TRIANGULAR NUMBERS IN THE JACOBSTHAL FAMILY

Thomas Koshy

Dept. of Mathematics, Framingham State University, Framingham, Massachusetts

Zhenguang Gao

Dept. of Computer Science, Framingham State University, Framingham, Massachusetts

Received: 6/8/12, Accepted: 11/25/12, Published: 11/30/12

Abstract

Using congruences, second-order diophantine equations, and linear algebra, we identify Jacobsthal and Jacobsthal-Lucas numbers that are also triangular numbers.

1. Introduction

Like the well-known Fibonacci and Lucas numbers [4], Jacobsthal numbers J_{n} and Jacobsthal-Lucas numbers j_{n} provide gratifying opportunities for both experimentation and exploration. They satisfy the same Jacobsthal recurrence and are often defined recursively [3, 8]:

$$
\begin{array}{ll}
J_{1}=1, J_{2}=1 & j_{1}=1, j_{2}=5 \\
J_{n}=J_{n-1}+2 J_{n-2}, n \geq 3 ; & j_{n}=j_{n-1}+2 j_{n-2}, n \geq 3
\end{array}
$$

The two definitions differ only in the second initial conditions, as in the case of Fibonacci and Lucas numbers.

Table 1 gives the first twelve members of each family, and the first twelve triangular numbers $t_{n}=\frac{n(n+1)}{2}$.

n	1	2	3	4	5	6	7	8	9	10	11	12
J_{n}	1	1	$\boxed{3}$	5	11	21	43	85	171	341	683	1365
j_{n}	1	5	7	17	31	65	127	257	511	1025	2047	4097
t_{n}	1	3	6	10	15	21	28	36	45	55	66	78

Table 1
It follows from the above recursive definitions that J_{n} and j_{n} satisfy the Binetlike formulas $J_{n}=\frac{2^{n}-(-1)^{n}}{3}$ and $j_{n}=2^{n}+(-1)^{n}$, respectively [3, 8]. When n is even, $J_{n}=\frac{M_{n}}{3}$, where M_{n} denotes the nth Mersenne number $2^{n}-1$ and $n \geq 1$; and when n is odd, $j_{n}=M_{n}[5]$.

2. Quadratic Diophantine Equation $u^{2}-N v^{2}=C$

Our goal is to identify all Jacobsthal and Jacobsthal-Lucas numbers that are also triangular. This task hinges on solving the quadratic diophantine equation (QDE) $u^{2}-N v^{2}=C$, where N is a nonsquare positive integer and C a positive integer. The solutions of the QDE are closely related to those of Pell's equation $u^{2}-N v^{2}=1$. So we will first give a very brief introduction to solving the QDE [2, 6, 7]. In the interest of brevity, we will confine our discussion to solutions (u, v) with $u>0$.

Let (α, β) be the fundamental solution of Pell's equation $u^{2}-N v^{2}=1$, and $\left(u_{0}, v_{0}\right)$ a solution of the QDE. Let $u_{m}+v_{m} \sqrt{N}=\left(u_{0}+v_{0} \sqrt{N}\right)(\alpha+\beta \sqrt{N})^{m}$, where m is a positive integer. Then $\left(u_{m}, v_{m}\right)$ is a solution of the QDE. We then say that the solution $\left(u_{m}, v_{m}\right)$ is associated with the solution $\left(u_{0}, v_{0}\right)$. Such solutions belong to a class of solutions of the QDE. Suppose $\left(u_{0}, v_{0}\right)$ has the property that it has the least possible positive value of u among the solutions in the class; then $\left(u_{0}, v_{0}\right)$ is the fundamental solution of the class.

The QDE can have different classes of solutions. Although each class is infinite, the number of distinct classes is finite. Two solutions (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ belong to the same class if and only if $u u^{\prime} \equiv N v v^{\prime}(\bmod C)$ and $u v^{\prime} \equiv u^{\prime} v(\bmod C)[6]$.

The following theorem provides a mechanism for finding the solutions of the QDE, when it is solvable.

