A NEW APPROACH TO THE RESULTS OF KÖVARI, SÓS, AND TURÁN CONCERNING RECTANGLE-FREE SUBSETS OF THE GRID

Jeremy F. Alm
Department of Mathematics, Illinois College, Jacksonville, Illinois
alm.academic@gmail.com
Jacob Manske ${ }^{1}$
Department of Mathematics, Texas State University, San Marcos, Texas
jmanske@txstate.edu

Received: 6/5/12, Accepted: 11/12/12, Published: 11/16/12

Abstract

For positive integers m and n, define $f(m, n)$ to be the smallest integer such that any subset A of the $m \times n$ integer grid with $|A| \geq f(m, n)$ contains a rectangle; that is, there are $x \in[m]$ and $y \in[n]$ and $d_{1}, d_{2} \in \mathbb{Z}^{+}$such that all four points $(x, y),\left(x+d_{1}, y\right),\left(x, y+d_{2}\right)$, and $\left(x+d_{1}, y+d_{2}\right)$ are contained in A. In 1954, Kövari, Sós, and Turán showed that $\lim _{k \rightarrow \infty} \frac{f(k, k)}{k^{3 / 2}}=1$. They also showed that $f\left(p^{2}, p^{2}+p\right)=p^{2}(p+1)+1$ whenever p is a prime number. We recover their asymptotic result and strengthen the second, providing cleaner proofs which exploit a connection to projective planes, first noticed by Mendelsohn. We also provide an explicit lower bound for $f(k, k)$ which holds for all k.

1. Introduction and Motivation

For a positive integer n, let $[n]=\{1,2, \ldots, n\}$. For $m, n \in \mathbb{Z}^{+}$, define $f(m, n)$ to be the least integer such that if $A \subseteq[m] \times[n]$ with $|A| \geq f(m, n)$, then A contains a rectangle; that is, there is $x \in[m], y \in[n]$, and $d_{1}, d_{2} \in \mathbb{Z}^{+}$such that all four points $(x, y),\left(x+d_{1}, y\right),\left(x, y+d_{2}\right)$, and $\left(x+d_{1}, y+d_{2}\right)$ are contained in A. For ease in notation, let $f(k)=f(k, k)$. For $c \in \mathbb{Z}^{+}$, a c-coloring of a set S is a surjective map $\chi: S \rightarrow[c]$. If χ is constant on a set $A \subset S$, we say that A is monochromatic.

We will write $g(k) \sim h(k)$ to mean that functions g and h are asymptotically equal; that is, $\lim _{k \rightarrow \infty} \frac{g(k)}{h(k)}=1$. Also, notice that $f(m, n)=f(n, m)$ for any choice of

[^0]n and m.
The problem of finding bounds or exact values of $f(m, n)$ finds its roots in the famous theorem of van der Waerden from [21], which states that given any positive integers c and d, there exists an integer N such that any c-coloring of $[N]$ contains a monochromatic arithmetic progression of length d. Szemerédi proved a density version of this theorem in [20], using the now well-known Regularity Lemma. Progress in this area is still being made. For instance, in [3], Axenovich and the second author try to find the smallest k so that in any 2-coloring of $[k] \times[k]$ there is a monochromatic square; i.e., a rectangle with $d_{1}=d_{2}$. While the upper bounds are enormous, they proved $k \geq 13$; in [4], Bacher and Eliahou show that $k=15$. In [10], the authors are interested in finding OBS_{c}, which is the collection of $[m] \times[n]$ grids which cannot be colored in c colors without a monochromatic rectangle, but every proper subgrid can be; see also [7]. For a more complete survey on van der Waerden type problems, see [11].

Zarankiewicz introduced the problem of finding $f(m, n)$ in [22] using the language of minors of $(0,1)$-matrices. In [12], Kövari, Sós, and Turán show that $f(k) \sim k^{3 / 2}$ and that whenever p is a prime number, we have $f\left(p^{2}+p, p^{2}\right)=p^{2}(p+1)+1$. In this manuscript, we will recover this asymptotic result and strengthen the second result.

