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Abstract
Using congruences, second-order diophantine equations, and linear algebra, we iden-
tify Jacobsthal and Jacobsthal-Lucas numbers that are also triangular numbers.

1. Introduction

Like the well-known Fibonacci and Lucas numbers [4], Jacobsthal numbers Jn and
Jacobsthal-Lucas numbers jn provide gratifying opportunities for both experimen-
tation and exploration. They satisfy the same Jacobsthal recurrence and are often
defined recursively [3, 8]:

J1 = 1, J2 = 1 j1 = 1, j2 = 5
Jn = Jn−1 + 2Jn−2, n ≥ 3; jn = jn−1 + 2jn−2, n ≥ 3.

The two definitions differ only in the second initial conditions, as in the case of
Fibonacci and Lucas numbers.

Table 1 gives the first twelve members of each family, and the first twelve trian-
gular numbers tn = n(n+1)

2 .

n 1 2 3 4 5 6 7 8 9 10 11 12

Jn 1 1 3 5 11 21 43 85 171 341 683 1365

jn 1 5 7 17 31 65 127 257 511 1025 2047 4097

tn 1 3 6 10 15 21 28 36 45 55 66 78

Table 1

It follows from the above recursive definitions that Jn and jn satisfy the Binet-

like formulas Jn =
2n − (−1)n

3
and jn = 2n + (−1)n, respectively [3, 8]. When n

is even, Jn = Mn
3 , where Mn denotes the nth Mersenne number 2n − 1 and n ≥ 1;

and when n is odd, jn = Mn [5].



INTEGERS: 12 (2012) 2

2. Quadratic Diophantine Equation u2 − Nv2 = C

Our goal is to identify all Jacobsthal and Jacobsthal-Lucas numbers that are also
triangular. This task hinges on solving the quadratic diophantine equation (QDE)
u2−Nv2 = C, where N is a nonsquare positive integer and C a positive integer. The
solutions of the QDE are closely related to those of Pell’s equation u2 −Nv2 = 1.
So we will first give a very brief introduction to solving the QDE [2, 6, 7]. In the
interest of brevity, we will confine our discussion to solutions (u, v) with u > 0.

Let (α,β) be the fundamental solution of Pell’s equation u2 − Nv2 = 1, and
(u0, v0) a solution of the QDE. Let um +vm

√
N = (u0 +v0

√
N)(α+β

√
N)m, where

m is a positive integer. Then (um, vm) is a solution of the QDE. We then say that
the solution (um, vm) is associated with the solution (u0, v0). Such solutions belong
to a class of solutions of the QDE. Suppose (u0, v0) has the property that it has the
least possible positive value of u among the solutions in the class; then (u0, v0) is
the fundamental solution of the class.

The QDE can have different classes of solutions. Although each class is infinite,
the number of distinct classes is finite. Two solutions (u, v) and (u�, v�) belong to
the same class if and only if uu� ≡ Nvv� (mod C) and uv� ≡ u�v (mod C) [6].

The following theorem provides a mechanism for finding the solutions of the
QDE, when it is solvable.

Theorem. Let (α,β) be the fundamental solution of Pell’s equation u2−Nv2 = 1,
(u0, v0) a fundamental solution of the QDE u2−Nv2 = C, and m a positive integer.
Then:

i) 0 < u0 ≤
�

(α + 1)C
2

and 0 < |v0| ≤ β

�
C

2(α + 1)
.

(These two inequalities provide computable upper bounds for u0 and v0. The
number of solutions (u0, v0) resulting from these inequalities determines the
number of different classes of solutions.)

ii) Every solution (um, vm) belonging to the class of (u0, v0) is given by

um + vm

√
N = (u0 + v0

√
N)(α + β

√
N)m. (1)

iii) The QDE is not solvable if it has no solution satisfying the inequalities in (i).



INTEGERS: 12 (2012) 3

3. Recurrence for (um, vm)

Equation (1) can be employed to derive a recurrence for (um, vm):

um+1 + vm+1

√
N = (u0 + v0

√
N)(α + β

√
N)m+1

= (um + vm

√
N)(α + β

√
N)

= (αum + Nβvm) + (βum + αvm)
√

N.