Theorem. Let (α, β) be the fundamental solution of Pell's equation $u^{2}-N v^{2}=1$, $\left(u_{0}, v_{0}\right)$ a fundamental solution of the $\mathrm{QDE} u^{2}-N v^{2}=C$, and m a positive integer. Then:
i) $0<u_{0} \leq \sqrt{\frac{(\alpha+1) C}{2}} \quad$ and $\quad 0<\left|v_{0}\right| \leq \beta \sqrt{\frac{C}{2(\alpha+1)}}$.
(These two inequalities provide computable upper bounds for u_{0} and v_{0}. The number of solutions $\left(u_{0}, v_{0}\right)$ resulting from these inequalities determines the number of different classes of solutions.)
ii) Every solution $\left(u_{m}, v_{m}\right)$ belonging to the class of $\left(u_{0}, v_{0}\right)$ is given by

$$
\begin{equation*}
u_{m}+v_{m} \sqrt{N}=\left(u_{0}+v_{0} \sqrt{N}\right)(\alpha+\beta \sqrt{N})^{m} \tag{1}
\end{equation*}
$$

iii) The QDE is not solvable if it has no solution satisfying the inequalities in (i).

3. Recurrence for $\left(u_{m}, v_{m}\right)$

Equation (1) can be employed to derive a recurrence for $\left(u_{m}, v_{m}\right)$:

$$
\begin{aligned}
u_{m+1}+v_{m+1} \sqrt{N} & =\left(u_{0}+v_{0} \sqrt{N}\right)(\alpha+\beta \sqrt{N})^{m+1} \\
& =\left(u_{m}+v_{m} \sqrt{N}\right)(\alpha+\beta \sqrt{N}) \\
& =\left(\alpha u_{m}+N \beta v_{m}\right)+\left(\beta u_{m}+\alpha v_{m}\right) \sqrt{N}
\end{aligned}
$$

Thus we have the following recurrence for $\left(u_{m}, v_{m}\right)$:

$$
\begin{align*}
u_{m+1} & =\alpha u_{m}+N \beta v_{m} \\
v_{m+1} & =\beta u_{m}+\alpha v_{m} \tag{2}
\end{align*}
$$

These recurrences can be used to develop a second-order recurrence for both u_{m} and v_{m}.

4. A Second-Order Recurrence for $\left(u_{m}, v_{m}\right)$

These recurrences can be combined into a matrix equation:

$$
\left[\begin{array}{l}
u_{m+1} \\
v_{m+1}
\end{array}\right]=M\left[\begin{array}{l}
u_{m} \\
v_{m}
\end{array}\right],
$$

where $M=\left[\begin{array}{cc}\alpha & N \beta \\ \beta & \alpha\end{array}\right]$.
By the well known Cayley-Hamilton Theorem [1], M satisfies its characteristic equation $|M-\lambda I|=0$, where I denotes the 2×2 identity matrix; that is, $\lambda^{2}-$ $2 \alpha \lambda+1=0$. So $M^{2}=2 \alpha M-I$.

Consequently, we have:

$$
\left[\begin{array}{l}
u_{m+2} \\
v_{m+2}
\end{array}\right]=M^{2}\left[\begin{array}{l}
u_{m} \\
v_{m}
\end{array}\right]=(2 \alpha M-I)\left[\begin{array}{l}
u_{m} \\
v_{m}
\end{array}\right]=2 \alpha\left[\begin{array}{l}
u_{m+1} \\
v_{m+1}
\end{array}\right]-\left[\begin{array}{l}
u_{m} \\
v_{m}
\end{array}\right]
$$

Thus both u_{m} and v_{m} satisfiy the recurrence

$$
\begin{equation*}
r_{m+2}=2 \alpha r_{m+1}-r_{m} \tag{3}
\end{equation*}
$$

where $m \geq 0$.
With these facts at our finger tips, we are now ready to identify all triangular Jacobsthal numbers.

5. Triangular Jacobsthal Numbers

Clearly, $J_{1}=t_{1} ; J_{2}=t_{1} ; J_{3}=t_{2}, J_{6}=t_{6}$, and $J_{9}=t_{18}$; see Table 1. So there are at least five triangular Jacobsthal numbers.

