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Abstract
A. Aigner proved in 1934 that, except in Q(

√
−7), there are no nontrivial quadratic

solutions to the Diophantine equation x4+y4 = z4. The result was later re-proven by
D.K. Faddeev and the argument was simplified by L.J. Mordell. This paper extends
this result and shows that nontrivial quadratic solutions exist to X4 + Y 4 = D2Z4

precisely when either D = 1 or D is a congruent number.

1. Introduction

In a letter to Huygens, Fermat proved that x4 + y4 = z4 has no nontrivial integer
solutions, where ‘nontrivial’ means that all variables are nonzero; see p. 75-79, of
[15]. Generalizing this result, Hilbert proved in Theorem 169 of his Zahlbericht that
there exist no nontrivial solutions in the Gaussian field either [7]. Then in 1934,
A. Aigner [1] proved that nontrivial quadratic solutions to x4 + y4 = z4 exist only
in Q(

√
−7). Aigner’s result was re-proven by D.K. Faddeev [6] and the argument

was simplified by L.J. Mordell [11]. We are interested in generalizing this result to
x4 + y4 = D2z4 with D ∈ Z and x, y, z algebraic integers and so consider

x4 + y4 = D2 (1)

for x, y in some quadratic field. Using Mordell’s methods, also used in [10], we prove
the following result:

Theorem. Let D be a positive square-free integer. Nontrivial solutions to x4+y4 =
D2 exist in a quadratic number field precisely when either D = 1 or D is a congruent

number. More specifically, there are two possible types of solutions: Type 1 and type

2 solutions, depending on whether neither x2 nor y2 are rational or both x2 and y2

are rational. The detailed presentation of the solutions is found in Theorem 7 and

Theorem 9, respectively.
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A positive integer D is a congruent number if it is the area of a right triangle
with rational sides [8]. For further reading on congruent numbers see [2] or [3]. In
[9], Lucas noted that D is a congruent number precisely when there are nontrivial
rational solutions to

u4 −D2v4 = z2. (2)

Additionally, Tunnell [14] remarked that it is well-known that D is a congruent
number precisely when there are nontrivial rational solutions to the elliptic curve

y2 = x3 −D2x. (3)

For further details on (2) and (3), see [4].

Remark 1. Both of the curves (2) and (3) are genus 1 with infinitely many solutions
in the rationals. In contrast, x4+y4 = D2z4 is a nonsingular curve of genus 3. Since
the genus exceeds 1, there are finitely many points with coordinates in any number
field, by Faltings’ Theorem.

The outline of the paper follows. We first consider when one of x2 or y2 are
rational, and prove no solutions exist to x4 +y4 = D2. The second section considers
when neither x2 nor y2 are rational, corresponding to type 1 solutions. We prove
type 1 solutions exist to x4 + y4 = D2 when there exist rational numbers n, s that
satisfy 2n2 − s4 = D2. Furthermore, in this case there are conjugate solutions
x�, y� ∈ Q(

√
4n− 3s2) such that (x�)4 + (y�)4 = D2. The third section considers

when both x2 and y2 are rational, corresponding to type 2 solutions. This case
only occurs when D �= 1. We prove that since D is a congruent number, there
are infinitely many solutions to x4

1 + y2
1 = D2 and each solution gives a quadratic

solution to x4 + y4 = D2 in Q(√y1). Moreover, the list of such fields Q(√y1)
is infinite. Admittedly, the more interesting case is when neither x2 nor y2 are
rational. The second case is included for the sake of the reader.

Example 2. (Aigner [1]) D = 1 is not a congruent number, as proven by Fermat,
see pg. 615 of [5]. Thus, there are no type 2 solutions. Observe, D2 = 2n2 − s4

where n = −1 and s = 1. Therefore, there are type 1 solutions in Q(
√

4n− 3s2).
For example, �

1 +
√
−7

2

�4

+
�

1−
√
−7

2

�4

= 1.