Thus we have the following recurrence for (um, vm):

um+1 = αum + Nβvm

vm+1 = βum + αvm.
(2)

These recurrences can be used to develop a second-order recurrence for both um

and vm.

4. A Second-Order Recurrence for (um, vm)

These recurrences can be combined into a matrix equation:
�
um+1

vm+1

�
= M

�
um

vm

�
,

where M =
�
α Nβ
β α

�
.

By the well known Cayley-Hamilton Theorem [1], M satisfies its characteristic
equation |M − λI| = 0, where I denotes the 2 × 2 identity matrix; that is, λ2 −
2αλ + 1 = 0. So M2 = 2αM − I.

Consequently, we have:
�
um+2

vm+2

�
= M2

�
um

vm

�
= (2αM − I)

�
um

vm

�
= 2α

�
um+1

vm+1

�
−

�
um

vm

�
.

Thus both um and vm satisfiy the recurrence

rm+2 = 2αrm+1 − rm, (3)

where m ≥ 0.
With these facts at our finger tips, we are now ready to identify all triangular

Jacobsthal numbers.
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5. Triangular Jacobsthal Numbers

Clearly, J1 = t1; J2 = t1; J3 = t2, J6 = t6, and J9 = t18; see Table 1. So there are
at least five triangular Jacobsthal numbers.

Next, we will show that there are no other triangular Jacobsthal numbers. To
this end, we will employ the fact that 8tk + 1 = (2k + 1)2, discovered around 250
A.D. by Diophantus of Alexandria, Egypt. Consequently, Jn is a triangular number
if and only if 8Jn + 1 is the square of an odd integer [5].

Case 1. Suppose J2n is a triangular number, where n ≥ 5. Then 8J2n +1 = y2 for
some odd positive integer y. This yields:

8 · 22n − 1
3

+ 1 = y2

2w2 − 3y2 − 5 = 0 (4)
x2 − 6y2 = 10, (5)

where w = 2n+1 and x = 2w ≥ 128.
Using the theorem, we can solve the QDE (5). The fundamental solution of Pell’s

equation x2 − 6y2 = 1 is (α,β) = (5, 2); and (±4,±1) are solutions of the QDE
(5). Since x > 0, we can safely ignore the solutions (−4,±1). This leaves just two
fundamental solutions: (x0, y0) = (4, 1) and (x�0, y�0) = (4,−1).

Since x0x�0 − 6y0y�0 = 4 · 4 − 6 · 1 · (−1) �≡ 0 (mod 10) and x0y�0 − x�0y0 =
4 · (−1)− 4 · 1 �≡ 0 (mod 10), it follows that the solutions (4,1) and (4,−1) belong
to two different classes of solutions of the QDE (5) [6]; each is the fundamental
solution of the corresponding class.

Subcase 1.1. Consider the case (x0, y0) = (4, 1). Since (α,β) = (5, 2) and N = 6,
it follows by equation (2) that every solution (xm, ym) of (5) in the class of (4,1) is
given by:

xm+1 = 5xm + 12ym

ym+1 = 2xm + 5ym,

where (x0, y0) = (4, 1).
Consequently, (x1, y1) = (32, 13) and (x2, y2) = (316, 129) are solutions of QDE

(5): 322 − 6 · 132 = 10 = 3162 − 6 · 1292.
Since y0 and y1 are odd, and (α,β) = (5, 2), it follows by induction that every

ym is odd. Since x0 is even and xm+1 ≡ xm (mod 2), it also follows that every xm

is even.
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6. Recurrence for (wm, ym)

Since xm = 2wm, the above equations yield the following recurrences for wm and
ym:

wm+1 = 5wm + 6ym

ym+1 = 4wm + 5ym,

where (w0, y0) = (2, 1) and m ≥ 0.
Since wm+1 ≡ wm (mod 2) and w0 is even, it follows that every wm is even; see

Table 2.
With α = 5, recurrence (3), satisfied by both wm and ym, comes in handy when

computing the solutions (wm, ym) of (4), belonging to the class with the fundamental
solution (2, 1). Table 2 shows the first ten such solutions. Since the y-values do not
directly impact the problem at hand, we will ignore them.