Next, we will show that there are no other triangular Jacobsthal numbers. To this end, we will employ the fact that $8 t_{k}+1=(2 k+1)^{2}$, discovered around 250 A.D. by Diophantus of Alexandria, Egypt. Consequently, J_{n} is a triangular number if and only if $8 J_{n}+1$ is the square of an odd integer [5].

Case 1. Suppose $J_{2 n}$ is a triangular number, where $n \geq 5$. Then $8 J_{2 n}+1=y^{2}$ for some odd positive integer y. This yields:

$$
\begin{align*}
8 \cdot \frac{2^{2 n}-1}{3}+1 & =y^{2} \\
2 w^{2}-3 y^{2}-5 & =0 \tag{4}\\
x^{2}-6 y^{2} & =10 \tag{5}
\end{align*}
$$

where $w=2^{n+1}$ and $x=2 w \geq 128$.
Using the theorem, we can solve the QDE (5). The fundamental solution of Pell's equation $x^{2}-6 y^{2}=1$ is $(\alpha, \beta)=(5,2)$; and $(\pm 4, \pm 1)$ are solutions of the QDE (5). Since $x>0$, we can safely ignore the solutions $(-4, \pm 1)$. This leaves just two fundamental solutions: $\left(x_{0}, y_{0}\right)=(4,1)$ and $\left(x_{0}^{\prime}, y_{0}^{\prime}\right)=(4,-1)$.

Since $x_{0} x_{0}^{\prime}-6 y_{0} y_{0}^{\prime}=4 \cdot 4-6 \cdot 1 \cdot(-1) \not \equiv 0(\bmod 10)$ and $x_{0} y_{0}^{\prime}-x_{0}^{\prime} y_{0}=$ $4 \cdot(-1)-4 \cdot 1 \not \equiv 0(\bmod 10)$, it follows that the solutions $(4,1)$ and $(4,-1)$ belong to two different classes of solutions of the QDE (5) [6]; each is the fundamental solution of the corresponding class.

Subcase 1.1. Consider the case $\left(x_{0}, y_{0}\right)=(4,1)$. Since $(\alpha, \beta)=(5,2)$ and $N=6$, it follows by equation (2) that every solution $\left(x_{m}, y_{m}\right)$ of (5) in the class of $(4,1)$ is given by:

$$
\begin{aligned}
x_{m+1} & =5 x_{m}+12 y_{m} \\
y_{m+1} & =2 x_{m}+5 y_{m}
\end{aligned}
$$

where $\left(x_{0}, y_{0}\right)=(4,1)$.
Consequently, $\left(x_{1}, y_{1}\right)=(32,13)$ and $\left(x_{2}, y_{2}\right)=(316,129)$ are solutions of QDE (5): $32^{2}-6 \cdot 13^{2}=10=316^{2}-6 \cdot 129^{2}$.

Since y_{0} and y_{1} are odd, and $(\alpha, \beta)=(5,2)$, it follows by induction that every y_{m} is odd. Since x_{0} is even and $x_{m+1} \equiv x_{m}(\bmod 2)$, it also follows that every x_{m} is even.

6. Recurrence for $\left(w_{m}, y_{m}\right)$

Since $x_{m}=2 w_{m}$, the above equations yield the following recurrences for w_{m} and y_{m} :

$$
\begin{aligned}
w_{m+1} & =5 w_{m}+6 y_{m} \\
y_{m+1} & =4 w_{m}+5 y_{m}
\end{aligned}
$$

where $\left(w_{0}, y_{0}\right)=(2,1)$ and $m \geq 0$.
Since $w_{m+1} \equiv w_{m}(\bmod 2)$ and w_{0} is even, it follows that every w_{m} is even; see Table 2.