Example 3. D = 7 is a congruent number, as proven by Fibonacci; see pg. 462 of
[5]. Observe, D2 = 2n2 − s4 where n = ±5 and s = 1. Therefore, type 1 solutions
to x4 + y4 = 49 exist in Q(

√
4n− 3s2). For example,

�
1 +

√
−23

2

�4

+
�

1−
√
−23

2

�4

= 49 and

�
1 +

√
17

2

�4

+

�
1−

√
17

2

�4

= 49.
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Since 7 is a congruent number, there are also type 2 solutions. For example, (7/5)4+
(168/25)2 = 49. Thus,

�
7
5

�4

+

�
2
√

42
5

�4

= 49.

Note that 2n2 − s4 = 49 is an elliptic curve of rank 3. Thus, there are infinitely
many rational solutions to 2n2 − s4 = 49. By a similar argument as in the end of
Theorem 9, the list of such fields Q(

√
4n− 3s2) is infinite.

Also, when s = 1, D2 = 2n2 − s4 is a Pell equation. For the history of Pell
equations, see [15]. To calculate the specific D which satisfy D2 = 2n2 − 1, see
chapter 6 of Nagell [12] or look up sequence ID Number A002315 in Neil Sloane’s
On-Line Encyclopedia of Integer Sequences.

Example 4. D = 6 is a congruent number, since it is equal to the area of the
right triangle with sides 3,4,5. Therefore, solutions to x4 + y4 = 36 in a quadratic
extension of Q exist. For example,

�
12
5

�4

+

�√
42
5

�4

= 36

is a type 2 solution. There are no type 1 solutions, as can be seen by Theorem 7
and Lemma 8.

Our proof of the theorem begins by following Mordell. Let K = Q(
√

d) be a
quadratic field containing x, y. Note, we assume d is a square-free integer. Let
x1 = x2 and y1 = y2 so x2

1 + y2
1 = D2. Geometrically, this equation represents

a circle, centered at (0, 0) of radius D with a rational point at (D, 0). The slope,
call it t, of the line perpendicular to the line through (D, 0) and (x1, y1) is t =
(D − x1)/y1 = (D − x2)/y2.

Solving for x2, we obtain x2 = D − ty2. Substituting into x4 + y4 = D2 and
solving for y2 yields

y2 = 2Dt/(t2 + 1). (4)

Therefore,
x2 = D(1− t2)/(t2 + 1). (5)

We have three cases to consider, when neither x2 nor y2 are rational, one is
rational and the other is non-rational, or both are rational. Let x = p1 + q1

√
d and

y = p2 + q2

√
d, where p1, p2, q1, q2 are rationals. Thus,

x2 = (p1 + q1

√
d)2 = p2

1 + 2p1q1

√
d + q2

1d (6)

y2 = (p2 + q2

√
d)2 = p2

2 + 2p2q2

√
d + q2

2d. (7)
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If one of x2 and y2 is rational, and the other non-rational, assume without loss
of generality that x2 ∈ Q and y2 is non-rational. By x4 + y4 = D2 and x2 ∈ Q, it
follows that y4 ∈ Q. Hence, squaring (7), 4p2q2

√
d(p2

2 + dq2
2) = 0. Again by (7),

and since y2 /∈ Q, we have p2q2 �= 0, hence p2
2 + dq2

2 = 0 which can hold only if the
square-free integer d = −1 which contradicts Hilbert’s Theorem 169 [7].