In [17], Reiman achieved the bound of

$$
\begin{equation*}
f(m, n) \leq \frac{1}{2}\left(m+\sqrt{m^{2}+4 m n(n-1)}\right)+1 \tag{1}
\end{equation*}
$$

Notice that by setting $m=p^{2}+p$ and $n=p^{2}$, the right hand side of (1) becomes $p^{2}(p+1)+1$, so the result of Kövari, Sós, and Turán implies that the inequality is sharp. Reiman showed equality in (1) in the case that $m=n=q^{2}+q+1$, provided q is a prime power. In [14], Mendelsohn recovers and strengthens the equality result of Reiman by noticing the connection of the Zarankiewicz problem to projective planes.

A $k \times k(0,1)$-matrix A corresponds to a subset $S_{A} \subset[k] \times[k]$ by
$(i, j) \in S$ if and only if the (i, j) entry of A is 1.
Notice that the set S_{A} contains a rectangle if and only if the matrix $A^{T} A$ has an entry off the main diagonal which is not equal to 0 or 1 . Also notice that $\operatorname{tr}\left(A^{T} A\right)=\left|S_{A}\right|$.

Such (0,1)-matrices arise in the study of projective planes. A projective plane of order n is an incidence structure consisting of $n^{2}+n+1$ points and $n^{2}+n+1$ lines such that
(i) any two distinct points lie on exactly one line;
(ii) any two distinct lines intersect in exactly one point;
(iii) each line contains exactly $n+1$ points; and
(iv) there is a set of 4 points such that no 3 of these points lie on the same line.

It is not known for which positive integers n there exists a projective plane of order n; projective planes have been constructed for all prime-power orders, but for no others. In the well-known paper [5], Bruck and Ryser show that if the square-free part of n is divisible by a prime of the form $4 k+3$, and if n is congruent to 1 or 2 modulo 4 , then there is no projective plane of order n; see also [6]. More recently, the authors in [8] draw a connection between the existence of projective planes of order greater than or equal to 157 and the number of cycles in $n \times n$ bipartite graphs of girth at least 6 . In 1989, a computer search conducted by the authors in [13] showed that there is no projective plane of order 10. The smallest order for which it is still not known whether there is a projective plane is 12 , although the results in $[15,19,16,1,2]$ suggest that there is no such structure.

Next we state a lemma which appears in [14] connecting projective planes to the Zarankiewicz problem.

Lemma 1. If n is a positive integer such that there exists a projective plane of order n, then $f\left(n^{2}+n+1\right)=(n+1)\left(n^{2}+n+1\right)+1$.

We will include a proof of Lemma 1 both for completeness and since we will reference the lower bound construction in the proof of Theorem 4.

Proof of Lemma 1. Let n be a positive integer such that there is a projective plane of that order. For ease in notation, set $N=n^{2}+n+1$. First we will show that $f(N) \geq(n+1) N+1$.

We begin by constructing a $N \times N(0,1)$-matrix A. There exists a projective plane P of order n; so let A be the $N \times N$ matrix whose rows correspond to the points of P and whose columns correspond to the lines of P where the (i, j) entry of A is equal to 1 if and only if the point indexed by i lies on the line indexed by j. Since any two distinct lines have exactly one point in common, the scalar product of any two distinct columns must be 1 ; hence, S_{A} does not contain a rectangle. Since each line contains exactly $(n+1)$ points, $\left|S_{A}\right|=\operatorname{tr}\left(A^{T} A\right)=(n+1) N$, so $f(N) \geq(n+1) N+1$.