With $\alpha=5$, recurrence (3), satisfied by both w_{m} and y_{m}, comes in handy when computing the solutions $\left(w_{m}, y_{m}\right)$ of (4), belonging to the class with the fundamental solution $(2,1)$. Table 2 shows the first ten such solutions. Since the y-values do not directly impact the problem at hand, we will ignore them.

m	0	1	2	3	4	5	6	7
w_{m}	2	16	158	1564	15482	153256	1517078	15017524
y_{m}	1	13	129	1277	12641	125133	1238689	12261757
m						9		
w_{m}						148658162	1471564096	
y_{m}							121378881	1201527053

Table 2
We will now show that no w_{m} can be a power of 2 . To see this, using the recurrence $w_{m+2}=10 w_{m+1}-w_{m}$, we now compute the values of $\left\{w_{m}(\bmod 31)\right\}_{m \geq 0}$ and $\left\{w_{m}(\bmod 32)\right\}_{m \geq 0}$. Both sequences are periodic with periods 32 and 16 , respectively; see Table 3 . But $2^{k}(\bmod 31)=1,2,4,8$, or 16 ; and $2^{k}(\bmod 32)=0$ for $k \geq 5$. It now follows from the table that no w_{m} satisfies both conditions satisfied by 2^{k}, where $k \geq 5$; that is, no w_{m} is congruent to 2^{k} modulo 31 and 32 , when $k \geq 5$.

m	0	1	2	3	4	5	6	7	8	9	10	11
$w_{m}(\bmod 31)$	2	16	3	14	13	23	0	8	18	17	28	15
$w_{m}(\bmod 32)$	2	16	30	28	26	8	22	20	18	0	14	12
m												
$w_{m}(\bmod 31)$	29	27	14	15	16	17	18	19	20	21	22	23
$w_{m}(\bmod 32)$	10	24	6	4	29	15	28	17	18	8	0	23
								28	26	8	22	20
m	24	25	26	27	28	29	30	31				
$w_{m}(\bmod 31)$	13	14	3	16	2	4	7	4				
$w_{m}(\bmod 32)$	18	0	14	12	10	24	6	4				

Table 3

Subcase 1.2. Suppose $\left(x_{0}^{\prime}, y_{0}^{\prime}\right)=(4,-1)$. This solution, coupled with $(\alpha, \beta)=$ $(5,2)$, can be used to generate a different family of solutions $\left(x_{m}, y_{m}\right)$ of (5) and hence $\left(w_{m}, y_{m}\right)$. In particular, it follows by recurrence (2) that $\left(x_{1}, y_{1}\right)=(8,3)$ and $\left(x_{2}, y_{2}\right)=(76,31)$ are also solutions of the $\operatorname{QDE}(5): 8^{2}-6 \cdot 3^{2}=10=76^{2}-6 \cdot 31$.

m	0	1	2	3	4	5	6	7
w_{m}	2	4	38	376	3722	36844	364718	3610336
y_{m}	-1	3	31	307	3039	30083	297791	2947827
m						8	9	
w_{m}							35738642	353776084
y_{m}							29180479	288856963

Table 4
Correspondingly, $w_{0}=2, w_{1}=4$, and $w_{2}=38$. As in Subcase 1.1, here also, w_{m} satisfies exactly the same recurrence. Table 4 shows the first ten solutions $\left(w_{m}, y_{m}\right)$. Again, we can safely ignore the y-values.

We will now show that no w_{m} can be a power of 2 . To see this, notice that the sequences $\left\{w_{m}(\bmod 31)\right\}_{m \geq 0}$ and $\left\{w_{m}(\bmod 32)\right\}_{m \geq 0}$ are both periodic with period 32 ; see Table 5 . It follows from the table that no w_{m} is congruent to 2^{k} modulo 31 and 32 for any integer $k \geq 5$.

m	0	1	2	3	4	5	6	7	8	9	10	11
$w_{m}(\bmod 31)$	2	4	7	4	2	16	3	14	13	23	0	8
$w_{m}(\bmod 32)$	1	2	19	28	5	22	23	16	9	10	27	4
m												
$w_{m}(\bmod 31)$	12	13	14	15	16	17	18	19	20	21	22	23
$w_{m}(\bmod 32)$	13	17	28	15	29	27	24	27	29	15	28	17
m	24	25	26	27	28	29	30	31				
$w_{m}(\bmod 31)$	18	8	0	23	13	14	3	16				
$w_{m}(\bmod 32)$	25	26	11	20	29	14	15	8				

Table 5
It follows by Subcases 1 and 2 that no w_{m} can be a power of 2 , when $m \geq 5$. Consequently, no $J_{2 n}$ is a triangular number when $m \geq 5$.