2. Type 1 Solutions: Neither x2 Nor y2 Are Rational

Since x2 is non-rational, it is clear from (5) that the slope t is non-rational. Thus
K = Q(t) where t is a root of the monic irreducible quadratic equation F (t) =
t2 + Bt + C with B,C ∈ Q. Let X = (1 + t2)xy and Y = (1 + t2)y. Squaring X
and Y , replacing D(1− t2)/(t2 + 1) for x2 and 2Dt/(t2 + 1) for y2, we obtain

X2 = 2D2t(1− t2), Y 2 = 2Dt(1 + t2). (8)

Because {1, t} is a basis for K over Q, there are a, b, a1, b1 ∈ Q such that

X = a + bt, Y = a1 + b1t. (9)

Substitute (9) into (8). Observe that t is therefore a root of the cubic polynomials
(a + bz)2 − 2D2z(1− z2) and (a1 + b1z)2 − 2Dz(1 + z2) which must be divisible by
F (z). Therefore,

(a + bz)2 − 2D2z(1− z2) = F (z)(P + Qz) (10)
and

(a1 + b1z)2 − 2Dz(1 + z2) = F (z)(P1 + Q1z). (11)

for some P,Q,P1, Q1 ∈ Q. Notice that (−P/Q) and (−P1/Q1) are rational roots of
the right hand sides of (10) and (11), and thus must be roots of the left hand sides
as well.

Lemma 5. The only rational values of z that satisfy (a+ bz)2 = 2D2z(1− z2), are

z = 0, 1,−1.

Proof. The equation (a + bz)2 = 2D2z(1 − z2) is of the form Y 2 = 2X(X2 − 1)
where X = −z and Y = (a + bz)/D. This equation defines an elliptic curve of zero
rank and torsion points (±1, 0), (0, 0) and the point at infinity. Hence, z = 0,±1
are the only possibilities. Alternatively, putting Y 2 = 2X(X2 − 1) into standard
form we obtain y2 = x3 − 4x, which is birationally equivalent to the Fermat curve
u4 + v4 = w2. For the explicit mapping; see p. 55, of [8].

Before proving Theorem 7, we need the following result.
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Proposition 6. Let D be a square -free integer > 1, for which there exist n, s ∈ Q
satisfying 2n2 − s4 = D2. Then,

(i) D is a congruent number.

(ii) The polynomial X2 − sX + s2 − n is irreducible over Q and its roots x�, y� ∈
Q(
√

4n− 3s2) furnish a solution to (1) with neither x�2 nor y�2 rational.

Proof. (i) Note that if D is a square-free integer greater than 1, and n, s are rational
and satisfy D2 = 2n2 − s4 then (x, y) = (n2

s2 , n(n−s2)(n+s2)
s3 ) is a nontrivial point on

(3), which is equivalent to D being a congruent number.
(ii) Since n, s ∈ Q, if x�, y� satisfies x� + y� = s, (x�)2 + x�y� + (y�)2 = n, then

x�, y� satisfies X2 − sX + s2 − n ∈ Q[X] and lie in Q(
√

4n− 3s2). Replacing s, n in
D2 = 2n2− s4 yields D2 = (x�)4 + (y�)4. If n < 0, clearly

√
4n− 3s2 /∈ Q. If n > 0,

to see that
√

4n− 3s2 /∈ Q, assume to the contrary that 4n − 3s2 = t2 for t ∈ Q.
Solving for n, and replacing in 2n2−s4 = D2 we obtain s4+6s2t2+t4 = 8D2. Thus,
(z/t,D/t2) is a point on the elliptic curve X4 + 6X2 + 1 = 8Y 2 which has rank
0. This means the only rational solutions of the last equation comes from torsion
points. Hence,(|X|, |Y |) = (1, 1) gives all rational solutions implying t2 = s2 = D,
but D is a square-free integer greater than 1.

Theorem 7. (Solutions of type 1) Let D be a positive square-free integer and let

(x, y) be a non-trivial solution to (1) with both x2 and y2 not rational but in a

quadratic number field. Then, either D = 1 and x, y ∈ Q(
√
−7), or D > 1 and

there exist n, s ∈ Q satisfying 2n2 − s4 = D2, so that all conclusions of Proposition

1 are valid.