Now, suppose A is any $N \times N(0,1)$-matrix with $(n+1) N+1$ nonzero entries, and let a_{i} denote the number of 1 s in row i. The number of pairs of 1 s in row i is $\binom{a_{i}}{2}$, so the total number of pairs of 1 s from each row is $\sum_{i=1}^{N}\binom{a_{i}}{2}$. The number of pairs of distinct column indices is $\binom{N}{2}$. If $\sum_{i=1}^{N}\binom{a_{i}}{2}>\binom{N}{2}$, the pigeonhole principle
implies that there is a pair of column indices such that there are two distinct rows which have 1s in both of those columns; i.e., S_{A} contains a rectangle.

To see that $\sum_{i=1}^{N}\binom{a_{i}}{2}>\binom{N}{2}$, recall that the Cauchy-Schwarz inequality gives

$$
\begin{equation*}
\left(\sum_{i=1}^{N} a_{i}\right)^{2} \leq \sum_{i=1}^{N} a_{i}^{2} \sum_{i=1}^{N} 1^{2} \tag{2}
\end{equation*}
$$

Since $\sum_{i=1}^{N} a_{i}=(n+1) N+1$ by assumption, the bound in (2) gives

$$
\begin{equation*}
(n+1)^{2} N+2(n+1)+\frac{1}{N} \leq \sum_{i=1} a_{i}^{2} \tag{3}
\end{equation*}
$$

Since $\sum_{i=1}^{N} a_{i}^{2}=\sum_{i=1}^{N} a_{i}\left(a_{i}-1\right)+\sum_{i=1}^{N} a_{i}=2 \sum_{i=1}^{N}\binom{a_{i}}{2}+(n+1) N+1$, inequality gives

$$
\begin{equation*}
N\left((n+1)^{2}-(n+1)\right)+2(n+1)+\frac{1}{N}-1 \leq 2 \sum_{i=1}^{N}\binom{a_{i}}{2} \tag{4}
\end{equation*}
$$

Since $(n+1)^{2}-(n+1)=n^{2}+n+1-1=N-1$, inequality (4) can be rewritten as

$$
\begin{equation*}
\frac{N(N-1)}{2}+n+\frac{1}{N}+\frac{1}{2} \leq \sum_{i=1}^{N}\binom{a_{i}}{2} \tag{5}
\end{equation*}
$$

and since $n>0$, the left hand side of (5) is bound from below by $\binom{N}{2}$, as desired.

It is interesting to note that we have equality in (2) just in case all of the a_{i} are equal; that is, each row and column contain the same number of 1 s .

2. Main Results

Our main lemma is below, a useful proposition for dealing with asymptotic behavior of functions when some explicit values of the functions are known. A version of this lemma is used in [12], but it is neither proved nor explicitly stated.

Lemma 2. Suppose g and h are monotonically increasing functions. If a_{n} is a strictly increasing sequence of positive integers such that
(i) $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$;
(ii) $\lim _{n \rightarrow \infty} \frac{h\left(a_{n+1}\right)}{h\left(a_{n}\right)}=1$; and
(iii) $g\left(a_{n}\right)=h\left(a_{n}\right)$ for all n, all hold, then $g \sim h$.

Theorem 3 recovers the asymptotic result of Kövari, Sós, and Turán. Theorem 4 strengthens another of their results. The proofs exploit the connection to projective planes, cleaning up the arguments found in [12]. Theorem 5 is an explicit lower bound for $f(k)$, which holds for all k.
Theorem 3. $f(k) \sim k^{3 / 2}$.
Theorem 4. Let n be a positive integer. If there is a projective plane of order n, then $f\left(n^{2}, n^{2}+n\right)=n^{2}(n+1)+1$.
Theorem 5. If $k \in \mathbb{Z}$ with $k \geq 3$, then $f(k) \geq \frac{1}{16}((k+4) \sqrt{4 k-3}+5 k+22)$.