Case 2. Suppose $J_{2 n+1}$ is a triangular number, where $n \geq 5$. Then $8 J_{2 n+1}+1=y^{2}$ for some positive odd integer y. As before, this yields:

$$
\begin{align*}
x^{2}-3 y^{2}+11 & =0 \\
z^{2}-3 x^{2} & =33 \tag{6}
\end{align*}
$$

where $x=2^{n+2} \geq 128$, and $z=3 y$ is odd.
The fundamental solution of Pell's equation $z^{2}-3 x^{2}=1$ is $(\alpha, \beta)=(2,1)$. There are two fundamental solutions $\left(z_{0}, x_{0}\right)=(6,1)$ and $\left(z_{0}^{\prime}, x_{0}^{\prime}\right)=(6,-1)$ of the QDE (6) with the least positive value 6 for z. Since $z_{0} z_{0}^{\prime}-3 x_{0} x_{0}^{\prime}=6 \cdot 6-3 \cdot 1 \cdot(-1) \not \equiv 0$ $(\bmod 33)$ and $z_{0} x_{0}^{\prime}-z_{0}^{\prime} x_{0}=6 \cdot(-1)-1 \cdot 6 \not \equiv 0(\bmod 33)$, it follows that the solutions $(6,1)$ and $(6,-1)$ belong to two different classes of solutions of the QDE (6) [6]. Using the theorem, we can now find all solutions of (6).

Subcase 2.1. With the fundamental solution $\left(z_{0}, x_{0}\right)=(6,1)$, every solution $\left(z_{m}, x_{m}\right)$ in its class is given by the recurrence:

$$
\begin{aligned}
& z_{m+1}=2 z_{m}+3 x_{m} \\
& x_{m+1}=z_{m}+2 x_{m} .
\end{aligned}
$$

It now follows that $\left(z_{1}, x_{1}\right)=(15,8)$ is also a solution of (6). Table 6 shows the first ten solutions $\left(z_{m}, x_{m}\right)$ of (6), where $m \geq 0$.

m	0	1	2	3	4	5	6	7	8	9
z_{m}	6	15	54	201	750	2799	10446	38985	145494	542991
x_{m}	1	8	31	116	433	1616	6031	22508	84001	313496

Table 6

7. Recurrence for $\left(y_{m}, x_{m}\right)$

Since $z_{m}=3 y_{m}$, the above recurrences yield:

$$
\begin{aligned}
y_{m+1} & =2 y_{m}+x_{m} \\
x_{m+1} & =3 y_{m}+2 x_{m} .
\end{aligned}
$$

8. A Second-Order Recurrence for x_{m}

As before, it follows by (3) that x_{m} satisfies the recurrence

$$
\begin{equation*}
x_{m+2}=4 x_{m+1}-x_{m} \tag{7}
\end{equation*}
$$

where $m \geq 0$.
It follows from this recurrence that $x_{m+2} \equiv x_{m}(\bmod 2)$. Since x_{0} is odd and x_{1} is even, it follows by induction that $x_{m} \equiv m+1(\bmod 2)$; so x_{m} and $m+1$ have the same parity. Likewise, z_{m} is always even; see Table 6. Since $y_{m+2} \equiv y_{m}(\bmod 2)$, it follows that y_{m} and m have the same parity.

