PARTITION OF AN INTEGER INTO DISTINCT BOUNDED PARTS, IDENTITIES AND BOUNDS

Mohammadreza Bidar ${ }^{1}$
Department of Mathematics, Sharif University of Technology, Tehran, Iran mre.bidar@gmail.com

Received: 3/15/11, Accepted: 1/10/12, Published: 1/13/12

Abstract

The partition function $Q(n)$, which denotes the number of partitions of a positive integer n into distinct parts, has been the subject of a dozen papers. In this paper, we study this kind of partition with the additional constraint that the parts are bounded by a fixed integer. We denote the number of partitions of an integer n into distinct parts, each $\leq k$, by $Q_{k}(n)$. We find a sharp upper bound for $Q_{k}(n)$, and more, an infinite series lower bound for the partition function $Q(n)$. In the last section, we exhibit a group of interesting identities involving $Q_{k}(n)$ that arise from a combinatorial problem.

1. Introduction

Let $Q(n)$ be the number of ways of partitioning a positive integer n into distinct summands. The generating function for this kind of partition is

$$
\begin{equation*}
Q(x)=\sum_{n=0}^{\infty} Q(n) x^{n}=\prod_{j=1}^{\infty}\left(1+x^{j}\right) \tag{1}
\end{equation*}
$$

Euler noted that he could easily convert $Q(x)$ to something else, which is in fact another generating function:

$$
Q(x)=\prod_{j=1}^{\infty}\left(1+x^{j}\right)=\frac{\prod_{j=1}^{\infty}\left(1-x^{2 j}\right)}{\prod_{j=1}^{\infty}\left(1-x^{j}\right)}=\prod_{j=1}^{\infty} \frac{1}{1-x^{2 j-1}}
$$

The last product is the generating function for partitioning an integer into odd summands. Consequently, he concluded that there was a bijection between the set of partitions of a positive integer n into distinct parts, and set of partitions of n

[^0]into odd parts. To read a brief history of Euler work concerning this bijection see, [9].

If $\sigma^{o}(n)$ denotes the odd divisor function, i.e., the sum of odd divisors of n, then the partition function $Q(n)$ satisfies the recurrence equation (see [1], p. 826)

$$
\begin{equation*}
Q(n)=\frac{1}{n} \sum_{k=0}^{n-1} Q(k) \sigma^{o}(n-k), n>0 \tag{2}
\end{equation*}
$$

It is easily seen that $\sigma^{o}(n)=\sigma(n)-\frac{1}{2} \sigma\left(\frac{n}{2}\right)=\sigma(n) /\left(2^{a(n)+1}-1\right)$, where $\sigma(n)$ is the sum of divisors of n, and $a(n)$ is the power of 2 in the decomposition of n into prime factors. Therefore, we are able to modify our recurrence equation as follows:

$$
\begin{equation*}
Q(n)=\frac{1}{n} \sum_{k=1}^{n} \frac{\sigma(k)}{2^{a(k)+1}-1} Q(n-k), n>0 \tag{3}
\end{equation*}
$$

An investigation in the table of amounts of $Q(n)$ for large numbers demonstrates that it has a considerably slower growth than the unrestricted partition function $P(n)$. To have a comparison with $P(n)$, it is worthwhile to mention Rademacher like series for $Q(n)$ (see [5], [6] and [7]):

$$
Q(n)=\frac{1}{2} \sqrt{2} \sum_{k=1}^{\infty} A_{2 k-1}(n)\left\{\frac{d}{d n^{\prime}}\left[J_{0}\left(\frac{\pi i}{2 k-1}, \sqrt{\frac{1}{3}\left(n^{\prime}+\frac{1}{24}\right)}\right)\right]\right\}_{n=n^{\prime}}
$$

where

$$
A_{k}(n)=\sum_{\substack{h=1 \\(h, k)=1}}^{k} e^{\pi i[s(h, k)-s(2 h, k)]} e^{-2 \pi i h n / k}, \quad s(h, k)=\sum_{r=1}^{k-1} \frac{r}{k}\left(\frac{h r}{k}-\left\lfloor\frac{h r}{k}\right\rfloor-\frac{1}{2}\right)
$$