3. Proof of Lemma 2

Now we prove Lemma 2.
Proof. Let g and h be monotonically increasing functions. Suppose a_{n} is a strictly increasing sequence of positive integers such that $\lim _{n \rightarrow \infty} \frac{h\left(a_{n+1}\right)}{h\left(a_{n}\right)}=1$ and that $g\left(a_{n}\right)=h\left(a_{n}\right)$ for all n. Let $\varepsilon>0$. Choose N so that

$$
\begin{equation*}
\left|\frac{h\left(a_{n+1}\right)}{h\left(a_{n}\right)}-1\right|<\varepsilon \text { and }\left|\frac{h\left(a_{n}\right)}{h\left(a_{n+1}\right)}-1\right|<\varepsilon \tag{6}
\end{equation*}
$$

whenever $n>N$. Next, choose m large enough so that for some $n>N$, we have $a_{n} \leq m \leq a_{n+1}$. Since g is increasing and g and h agree on the sequence a_{n}, we have

$$
\begin{equation*}
h\left(a_{n}\right)=g\left(a_{n}\right) \leq g(m) \leq g\left(a_{n+1}\right)=h\left(a_{n+1}\right) \tag{7}
\end{equation*}
$$

Since h is monotone increasing, $h\left(a_{n}\right) \leq h(m) \leq h\left(a_{n+1}\right)$, so we may transform (7) into

$$
\begin{equation*}
\frac{h\left(a_{n}\right)}{h\left(a_{n+1}\right)} \leq \frac{g(m)}{h(m)} \leq \frac{h\left(a_{n+1}\right)}{h\left(a_{n}\right)} \tag{8}
\end{equation*}
$$

Subtracting 1 from every term in (8) and taking absolute values gives that either

$$
\left|\frac{g(m)}{h(m)}-1\right| \leq\left|\frac{h\left(a_{n+1}\right)}{h\left(a_{n}\right)}-1\right| \quad \text { or }\left|\frac{g(m)}{h(m)}-1\right| \leq\left|\frac{h\left(a_{n}\right)}{h\left(a_{n+1}\right)}-1\right| .
$$

Without loss of generality, say $\left|\frac{g(m)}{h(m)}-1\right| \leq\left|\frac{h\left(a_{n+1}\right)}{h\left(a_{n}\right)}-1\right|$. By (6), we have

$$
\left|\frac{g(m)}{h(m)}-1\right|<\varepsilon
$$

so $\frac{g}{h} \rightarrow 1$ and $g \sim h$, as desired.

4. Proof of Theorem 3

Now we prove Theorem 3.
Proof. For a positive integer k, set

$$
h(k)=\left(\sqrt{k-\frac{3}{4}}+\frac{1}{2}\right) k+1
$$

Notice that $h(k) \sim k^{3 / 2}$ and that $h\left(n^{2}+n+1\right)=(n+1)\left(n^{2}+n+1\right)+1$, so by Lemma 1, we have $f\left(n^{2}+n+1\right)=h\left(n^{2}+n+1\right)$ whenever there is a projective plane of order n. Since there a projective plane of order p for every prime p, we have that f and h agree on an infinite sequence of integers a_{n} for which $\frac{a_{n+1}}{a_{n}} \rightarrow 1$ (see $[18,9])$. Notice that $\frac{h\left(a_{n+1}\right)}{h\left(a_{n}\right)} \rightarrow 1$, so we may apply Lemma 2 to achieve $f \sim h$, and thus $f \sim k^{3 / 2}$, as desired.

5. Proof of Theorem 4

Proof. Let n be a positive integer such that there is a projective plane of order n. Set $N=n^{2}+n+1$. As in the proof of Lemma 1, we can construct an $N \times N$ matrix A such that $\operatorname{tr}\left(A^{T} A\right)=(n+1) N$ and that $A^{T} A$ has only 1 s off the main diagonal; hence, the corresponding subset S_{A} of the $N \times N$ grid has no rectangle.