Using recurrence (7), we now compute $x_{m}(\bmod 7)$ and $x_{m}(\bmod 16)$; see Table 7 .

m	0	1	2	3	4	5	6	7	8	9	10	11	12
$x_{m}(\bmod 7)$	1	1	3	4	6	6	4	3	1	1	3	4	6
$x_{m}(\bmod 16)$	1	8	15	4	1	0	15	12	1	8	15	4	1
				1									
m	13	14	15										
$x_{m}(\bmod 7)$	6	4	3										
$x_{m}(\bmod 16)$	0	15	12										

Table 7
The sequence $\left\{x_{m}(\bmod 7)\right\}$ is periodic with period 8:

$$
\underbrace{11346643} \underbrace{11346643} \cdots \text {; }
$$

and so is the sequence $\left\{x_{m}(\bmod 16)\right\}: \underbrace{18154101512} \underbrace{18154101512} \cdots$. But $2^{k}(\bmod 7)=1,2$, or 4 ; and $2^{k}(\bmod 16)=0$ when $k \geq 5$. Consequently, no x_{m} satisfies both conditions when $k \geq 5$.
Subcase 2.2. Consider the solution $\left(z_{0}^{\prime}, x_{0}^{\prime}\right)=(6,-1)$. Then $\left(z_{1}, x_{1}\right)=(9,4)$ and $\left(z_{2}, x_{2}\right)=(30,17)$. Since we want $x_{m}>0$, we will ignore the solution $(6,-1)$.

Using (7), we now compute the sequences $\left\{x_{m}(\bmod 127)\right\}$ and $\left\{x_{m}(\bmod 128)\right\}$; see Table 8. Again, no x_{m} satisfies the conditions satisfied by $\left\{2^{k}(\bmod 127)\right\}_{k \geq 5}$ and $\left\{2^{k}(\bmod 128)\right\}_{k \geq 5}$. So no x_{m} in this class can be be a power of 2 when $k \geq 5$.

m	1	2	3	4	5	6	7	8
$x_{m}(\bmod 127)$	4	17	64	112	3	27	105	12
$x_{m}(\bmod 128)$	4	17	64	111	124	1	8	31
m								
$x_{m}(\bmod 127)$	70	10	14	113	12	13	14	15
$x_{m}(\bmod 128)$	116	49	80	15	108	22	100	124

m	17	18	19	20	21	22	23	24
$x_{m}(\bmod 127)$	15	63	110	123	1	8	31	116
$x_{m}(\bmod 128)$	100	81	96	47	92	65	40	95
m	25	26	27	28	29	30	31	32
$x_{m}(\bmod 127)$	52	92	62	29	54	60	59	49
$x_{m}(\bmod 128)$	84	113	112	79	76	97	56	127

m	33	34	35	36	37	38	39	40
$x_{m}(\bmod 127)$	10	118	81	79	108	99	34	37
$x_{m}(\bmod 128)$	68	17	0	111	60	1	72	31
m								
$x_{m}(\bmod 127)$	114	42	43	44	45	46	47	48
$x_{m}(\bmod 128)$	52	49	16	114	37	34	99	108

m	49	50	51	52	53	54	55	56
$x_{m}(\bmod 127)$	79	81	118	10	49	59	60	54
$x_{m}(\bmod 128)$	36	81	32	47	28	65	104	95
m								
$x_{m}(\bmod 127)$	57	58	59	60	61	62	63	64
$x_{m}(\bmod 128)$	29	62	92	52	116	31	8	1

m	65	66	67	68	69	70	71	72
$x_{m}(\bmod 127)$	123	110	63	15	124	100	22	115
$x_{m}(\bmod 128)$	4	17	64	111	124	1	8	31
m								
$x_{m}(\bmod 127)$	73	74	75	76	77	78	79	80
$x_{m}(\bmod 128)$	116	49	80	14	70	12	105	27
3								

m	81	82	83	84	85	86	87	88
$x_{m}(\bmod 127)$	112	64	17	4	126	119	96	11
$x_{m}(\bmod 128)$	100	81	96	47	92	65	40	95
m	89	90	91	92	93	94	95	96
$x_{m}(\bmod 127)$	75	35	65	98	73	67	68	78
$x_{m}(\bmod 128)$	84	113	112	79	76	97	56	127

m	97	98	99	100	101	102	103	104
$x_{m}(\bmod 127)$	117	9	46	48	19	28	93	90
$x_{m}(\bmod 128)$	68	17	0	111	60	1	72	31
m	105	106	107	108	109	110	111	112
$x_{m}(\bmod 127)$	13	89	89	13	90	93	28	19
$x_{m}(\bmod 128)$	52	49	16	15	44	33	88	63

m	113	114	115	116	117	118	119	120
$x_{m}(\bmod 127)$	48	46	9	117	78	68	67	73
$x_{m}(\bmod 128)$	36	81	32	47	28	65	104	95
m								
$x_{m}(\bmod 127)$	98	122	123	124	125	126	127	128
$x_{m}(\bmod 128)$	20	113	48	75	11	96	119	126
		12	97	120	127			

Table 8

Combining these two subcases, it follows that no $J_{2 n+1}$ is a triangular number when $n \geq 5$.