Here $s(h, k)$ is a Dedekind sum, and $J_{0}(x)$ is the zeroth order Bessel function of the first kind. This series representation of $Q(n)$ leads to an asymptotic formula for $Q(n)$:

$$
\begin{equation*}
Q(n) \sim \frac{1}{4 \cdot 3^{1 / 4} n^{3 / 4}} e^{\pi \sqrt{\frac{n}{3}}}, \quad \text { as } n \rightarrow \infty \tag{4}
\end{equation*}
$$

Comparing this asymptotic formula with the one for $P(n)$ demonstrates the slower growth of $Q(n)$ (see also [4], pp. 574-580). In Sections 2 and 3, we derive suitable upper and lower bounds for the partition function $Q(n)$.

It is well known that the general partition function $P(n), n>0$, is convex (see [8]). The convexity for the amounts of $Q(n)$ takes place if $n \geq 4$, which means that the inequality $Q(n) \leq \frac{1}{2}\{Q(n+1)+Q(n-1)\}$ holds for $n \geq 4$. A short proof of this fact is presented in Section 3.

In this paper, we are mainly concerned to a restricted form of partition of an integer into distinct parts. Let $Q_{k}(n)$ denote the number of partitions of a positive
integer n into distinct parts, each $\leq k$. This partition function has an interesting combinatorial interpretation. If $X=\{1,2,3, \cdots, k\}$, then $Q_{k}(n)$ is the number of subsets of X for which the sum of the members is n. The partition function $Q_{k}(n)$ has the generating function

$$
\begin{equation*}
Q_{k}(x)=\prod_{j=1}^{k}\left(1+x^{j}\right)=\sum_{n=0}^{\theta} Q_{k}(n) x^{n}, \quad \theta=\frac{k(k+1)}{2} \tag{5}
\end{equation*}
$$

We know that $Q_{k}(x)$ is a symmetric unimodal polynomial. It means that its coefficients goes up to somewhere, (for $Q_{k}(x)$ the climax occurs at $\left\lfloor\frac{k(k+1)}{4}\right\rfloor$) then symmetrically goes down. The symmetry of the coefficients is almost evident, but proving the unimodal property of $Q_{k}(x)$ is difficult. To my knowledge there is not a known combinatorial proof for this fact, but there is a non-elementary proof based on semi-simple Lie Algebras. The interested reader might have a look at [10] to see a proof of the unimodal property for $Q_{k}(x)$ (For further discussion on the unimodal property and Lie algebras see, [12]). Since $Q(n)=Q_{k}(n)$ for each $k>n$, the unimodal property of $Q_{k}(x)$ leads to the monotonicity of the partition function $Q(n)$.

Let $P_{k}(n)$ denote the number of partitions of an integer n into parts, each $\leq k$, and let $P_{k}(x)$ be its generating function. The relation between $Q_{k}(n)$ and $P_{k}(n)$ can be stated by means of the identity

$$
P_{k}(x)=\frac{1}{\prod_{j=1}^{k}\left(1-x^{j}\right)}=\frac{\prod_{j=1}^{k}\left(1+x^{j}\right)}{\prod_{j=1}^{k}\left(1-x^{2 j}\right)}=P_{k}\left(x^{2}\right) Q_{k}(x),
$$

which leads to a recurrence equation relating $P_{k}(n)$ to $Q_{k}(n)$:

$$
\begin{equation*}
P_{k}(n)=\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} Q_{k}(n-2 i) P_{k}(i) \tag{6}
\end{equation*}
$$