m 0 1 2 3 4 5 6 7
wm 2 16 158 1564 15482 153256 1517078 15017524
ym 1 13 129 1277 12641 125133 1238689 12261757

m 8 9
wm 148658162 1471564096
ym 121378881 1201527053

Table 2

We will now show that no wm can be a power of 2. To see this, using the recur-
rence wm+2 = 10wm+1 − wm, we now compute the values of {wm (mod 31)}m≥0

and {wm (mod 32)}m≥0. Both sequences are periodic with periods 32 and 16, re-
spectively; see Table 3. But 2k (mod 31) = 1, 2, 4, 8, or 16; and 2k (mod 32) = 0 for
k ≥ 5. It now follows from the table that no wm satisfies both conditions satisfied
by 2k, where k ≥ 5; that is, no wm is congruent to 2k modulo 31 and 32, when
k ≥ 5.

m 0 1 2 3 4 5 6 7 8 9 10 11
wm (mod 31) 2 16 3 14 13 23 0 8 18 17 28 15
wm (mod 32) 2 16 30 28 26 8 22 20 18 0 14 12

m 12 13 14 15 16 17 18 19 20 21 22 23
wm (mod 31) 29 27 24 27 29 15 28 17 18 8 0 23
wm (mod 32) 10 24 6 4 2 16 30 28 26 8 22 20

m 24 25 26 27 28 29 30 31
wm (mod 31) 13 14 3 16 2 4 7 4
wm (mod 32) 18 0 14 12 10 24 6 4

Table 3
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Subcase 1.2. Suppose (x�0, y�0) = (4,−1). This solution, coupled with (α,β) =
(5, 2), can be used to generate a different family of solutions (xm, ym) of (5) and
hence (wm, ym). In particular, it follows by recurrence (2) that (x1, y1) = (8, 3) and
(x2, y2) = (76, 31) are also solutions of the QDE (5): 82 − 6 · 32 = 10 = 762 − 6 · 31.

m 0 1 2 3 4 5 6 7
wm 2 4 38 376 3722 36844 364718 3610336
ym −1 3 31 307 3039 30083 297791 2947827

m 8 9
wm 35738642 353776084
ym 29180479 288856963

Table 4

Correspondingly, w0 = 2, w1 = 4, and w2 = 38. As in Subcase 1.1, here also, wm

satisfies exactly the same recurrence. Table 4 shows the first ten solutions (wm, ym).
Again, we can safely ignore the y-values.

We will now show that no wm can be a power of 2. To see this, notice that
the sequences {wm (mod 31)}m≥0 and {wm (mod 32)}m≥0 are both periodic with
period 32; see Table 5. It follows from the table that no wm is congruent to 2k

modulo 31 and 32 for any integer k ≥ 5.

m 0 1 2 3 4 5 6 7 8 9 10 11
wm (mod 31) 2 4 7 4 2 16 3 14 13 23 0 8
wm (mod 32) 1 2 19 28 5 22 23 16 9 10 27 4

m 12 13 14 15 16 17 18 19 20 21 22 23
wm (mod 31) 18 17 28 15 29 27 24 27 29 15 28 17
wm (mod 32) 13 30 31 24 17 18 3 12 21 6 7 0

m 24 25 26 27 28 29 30 31
wm (mod 31) 18 8 0 23 13 14 3 16
wm (mod 32) 25 26 11 20 29 14 15 8

Table 5

It follows by Subcases 1 and 2 that no wm can be a power of 2, when m ≥ 5.
Consequently, no J2n is a triangular number when m ≥ 5.

Case 2. Suppose J2n+1 is a triangular number, where n ≥ 5. Then 8J2n+1+1 = y2

for some positive odd integer y. As before, this yields:

x2 − 3y2 + 11 = 0
z2 − 3x2 = 33, (6)
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where x = 2n+2 ≥ 128, and z = 3y is odd.
The fundamental solution of Pell’s equation z2−3x2 = 1 is (α,β) = (2, 1). There

are two fundamental solutions (z0, x0) = (6, 1) and (z�0, x�0) = (6,−1) of the QDE
(6) with the least positive value 6 for z. Since z0z�0 − 3x0x�0 = 6 · 6− 3 · 1 · (−1) �≡ 0
(mod 33) and z0x�0 − z�0x0 = 6 · (−1) − 1 · 6 �≡ 0 (mod 33), it follows that the
solutions (6,1) and (6,−1) belong to two different classes of solutions of the QDE
(6) [6]. Using the theorem, we can now find all solutions of (6).

