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Abstract
We determine the product of the invertible quadratic residues in Zn. This is a
variation on Gauss’ generalization of Wilson’s Theorem. From this we deduce that
for twin primes p, p + 2, the product of the invertible quadratic residues in Zp(p+2)

is ±(p+1), where the sign depends on the residue class of p modulo 4. We examine
necessary and sufficient conditions for consecutive odd natural numbers m,m+2 to
satisfy this property of twin primes. The paper concludes with two open questions.

1. Introduction

Wilson’s theorem can be expressed as follows: if n is a natural number, then n is
prime if and only if ∏

s∈Zn\{0}

s ≡ −1 (mod n).

Gauss’ generalization of Wilson’s Theorem states that if I denotes the set of invert-
ible elements in Zn, then

∏

s∈I

s ≡
{
−1 : if n = 4, pα, 2pα (p an odd prime)

1 : otherwise
(mod n).

Gauss stated this in [6, art. 78], writing “For the sake of brevity we omit the proof
and only observe that it can be done as in the preceding article [which gave a proof
of one direction of Wilson’s theorem] except that the congruence x2 ≡ 1 can have
more than two roots, which require some special considerations.” According to [5,
Chap. III], proofs of Gauss’ generalization of Wilson’s Theorem were provided by
Minding (1832), Brennecke (1839), Crelle (1840), Prouhet (1845), Arndt (1846),
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Dirichlet (1863), Schering (1882), Daniels (1890) and Kronecker (1901). Then in
1903, Miller gave a very elegant proof using group theory [7].

Several generalizations of the Gauss-Wilson theorem have been given [2, 9, 3, 4].
Our generalization looks at the product of the invertible quadratic residues. Suppose
that n is a natural number, I is the set of invertible elements in Zn and R is the
set of quadratic residues (i.e., squares) in Zn. We prove:

Theorem 1. If n ∈ N has prime decomposition n = pr1
1 · · · prk

k , then
∏

s∈I∩R s ≡ 1
(mod n) unless there is precisely one prime pi with pi ≡ 1 (mod 4), and in this case∏

s∈I∩R s is congruent modulo n to the unique element of Zn that is congruent to
−1 modulo pri

i and congruent to 1 modulo n/pri
i .

This result generalizes the well-known fact that if n = p is prime, the product
of the invertible quadratic residues is −1 (mod p) if and only if p ≡ 1 (mod 4); see
[8, p. 75] for example.

Suppose that p, p + 2 are twin primes and let n = p(p + 2). Then the following
condition holds:

∏

s∈I∩R

s ≡ (p + 1) · (−1)
p+1
2 (mod p(p + 2)). (C)

Indeed, condition (C) can be deduced from Theorem 1 or alternately, it can be
established directly in 5 easy steps:

1. As p and q := p + 2 are prime, the only elements that are their own inverse
in Zpq are ±1,±(p + 1).

2. Each invertible square will have a distinct inverse which is also a square,
except those that are their own inverse.

3. −1 is not a square in Zpq because −1 will be square in Zp or in Zq but not in
both.

4. p + 1 is a square in Zp, and if q ≡ 1 (mod 4) then p + 1 is a square in Zq,
therefore also in Zpq. Similarly, (−p−1) is square in Zq, and if p ≡ 1 (mod 4)
then −p− 1 is a square in Zp, therefore also in Zpq

5. So either p+1 or −p−1 is a square in Zpq, and the product of all the invertible
squares equals the square in question.

The main purpose of this note is to determine which consecutive odd natural
numbers p, p+2 verify condition (C). This follows considerations of related questions
in [1]. As before, let I (resp. R) denote the set of invertible elements (resp. quadratic
residues) in Zp(p+2). We have:

Theorem 2. Let p > 1 be a natural number. Condition (C) holds if and only if
one of the following conditions holds:
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(a) p = qk where q is prime and q ≡ 1 (mod 4), and each of the prime divisors
of p + 2 is congruent to 3 (mod 4),

(b) p+2 = qk where q is prime and q ≡ 1 (mod 4), and each of the prime divisors
of p is congruent to 3 (mod 4).

Note that if condition (a) holds, then p ≡ 1 (mod 4) and so p + 2 ≡ 3 (mod 4);
thus, as the prime divisors of p+2 are each congruent to 3 (mod 4), the sum of the
exponents in the prime decomposition of p + 2 is odd. Similarly, if condition (b)
holds, the sum of the exponents in the prime decomposition of p is odd.

2. Preliminaries and Proof of Theorem 1

Let n be an odd natural number, let n = pr1
1 · · · prk

k be its prime decomposition and
let K = {1, . . . , k} be the set of indices.

Lemma 3. There are 2k solutions to the equation x2 = 1 in Zn. For S = K, set
xS := 1. If S is a proper subset of K, let S′ denote the complement of S in K,
let S =

∏
i∈S pri

i , let S
−1 denote the smallest positive residue of the multiplicative

inverse of S in ZS′ , and finally set

xS := −2 · S−1 · S + 1.

Then {xS : S ⊆ K} is the set of solutions of x2 = 1 in Zn.