To construct an $n^{2} \times\left(n^{2}+n\right)$ matrix B from A, we delete the first column of A along with all rows having a 1 in the first column. Since each row and column of A contains exactly $n+1$ nonzero entries, we have deleted $n+1$ rows and 1 column. The resulting matrix B is thus an $n^{2} \times\left(n^{2}+n\right)$ matrix. Since $A^{T} A$ has no entries off the main diagonal greater than $1, B^{T} B$ has no entries off the main diagonal greater than 1 . Since we have deleted $(n+1)^{2}$ nonzero entries from A, we have that

$$
\left|S_{B}\right|=(n+1) N-(n+1)^{2}=(n+1)\left(n^{2}+n+1\right)-(n+1)^{2}=n^{2}(n+1)
$$

so $f\left(n^{2}, n^{2}+n\right) \geq n^{2}(n+1)+1$.
Using the inequality from Reiman (1),

$$
f\left(n^{2}, n^{2}+n\right) \leq n^{2}(n+1)+1
$$

and hence $f\left(n^{2}, n^{2}+n\right)=n^{2}(n+1)+1$, as desired.
The structure obtained by taking a projective plane and deleting a line together with all of the points on that line is called an affine plane. Our result is stronger than that of the authors in [12], since we need only that there is a projective plane of order n, not that n is a prime number.

6. Proof of Theorem 5

Proof. Suppose k is an integer with $k \geq 3$. There exists a nonnegative integer α such that

$$
\begin{equation*}
2^{2 \alpha}+2^{\alpha}+1 \leq k \leq 2^{2 \alpha+2}+2^{\alpha+1}+1 \tag{9}
\end{equation*}
$$

By focusing on the upper bound from (9), this gives $k \leq\left(2^{\alpha+1}+1 / 2\right)^{2}+3 / 4$, or

$$
\begin{equation*}
\frac{\sqrt{k-3 / 4}-1 / 2}{2} \leq 2^{\alpha} . \tag{10}
\end{equation*}
$$

Let $g(n)=(n+1)\left(n^{2}+n+1\right)+1$, and let $h(k)=\frac{\sqrt{k-3 / 4}-1 / 2}{2}$. Since g is an increasing function, inequality (10) gives

$$
\begin{equation*}
g(h(k)) \leq g\left(2^{\alpha}\right) \tag{11}
\end{equation*}
$$

By Lemma 1, we have $g(n)=f\left(n^{2}+n+1\right)$ whenever there exists a projective plane of order n. Since there is a projective plane of any prime power order, (11) gives

$$
\begin{equation*}
g(h(k)) \leq f\left(2^{2 \alpha}+2^{\alpha}+1\right) . \tag{12}
\end{equation*}
$$

But since f is increasing, the lower bound in (9) gives $g(h(k)) \leq f(k)$, and since $g(h(k))=\frac{1}{16}((k+4) \sqrt{4 k-3}+5 k+22)$, we have the desired result.

We also note that while $g(h(k)) \sim \frac{1}{8} k^{3 / 2}$, which is worse than the result in Theorem 3, this lower bound holds for every choice of k, and not just those k for which there exists a projective plane of order k.

7. Further Research

Trying to find the exact value of $f(m, n)$ without conditions on m and n (that is, removing the extra hypotheses from the results in [12]) would be attractive, although this problem has been open for years, and likely requires a new idea.

The next attractive direction is to take the approach of the authors in [10], and consider colorings of rectangular grids.

Recall that OBS_{c} is the collection of $[m] \times[n]$ grids which cannot be colored in c colors without a monochromatic rectangle, but every proper subgrid can be. An open problem from [10] is the rectangle-free conjecture: if there exists a rectanglefree subset of $[m] \times[n]$ of size $\lceil m n / c\rceil$, then it is possible to color $[m] \times[n]$ in c colors so there is no monochromatic rectangle. Since the authors in [10] have theorems which depend on the rectangle-free conjecture, resolving this conjecture either in the affirmative or the negative would result in progress for obtaining $\left|\mathrm{OBS}_{c}\right|$ or even OBS_{c}.

