) g(an) = h(an) for all n,

all hold, then g ∼ h.

Theorem 3 recovers the asymptotic result of Kövari, Sós, and Turán. Theorem 4

strengthens another of their results. The proofs exploit the connection to projective

planes, cleaning up the arguments found in [12]. Theorem 5 is an explicit lower

bound for f(k), which holds for all k.

Theorem 3. f(k) ∼ k3/2.

Theorem 4. Let n be a positive integer. If there is a projective plane of order n,
then f(n2, n2 + n) = n2 (n + 1) + 1.

Theorem 5. If k ∈ Z with k ≥ 3, then f(k) ≥ 1

16

�
(k + 4)

√
4k − 3 + 5k + 22

�
.

3. Proof of Lemma 2

Now we prove Lemma 2.

Proof. Let g and h be monotonically increasing functions. Suppose an is a strictly

increasing sequence of positive integers such that lim
n→∞

h (an+1)

h (an)
= 1 and that

g (an) = h (an) for all n. Let ε > 0. Choose N so that

����
h(an+1)

h(an)
− 1

���� < ε and

����
h(an)

h(an+1)
− 1

���� < ε (6)

whenever n > N . Next, choose m large enough so that for some n > N , we have

an ≤ m ≤ an+1. Since g is increasing and g and h agree on the sequence an, we

have

h(an) = g(an) ≤ g(m) ≤ g(an+1) = h(an+1). (7)

Since h is monotone increasing, h(an) ≤ h(m) ≤ h(an+1), so we may transform (7)

into
h(an)

h(an+1)
≤ g(m)

h(m)
≤ h(an+1)

h(an)
. (8)

Subtracting 1 from every term in (8) and taking absolute values gives that either

����
g(m)

h(m)
− 1

���� ≤
����
h(an+1)

h(an)
− 1

���� or

����
g(m)

h(m)
− 1

���� ≤
����

h(an)

h(an+1)
− 1

���� .
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Without loss of generality, say

����
g(m)

h(m)
− 1

���� ≤
����
h(an+1)

h(an)
− 1

����. By (6), we have

����
g(m)

h(m)
− 1

���� < ε,

so
g

h
→ 1 and g ∼ h, as desired.

4. Proof of Theorem 3

Now we prove Theorem 3.

Proof. For a positive integer k, set

h(k) =

��
k − 3

4
+

1

2

�
k + 1.

Notice that h(k) ∼ k3/2 and that h(n2 + n + 1) = (n + 1)(n2 + n + 1) + 1, so by

Lemma 1, we have f(n2 + n + 1) = h(n2 + n + 1) whenever there is a projective

plane of order n. Since there a projective plane of order p for every prime p, we have

that f and h agree on an infinite sequence of integers an for which
an+1

an
→ 1 (see

[18, 9]). Notice that
h (an+1)

h (an)
→ 1, so we may apply Lemma 2 to achieve f ∼ h,

and thus f ∼ k3/2, as desired.

5. Proof of Theorem 4

Proof. Let n be a positive integer such that there is a projective plane of order n.

Set N = n2 +n+1. As in the proof of Lemma 1, we can construct an N×N matrix

A such that tr
�
AT A

�
= (n+1)N and that AT A has only 1s off the main diagonal;

hence, the corresponding subset SA of the N ×N grid has no rectangle.

To construct an n2×
�
n2 + n

�
matrix B from A, we delete the first column of A

along with all rows having a 1 in the first column. Since each row and column of A
contains exactly n + 1 nonzero entries, we have deleted n + 1 rows and 1 column.

The resulting matrix B is thus an n2 ×
�
n2 + n

�
matrix. Since AT A has no entries

off the main diagonal greater than 1, BT B has no entries off the main diagonal

greater than 1. Since we have deleted (n + 1)
2

nonzero entries from A, we have

that

|SB| = (n + 1)N − (n + 1)
2

= (n + 1)
�
n2

+ n + 1
�
− (n + 1)

2
= n2

(n + 1),
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so f
�
n2, n2 + n

�
≥ n2 (n + 1) + 1.

Using the inequality from Reiman (1),

f
�
n2, n2

+ n
�
≤ n2

(n + 1) + 1,

and hence f
�
n2, n2 + n

�
= n2 (n + 1) + 1, as desired.

The structure obtained by taking a projective plane and deleting a line together

with all of the points on that line is called an affine plane. Our result is stronger

than that of the authors in [12], since we need only that there is a projective plane

of order n, not that n is a prime number.

6. Proof of Theorem 5

Proof. Suppose k is an integer with k ≥ 3. There exists a nonnegative integer α
such that

2
2α

+ 2
α

+ 1 ≤ k ≤ 2
2α+2

+ 2
α+1

+ 1. (9)

By focusing on the upper bound from (9), this gives k ≤
�
2α+1 + 1/2

�2
+ 3/4, or

�
k − 3/4− 1/2

2
≤ 2

α. (10)

Let g(n) = (n + 1)(n2 + n + 1) + 1, and let h(k) =

�
k − 3/4− 1/2

2
. Since g is an

increasing function, inequality (10) gives

g (h(k)) ≤ g (2
α
) . (11)

By Lemma 1, we have g(n) = f(n2 +n+1) whenever there exists a projective plane

of order n. Since there is a projective plane of any prime power order, (11) gives

g (h(k)) ≤ f
�
2
2α

+ 2
α

+ 1
�
. (12)

But since f is increasing, the lower bound in (9) gives g (h(k)) ≤ f(k), and since

g (h(k)) =
1

16

�
(k + 4)

√
4k − 3 + 5k + 22

�
, we have the desired result.

We also note that while g (h(k)) ∼ 1

8
k3/2, which is worse than the result in

Theorem 3, this lower bound holds for every choice of k, and not just those k for

which there exists a projective plane of order k.
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7. Further Research

Trying to find the exact value of f(m,n) without conditions on m and n (that

is, removing the extra hypotheses from the results in [12]) would be attractive,

although this problem has been open for years, and likely requires a new idea.

The next attractive direction is to take the approach of the authors in [10], and

consider colorings of rectangular grids.

Recall that OBSc is the collection of [m]× [n] grids which cannot be colored in

c colors without a monochromatic rectangle, but every proper subgrid can be. An

open problem from [10] is the rectangle-free conjecture: if there exists a rectangle-

free subset of [m]× [n] of size �mn/c�, then it is possible to color [m]× [n] in c colors

so there is no monochromatic rectangle. Since the authors in [10] have theorems

which depend on the rectangle-free conjecture, resolving this conjecture either in

the affirmative or the negative would result in progress for obtaining |OBSc| or even

OBSc.
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