Thus, by Cases 1 and 2 , no J_{n} is a triangular number when $n \geq 5$. Consequently, the only triangular Jacobsthal numbers are $J_{1}, J_{2}, J_{3}, J_{6}$, and J_{9}; see Table 1 .

Remark. Since $y_{m+2} \equiv y_{m}(\bmod 2)$ and $y_{0}=2$ in both subcases under Case 2, it follows by induction that $y_{2 m}$ is even for $m \geq 0$. But every y-value must be odd. Consequently, we could drop the columns with even values of m from Tables 7 and 8.

Next we investigate Jacobsthal-Lucas numbers j_{n} that are also triangular. To this end, first notice that the sequence $\left\{t_{n}(\bmod 9)\right\}$ follows an interesting pattern:

9. Triangular Jacobsthal-Lucas Numbers

It follows from the Binet-like formulas that $9 J_{n}^{2}=\left(2^{2 n}+1\right)-2(-2)^{n}=j_{2 n}-$ $2(-2)^{n}$, so $j_{2 n} \equiv 2(-2)^{n}(\bmod 9)$. But the sequence $\left\{2(-2)^{n}(\bmod 9)\right\}$ follows the pattern $\underbrace{52} \underbrace{582} \cdots$; so $j_{2 n}(\bmod 9)$ equals 2 , 5 , or 8 . Consequently, no Jacobsthal-Lucas number $j_{2 n}$ is triangular.

Now, consider the Jacobsthal-Lucas numbers $j_{2 n+1}$, where $n \geq 0$. Since $j_{1}=t_{1}$, we let $n \geq 1$. Then $8 j_{2 n+1}+1=2^{2(n+2)}-8$. Since

$$
\left(2^{n+2}-1\right)^{2}<8 j_{2 n+1}+1<2^{2(n+2)}
$$

and $\left(2^{n+2}-1\right)^{2}$ and $2^{2(n+2)}$ are consecutive squares, it follows that $8 j_{2 n+1}+1$ cannot be a square. Consequently, $j_{2 n+1}$ cannot be triangular when $n \geq 1$.

Thus $j_{1}=1$ is the only triangular Jacobsthal-Lucas number; see Table 1.

10. Conclusion

The Jacobsthal family is a delightful source for experimentation and exploration for both amateurs and professionals alike. Using congruences, quadratic diophantine
equations, and linear algebra, we established that $J_{1}, J_{2}, J_{3}, J_{6}$, and J_{9} are the only triangular Jacobsthal numbers; and that j_{1} is the only triangular Jacobsthal-Lucas number.

Acknowledgment. The authors thank the reviewer for pointing out a pair of typos in the original version.

References

[1] H. Anton, Elementary Linear Algebra, 8th edition, Wiley, New York, 2000.
[2] E.J. Barbeau, Pell's Equation, Springer-Verlag, New York, 2003.
[3] A.F. Horadam, Jacobsthal representation numbers, Fibonacci Quar. 34 (1996), 40-54.
[4] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.
[5] T. Koshy, Elementary Number Theory with Applications, 2nd edition, Academic Press, Burlington, MA, 2007.
[6] T. Nagell, Introduction to Number Theory, 2nd edition, Chelsea, New York, 1964.
[7] S.J. Schlicker, Numbers simultaneously polygonal and centered polygonal, Mathematics Magazine 84 (2011), 339-350.
[8] E.W. Weisstein, Jacobsthal number, http://mathworld.wolfram.com/jacobsthalNumber.html.