Subcase 2.1. With the fundamental solution (z0, x0) = (6, 1), every solution
(zm, xm) in its class is given by the recurrence:

zm+1 = 2zm + 3xm

xm+1 = zm + 2xm.

It now follows that (z1, x1) = (15, 8) is also a solution of (6). Table 6 shows the
first ten solutions (zm, xm) of (6), where m ≥ 0.

m 0 1 2 3 4 5 6 7 8 9
zm 6 15 54 201 750 2799 10446 38985 145494 542991
xm 1 8 31 116 433 1616 6031 22508 84001 313496

Table 6

7. Recurrence for (ym, xm)

Since zm = 3ym, the above recurrences yield:

ym+1 = 2ym + xm

xm+1 = 3ym + 2xm.

8. A Second-Order Recurrence for xm

As before, it follows by (3) that xm satisfies the recurrence

xm+2 = 4xm+1 − xm, (7)

where m ≥ 0.
It follows from this recurrence that xm+2 ≡ xm (mod 2). Since x0 is odd and x1

is even, it follows by induction that xm ≡ m+1 (mod 2); so xm and m+1 have the
same parity. Likewise, zm is always even; see Table 6. Since ym+2 ≡ ym (mod 2),
it follows that ym and m have the same parity.

Using recurrence(7), we now compute xm (mod 7)and xm (mod 16); see Table 7.
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m 0 1 2 3 4 5 6 7 8 9 10 11 12
xm (mod 7) 1 1 3 4 6 6 4 3 1 1 3 4 6
xm (mod 16) 1 8 15 4 1 0 15 12 1 8 15 4 1

m 13 14 15
xm (mod 7) 6 4 3
xm (mod 16) 0 15 12

Table 7

The sequence {xm (mod 7)} is periodic with period 8:

1 1 3 4 6 6 4 3� �� � 1 1 3 4 6 6 4 3� �� � · · · ;

and so is the sequence {xm (mod 16)}: 1 8 15 4 1 0 15 12� �� � 1 8 15 4 1 0 15 12� �� � · · · .

But 2k (mod 7) = 1, 2, or 4; and 2k (mod 16) = 0 when k ≥ 5. Consequently, no
xm satisfies both conditions when k ≥ 5.

Subcase 2.2. Consider the solution (z�0, x�0) = (6,−1). Then (z1, x1) = (9, 4) and
(z2, x2) = (30, 17). Since we want xm > 0, we will ignore the solution (6,−1).

Using (7), we now compute the sequences {xm (mod 127)} and {xm (mod 128)};
see Table 8. Again, no xm satisfies the conditions satisfied by {2k (mod 127)}k≥5

and {2k (mod 128)}k≥5. So no xm in this class can be be a power of 2 when k ≥ 5.

m 1 2 3 4 5 6 7 8
xm (mod 127) 4 17 64 112 3 27 105 12
xm (mod 128) 4 17 64 111 124 1 8 31

m 9 10 11 12 13 14 15 16
xm (mod 127) 70 14 113 57 115 22 100 124
xm (mod 128) 116 49 80 15 108 33 24 63

m 17 18 19 20 21 22 23 24
xm (mod 127) 15 63 110 123 1 8 31 116
xm (mod 128) 100 81 96 47 92 65 40 95

m 25 26 27 28 29 30 31 32
xm (mod 127) 52 92 62 29 54 60 59 49
xm (mod 128) 84 113 112 79 76 97 56 127
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m 33 34 35 36 37 38 39 40
xm (mod 127) 10 118 81 79 108 99 34 37
xm (mod 128) 68 17 0 111 60 1 72 31

m 41 42 43 44 45 46 47 48
xm (mod 127) 114 38 38 114 37 34 99 108
xm (mod 128) 52 49 16 15 44 33 88 63