Acknowledgments. The authors wish to thank Jim Marshall for carefully reading a draft of this manuscript. The authors also thank the anonymous referees for their helpful comments made toward improving the paper.

References

[1] K. Akiyama and C. Suetake. The nonexistence of projective planes of order 12 with a collineation group of order 8. J. Combin. Des., 16(5):411-430, 2008.
[2] K. Akiyama and C. Suetake. On projective planes of order 12 with a collineation group of order 9. Australas. J. Combin., 43:133-162, 2009.
[3] M. Axenovich and J. Manske. On monochromatic subsets of a rectangular grid. Integers, 8:A21, 14pp., 2008.
[4] R. Bacher and S. Eliahou. Extremal binary matrices without constant 2-squares. J. Comb., 1(1, [ISSN 1097-959X on cover]):77-100, 2010.
[5] R. H. Bruck and H. J. Ryser. The nonexistence of certain finite projective planes. Canadian J. Math., 1:88-93, 1949.
[6] S. Chowla and H. J. Ryser. Combinatorial problems. Canadian J. Math., 2:93-99, 1950.
[7] J. Cooper, S. Fenner, and S. Purewal. Monochromatic boxes in colored grids. SIAM J. Discrete Math., 25(3):1054-1068, 2011.
[8] S. De Winter, F. Lazebnik, and J. Verstraëte. An extremal characterization of projective planes. Electron. J. Combin., 15(1):Research Paper 143, 13, 2008.
[9] P. Erdös. On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Nat. Acad. Sci. U. S. A., 35:374-384, 1949.
[10] S. Fenner, W Gasarch, C. Glover, and S. Purewal. Rectangle free coloring of grids. arXiv:1005.3750 [math.CO], 2010.
[11] R. L. Graham, B. L. Rothschild, and J. H. Spencer. Ramsey theory. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley \& Sons Inc., New York, second edition, 1990. A Wiley-Interscience Publication.
[12] T. Kövari, V. T. Sós, and P. Turán. On a problem of K. Zarankiewicz. Colloquium Math., 3:50-57, 1954.
[13] C. W. H. Lam, L. Thiel, and S. Swiercz. The nonexistence of finite projective planes of order 10. Canad. J. Math., 41(6):1117-1123, 1989.
[14] N. S. Mendelsohn. Packing a square lattice with a rectangle-free set of points. Math. Mag., 60(4):229-233, 1987.
[15] A. R. Prince. Projective planes of order 12 and PG(3, 3). Discrete Math., 208/209:477-483, 1999. Combinatorics (Assisi, 1996).
[16] A. R. Prince. Ovals in finite projective planes via the representation theory of the symmetric group. In Finite groups 2003, pages 283-290. Walter de Gruyter GmbH \& Co. KG, Berlin, 2004.
[17] I. Reiman. Über ein Problem von K. Zarankiewicz. Acta. Math. Acad. Sci. Hungar., 9:269273, 1958.
[18] A. Selberg. An elementary proof of the prime-number theorem. Ann. of Math. (2), 50:305$313,1949$.
[19] C. Suetake. The nonexistence of projective planes of order 12 with a collineation group of order 16. J. Combin. Theory Ser. A, 107(1):21-48, 2004.
[20] E. Szemerédi. On sets of integers containing no k elements in arithmetic progression. Acta Arith., 27:199-245, 1975. Collection of articles in memory of Juriĭ Vladimirovič Linnik.
[21] B.L. van der Waerden. Beweis einer Baudetchen Vermutung. Nieuw Arch. Wiskunde, 15:212216, 1927.
[22] K. Zarankiewicz. Problem P101. Colloq. Math., 3:19-30, 1954.

[^0]: ${ }^{1}$ Corresponding author.