2. An Elementary Upper Bound for $Q_{k}(n)$

Pribitkin [11] has introduced a remarkable elementary method to obtain a sharp upper bound for the partition function $P_{k}(n)$. With modification of his method, we are able to find a sharp upper bound for $Q_{k}(n)$. As in [11], we employ the dilogarithm function $L i_{2}(x)=\sum_{m=1}^{\infty} \frac{x^{m}}{m^{2}}$, where $|x|<1$. It is clear that $L i_{2}(1)=$ $\frac{\pi^{2}}{6}$. We also will need the simple fact $e^{x}-e^{-x}>2 x$ for $x>0$, that has appeared in [11]. The main result of this section is stated in the next theorem.
Theorem 1. Let k, n be positive integers, $n \leq\left\lfloor\frac{k(k+1)}{4}\right\rfloor$. Then we have the following inequality:

$$
Q_{k}(n)<\frac{A(k, n)}{\sqrt{n}} e^{\pi \sqrt{n / 3}-\frac{1}{\pi} \sqrt{3 n} L i_{2}\left(e^{-\pi \alpha / \sqrt{3 n}}\right)}
$$

where $A(k, n)=\frac{2 \sqrt{n}}{k^{2}+k-4 n+2}+\frac{\pi}{2 \sqrt{3}}, \alpha=\lceil k / 2\rceil$.
Proof. If $0<x<1$, we have

$$
Q_{k}(x)=\prod_{j=1}^{k}\left(1+x^{j}\right)<\frac{1}{(1-x)\left(1-x^{3}\right) \cdots\left(1-x^{2 \alpha-1}\right)}
$$

After taking logarithm, we observe that

$$
\begin{aligned}
\log \left(Q_{k}(x)\right)<-\sum_{j=1}^{\alpha} \log \left(1-x^{2 j-1}\right) & =\sum_{j=1}^{\alpha} \sum_{m=1}^{\infty} \frac{x^{(2 j-1) m}}{m} \\
& =\sum_{m=1}^{\infty} \frac{1}{m} \sum_{j=1}^{\alpha} x^{(2 j-1) m} \\
& =\sum_{m=1}^{\infty} \frac{1}{m} \frac{x^{m}}{1-x^{2 m}}\left(1-x^{2 \alpha m}\right)
\end{aligned}
$$

Now we let $x=e^{-u}, u>0$, to find that

$$
\begin{aligned}
\log \left(Q_{k}\left(e^{-u}\right)\right)<\sum_{m=1}^{\infty} \frac{e^{-m u}\left(1-e^{-2 \alpha m u}\right)}{m\left(1-e^{-2 m u}\right)} & =\sum_{m=1}^{\infty} \frac{1-e^{-2 \alpha m u}}{m\left(e^{m u}-e^{-m u}\right)} \\
& <\frac{1}{2 u} \sum_{m=1}^{\infty} \frac{1-e^{-2 \alpha m u}}{m^{2}} \\
& =\frac{1}{2 u}\left(\frac{\pi^{2}}{6}-L i_{2}\left(e^{-2 \alpha u}\right)\right) .
\end{aligned}
$$

We exploit the unimodal and symmetry properties of $Q_{k}(x)$ to obtain that for all $0<x<1$, and $n \leq \frac{k(k+1)}{4}$,

$$
Q_{k}(x) \geq Q_{k}(n)\left(x^{n}+x^{n+1}+\cdots+x^{\frac{k(k+1)}{2}-n}\right)=Q_{k}(n) x^{n} \frac{1-x^{\frac{k(k+1)}{2}-2 n+1}}{1-x}
$$