Proof. Each rational value from Lemma 5 determines a possible expression for F (z).
For example, for z = 0, we find from (10) that (bz)2−2D2z(1−z2) = F (z)Qz. Since
F (z) is monic, Q = 2D2 and thus, F (z) = z2 + (b2/2D2)z − 1. This polynomial
also divides (a1 + b1z)2 − 2Dz(1 + z2). Long division yields a remainder with
constant term a2

1 + b2
1 + b2/D. Since this remainder must be zero, a1 = b1 =

b = 0. Thus F (z) = z2 − 1 which is not irreducible. Similarly, for z = 1 we
find from (10) that a2(1 − z)2 − 2D2z(1 − z2) = F (z)P (1 − z). Since F (z) is
monic, P = −2D2. Thus F (z) = z2 + (1 + a2/2D2)z − a2/2D2. Once again,
long division yields a remainder with constant terms. This time the constant term
is (2a2

2D
3 + a2b2

1D + 2a2D2 + a4)/2D3, which must be zero. Thus a = 0, and
F (z) = z2 − z, which is not irreducible. The only rational value that does not lead
to an obvious contradiction is z = −1, as we now show.

For z = −1, we find for (10) that a2(1 + z)2 − 2D2z(1 − z2) = F (z)P (1 + z).
Thus,

F (z) = z2 +
�

a2

2D2
− 1

�
z +

a2

2D2
. (12)
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In this case, long division of F (z) into (a1 + b1z)2− 2Dz(1+ z2) yields the quotient
and remainder, respectively, of

−2Dz +
b2
1D + a2 − 2D2

D
(13)

− 1
2

�
−4D3a1b1 + 8D4 − 6a2D2 + a2b2

1D − 2b2
1D

3 + a4

D3

�
z

+
1
2

�
2a2

1D
3 − a2b2

1D − a4 + 2a2D2

D3

�
(14)

which does not lead to an obvious contradiction.
Note that both coefficients in (14) must be zero. Moreover, a �= 0, since if

a = 0 then F (z) = z2 − z. Also, if a1 = 0, then using (11), (b1z)2 − 2Dz(1 + z2) =
F (z)Q1z. Since F (z) is monic, F (z) = z2−(b2

1/2D)z+1. However, from (12), since
1 = a2/2D2 implies

√
2 is rational, we have a contradiction. Because of the second

term in (14), we have 2a2
1D

3 = a2b2
1D+a4−2a2D2. Dividing through by a2, we have

b2
1D + a2 − 2D2 = 2a2

1D
3/a2. Substituting this into (13), −2Dz + (2a2

1D
2)/(a2).

This means that z = −P/Q = (a1/a)2D solves (a1 + b1z)2 − 2Dz(1 + z2) = 0.
Replacing z = (a1/a)2D into (a1 + b1z)2 = 2Dz(1 + z2) we have D2 = 2n2 − s4 for
s = a1D/a and n = (a2 + a1b1D)/(2a) where n, s ∈ Q.

The existence of n, s ∈ Q satisfying 2n2 − s4 = D2, though a sufficient condition
for square-free D > 1 to be a congruent number, is not necessary.

Lemma 8. If D is a square-free even integer, D2 = 2n2 − s4 for n, s ∈ Q is

impossible.

Proof. Assume that D2 = 2n2−s4 for some rational numbers n and s, and multiply
through by the least common multiple z of the denominators of n and s to obtain
an equation D2z4 + s4

1 = 2m2, where m and s1 are integers. Write D = 2D1, z =
2bz1, s1 = 2cs2 and m = 2dm1, where D1, z1, s2,m1 are odd with c, d ≥ 1. Then
24b+2D2

1z
4
1 + 24cs4

2 = 22d+1m2
1. The highest power of 2 dividing the right-hand side

is 22d+1. We look now at the highest power of 2 dividing the left-hand side. Since
4b + 2 �= 4c, this highest power is exactly equal to min{24b+2, 24c}. Clearly, in any
case, this is not equal to 22d+1, and this contradiction completes the proof.