m 49 50 51 52 53 54 55 56
xm (mod 127) 79 81 118 10 49 59 60 54
xm (mod 128) 36 81 32 47 28 65 104 95

m 57 58 59 60 61 62 63 64
xm (mod 127) 29 62 92 52 116 31 8 1
xm (mod 128) 20 113 48 79 12 97 120 127

m 65 66 67 68 69 70 71 72
xm (mod 127) 123 110 63 15 124 100 22 115
xm (mod 128) 4 17 64 111 124 1 8 31

m 73 74 75 76 77 78 79 80
xm (mod 127) 57 113 14 70 12 105 27 3
xm (mod 128) 116 49 80 15 108 33 24 63

m 81 82 83 84 85 86 87 88
xm (mod 127) 112 64 17 4 126 119 96 11
xm (mod 128) 100 81 96 47 92 65 40 95

m 89 90 91 92 93 94 95 96
xm (mod 127) 75 35 65 98 73 67 68 78
xm (mod 128) 84 113 112 79 76 97 56 127

m 97 98 99 100 101 102 103 104
xm (mod 127) 117 9 46 48 19 28 93 90
xm (mod 128) 68 17 0 111 60 1 72 31

m 105 106 107 108 109 110 111 112
xm (mod 127) 13 89 89 13 90 93 28 19
xm (mod 128) 52 49 16 15 44 33 88 63
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m 113 114 115 116 117 118 119 120
xm (mod 127) 48 46 9 117 78 68 67 73
xm (mod 128) 36 81 32 47 28 65 104 95

m 121 122 123 124 125 126 127 128
xm (mod 127) 98 65 35 75 11 96 119 126
xm (mod 128) 20 113 48 79 12 97 120 127

Table 8

Combining these two subcases, it follows that no J2n+1 is a triangular number
when n ≥ 5.

Thus, by Cases 1 and 2, no Jn is a triangular number when n ≥ 5. Consequently,
the only triangular Jacobsthal numbers are J1, J2, J3, J6, and J9; see Table 1.

Remark. Since ym+2 ≡ ym (mod 2) and y0 = 2 in both subcases under Case 2, it
follows by induction that y2m is even for m ≥ 0. But every y-value must be odd.
Consequently, we could drop the columns with even values of m from Tables 7 and
8.

Next we investigate Jacobsthal-Lucas numbers jn that are also triangular. To
this end, first notice that the sequence {tn (mod 9)} follows an interesting pattern:
1 3 6 1 6 3 1 9 9� �� � 1 3 · · · 9 9� �� � · · · . Consequently, tn (mod 9) equals 1, 3, 6, or 9.

9. Triangular Jacobsthal-Lucas Numbers

It follows from the Binet-like formulas that 9J2
n =

�
22n + 1

�
− 2(−2)n = j2n −

2(−2)n, so j2n ≡ 2(−2)n (mod 9). But the sequence {2(−2)n (mod 9)} follows
the pattern 5 8 2� �� � 5 8 2� �� � · · · ; so j2n (mod 9) equals 2, 5, or 8. Consequently, no
Jacobsthal-Lucas number j2n is triangular.

Now, consider the Jacobsthal-Lucas numbers j2n+1, where n ≥ 0. Since j1 = t1,
we let n ≥ 1. Then 8j2n+1 + 1 = 22(n+2) − 8. Since

�
2n+2 − 1

�2
< 8j2n+1 + 1 < 22(n+2),

and
�
2n+2 − 1

�2 and 22(n+2) are consecutive squares, it follows that 8j2n+1 + 1
cannot be a square. Consequently, j2n+1 cannot be triangular when n ≥ 1.

Thus j1 = 1 is the only triangular Jacobsthal-Lucas number; see Table 1.

10. Conclusion

The Jacobsthal family is a delightful source for experimentation and exploration for
both amateurs and professionals alike. Using congruences, quadratic diophantine
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equations, and linear algebra, we established that J1, J2, J3, J6, and J9 are the only
triangular Jacobsthal numbers; and that j1 is the only triangular Jacobsthal-Lucas
number.
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