Remark 4. For S %= K, note that xS−1 is divisible by S and xS+1 = 2(1−S
−1 ·S),

which is a multiple of S′. So xS ≡ 1 (mod S) and xS ≡ −1 (mod S′). Thus xS ≡ 1
(mod pi) for all i ∈ S and xS ≡ −1 (mod pi) for all i ∈ S′. In particular, the xS

are distinct. Note that for S equal to the empty set, S = 1, S′ = n and S
−1 = 1, so

xS = −1.

Proof of Lemma 3. If x2 = 1 in Zn, then for each prime pi, for i = 1, . . . , k, we
have x ≡ ±1 (mod pri

i ). For each choice of S ⊆ K, the Chinese remainder theorem
gives a unique solution x in Zn for which x ≡ 1 (mod pri

i ) for all i ∈ S and x ≡ −1
(mod pri

i ) for all i ∈ S′. Conversely, if x satisfies this condition, then x − 1 is
divisible by pi for all i ∈ S and x + 1 is divisible by pi for all i ∈ S′, and thus
x2 − 1 = (x − 1)(x + 1) is zero in Zn. So there are precisely 2k solutions to the
equation x2 = 1 in Zn, one for each subset S ⊆ K. !

Note that xS is a quadratic residue in Zn if and only if xS is a quadratic residue
in Zpi for all i ∈ K. Moreover, −1 is a quadratic residue in Zpi if and only if pi ≡ 1
(mod 4). Thus, since xS ≡ 1 (mod pi) for all i ∈ S and xS ≡ −1 (mod pi) for all
i ∈ S′, we have the following result, which we record as a lemma.
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Lemma 5. xS is a quadratic residue in Zn if and only if pi ≡ 1 (mod 4) for all
i ∈ S′.

Lemma 6. The following conditions are equivalent:

(a) There is exactly one proper subset S of K such that xS is a quadratic residue
in Zn.

(b) There is exactly one element i ∈ K with pi ≡ 1 (mod 4).

Proof. By Lemma 5, the subsets S ⊆ K,S %= K, such that xS is a quadratic
residue are precisely the complements of the nonempty subsets of {i ∈ K : pi ≡ 1
(mod 4)}. !

Proof of Theorem 1. Let J denote the subset of R of elements that are their own
inverse in Zn. Clearly, ∏

s∈I∩R

s =
∏

s∈J

s.

Notice that J forms a subgroup of the multiplicative group of Zn. Moreover, each
element of J has order 2. But it is a general fact that in a finite Abelian group in
which each element has order 2, the product of the elements is 1 unless the group has
order 2; i.e., it has only one non trivial element. In the latter case, by Lemma 6 and
its proof, there is exactly one element i ∈ K with pi ≡ 1 (mod 4) and

∏
s∈J s = xS ,

where S = K\{i}. By Remark 4, xS is the unique element of Zn that is congruent
to −1 modulo pri

i and congruent to 1 modulo n/pri
i . This completes the proof. !

3. Proof of Theorem 2

We will give the proof in the case where p ≡ 3 (mod 4). The other case is treated
in an entirely analogous manner.

Let pr1
1 · · · prk

k be the prime decomposition of n := p(p+2) and let K = {1, . . . , k}.
Let P (resp. Q) be the set of elements i ∈ K for which pi is a divisor of p (resp.
p + 2); so P ∩Q = ∅ and P ∪Q = K. Note that P = p,Q = p + 2 and xP ≡ p + 1
(mod n). Indeed, by Lemma 3, xP is the unique element that is congruent to 1
modulo p and −1 modulo p + 2, and p + 1 has these properties. As in the proof of
Theorem 1, let J denote the subset of R of elements that are their own inverse in
Zn. So

∏
s∈I∩R s =

∏
s∈J s.

We now show that conditions (a) and (b) of the theorem are sufficient. In fact,
case (a) does not occur when p ≡ 3 (mod 4). In case (b), by Lemma 6, P is the
only proper subset of K such that xP is a quadratic residue in Zn. As we observed
above, xP ≡ p + 1 (mod n). So, as (−1)

p+1
2 = 1, condition (C) holds.
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Figure 1: Tn/Cn for n ≤ 2, 000, 000

Conversely, suppose that condition (C) holds, so
∏

s∈I∩R s = p + 1. From Theo-
rem 1, there is a unique prime pi with pi ≡ 1 (mod 4), and in this case

∏
s∈I∩R s is

congruent modulo n to the unique element of Zn that is congruent to −1 modulo
pri

i and congruent to 1 modulo n/pri
i . Thus there exists a, b ∈ N such that

p + 1 = −1 + apri
i , (1)

p + 1 = 1 + bn/pri
i . (2)

Now, (1) gives p + 2 = apri
i and using this, (2) gives p = bn/pri

i = abp. Hence
a = b = 1, and so p + 2 = pri

i . This establishes condition (b) and completes the
proof.

4. Two Questions

There are two obvious questions:

Question 1. Are there infinitely many odd natural numbers p for which condition
(C) holds?

Given n ∈ N, let Tn denote the number of primes p < n for which p+2 is prime,
and let Cn denote the number of odd natural numbers p < n for which condition
(C) holds.

Question 2. Is lim
n→∞

Tn

Cn
strictly positive?

Figure 1 shows values of Tn/Cn for n ≤ 2,000,000, calculated using Mathematica.
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