3. Type 2 Solutions: Both x2 and y2 Are Rational

Theorem 9. (Solutions of type 2.) If nontrivial quadratic solutions exist to x4 +
y4 = D2 and x2, y2 ∈ Q, then D is a congruent number. Conversely, if D is a
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congruent number, then there are infinitely many rational solutions (x1, y1) to the

equation x4
1 + y2

1 = D2. Therefore, for each such solution (x1, y1) in positive ratio-

nals, (x, y) = (x1,
√

y1) is a solution to (1) in Q(√y1) with x2, y2 ∈ Q. Furthermore,

the list of such fields Q(√y1) is infinite.

Proof. If x2, y2 ∈ Q, clearly t = (D − x2)/y2 is rational. Using (6) and (7) x2 =
(p1 + q1

√
d)2 = p2

1 + 2p1q1

√
d + q2

1d and y2 = (p2 + q2

√
d)2 = p2

2 + 2p2q2

√
d + q2

2d,
2p1q1

√
d = 0 and 2p2q2

√
d = 0. Thus, we have four cases to consider, when p1 =

p2 = 0, q1 = q2 = 0, p1 = q2 = 0, and q1 = p2 = 0.

Case A. If either p1 = p2 = 0 or q1 = q2 = 0, then either x/y = (q1/q2)2 or
(p1/p2)2. In either case, (x/y)2 ∈ Q2 so x/y = m. Since (x/y)2 = (1 − t2)/2t,
t2 + 2m2t − 1 = 0. Because t is rational, the discriminate must be in Q2. Then
there exists n2 ∈ Q such that m4 + 1 = n2 which Fermat proved has no nontrivial
solutions.

Case B. If either q1 = p2 = 0 or p1 = q2 = 0 , then x2 = p2
1, y2 = dq2

2 or x2 = dq2
1 ,

y2 = p2
2. Without loss of generality, assume x2 = p2

1, y
2 = dq2

2 , replace into (1)
to obtain p4

1 + d2q4
2 = D2 for non-zero rational numbers p1, q2, and d, a non-zero

integer.
Lucas’ equation (2), u4 − D2v4 = z2, and p4

1 + (dq2
2)2 = D2 are birationally

equivalent with the following mutual inverse correspondences:

(u, v, z)→
�

1,
p1

D
,
dq2

2

D

�
,

�
p1, dq2

2

�
→

�
Dm

v
,
Dn

v2

�
.

Since (2) and (3) are birationally equivalent, there are infinitely many rational
solutions to x4

1 +y2
1 = D2 [13] . Thus, each such solution x1, y1 in positive rationals,

(x, y) = (x1,
√

y1) is a solution to (1) which lie in Q(√y1). To see that there are
infinitely many Q(√y1), assume to the contrary that there are a finite number of
fields Q(√y1). Since there are an infinite number of points on the curve x4 + y4 =
D2z4, due to these type 2 solutions, there must be at least one field with infinitely
many solutions. However, x4 + y4 = D2z4 is a curve of genus 3, which by Falting’s
Theorem, has finitely many points in the number field. Thus, the list of such fields
Q(√y1) is infinite.

4. Conclusions

We have proven that nontrivial solutions to x4 + y4 = D2 exist in a quadratic
number field precisely when either D is a congruent number or D = 1. If there are
solutions of type 1, when neither x2 nor y2 are rational, we have proven that there
are conjugate solutions of type 1 in the quadratic field Q(

√
4n− 3s2) where n, s ∈ Q

satisfies D2 = 2n2 − s4. We have not proven that all solutions of type 1 occur as
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conjugate pairs. We have proven that {D : D �= 1,∃n, s ∈ Q,D2 = 2n2 − s4}
is a proper subset of the congruent numbers, but we have not characterized this
proper subset any further. We have proven solutions of type 2, when x2, y2 ∈ Q, to
x4 + y4 = D2 occur if and only if D is a congruent number and there are infinitely
many quadratic fields with solutions.
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