Therefore, we realize that

$$
\begin{aligned}
\log \left(Q_{k}(n)\right)< & n u+\log \left(1-e^{-u}\right)-\log \left(1-e^{-\left(\frac{k(k+1)}{2}-2 n+1\right) u}\right) \\
& +\frac{1}{2 u}\left(\frac{\pi^{2}}{6}-L i_{2}\left(e^{-2 \alpha u}\right)\right) \\
< & n u+\log (u)-\log \left(1-e^{-\left(\frac{k(k+1)}{2}-2 n+1\right) u}\right) \\
& +\frac{1}{2 u}\left(\frac{\pi^{2}}{6}-L i_{2}\left(e^{-2 \alpha u}\right)\right)
\end{aligned}
$$

Here we have applied the simple estimation $1-e^{-x}<x$, that is valid for $x>0$. Now we let $u=\frac{1}{\lambda \sqrt{n}}, \lambda>0$, and estimate the best λ. Substitute u by $u=\frac{1}{\lambda \sqrt{n}}$ in the right hand side of the inequality to find that

$$
Q_{k}(n)<\frac{e^{\left(\frac{1}{\lambda}+\frac{\pi^{2} \lambda}{12}\right) \sqrt{n}}}{\lambda \sqrt{n}} \frac{e^{-\frac{1}{2} \lambda \sqrt{n} L i_{2}\left(e^{-2 \alpha u}\right)}}{\left(1-e^{-\left(\frac{k(k+1)}{2}-2 n+1\right) \frac{1}{\lambda \sqrt{n}}}\right)}
$$

Calculate the best possible λ to minimize the multiple of \sqrt{n} at the first exponential term; it turns out that $\lambda=\frac{2 \sqrt{3}}{\pi}$ and $u=\frac{\pi}{2 \sqrt{3 n}}$. Hence we conclude that

$$
\begin{equation*}
Q_{k}(n)<\frac{\pi e^{\pi \sqrt{n / 3}}}{2 \sqrt{3 n}} \frac{e^{-\frac{1}{\pi} \sqrt{3 n} L i_{2}\left(e^{-\pi \frac{\alpha}{\sqrt{3 n}}}\right)}}{\left(1-e^{-\left(\frac{k(k+1)}{2}-2 n+1\right) \frac{\pi}{2 \sqrt{3 n}}}\right)} . \tag{7}
\end{equation*}
$$

Note that for $x \geq 0,1+x \leq e^{x}$, or $e^{-x} \leq 1 /(1+x)$. Subtracting both sides from 1 , gives us the estimate

$$
\frac{x}{1+x} \leq 1-e^{-x}
$$

the proof is now complete when we apply this inequality to the right hand side of (7) for $x=\left(\frac{k(k+1)}{2}-2 n+1\right) \frac{\pi}{2 \sqrt{3 n}}$.

Fix n and let $k \rightarrow \infty$; since $A(k, n)$ tends to $\frac{\pi}{2 \sqrt{3}}$, and $e^{-\frac{1}{\pi} \sqrt{3 n} L i_{2}\left(e^{-\pi \alpha / \sqrt{3 n}}\right)}$ tends to 1 , we are able to determine a very nice upper bound for $Q(n)$.

Corollary 2. Let $Q(n)$ denote the number of unrestricted partitions into distinct parts. Then, we have

$$
Q(n)<\frac{\pi e^{\pi \sqrt{n / 3}}}{2 \sqrt{3 n}}
$$

Remark. It is clear that for all feasible amounts of k, n, the value of $e^{-\pi \frac{\alpha}{\sqrt{3 n}}}$ is small enough to make $L i_{2}(x)>x$ a good estimation; hence we conclude that

$$
Q_{k}(n)<\frac{A(k, n)}{\sqrt{n}} e^{\left(\pi / \sqrt{3}-e^{-\pi \frac{\alpha}{\sqrt{3 n}}} \sqrt{3} / \pi\right) \sqrt{n}} .
$$

3. Simple Lower Bounds for $Q(n)$

Analytic methods, like the saddle point method (see [4], pp. 541-608) are excellent for asymptotic estimations or finding upper bounds, but they seem poor to derive lower bounds. Likewise, the dilogarithm scheme is not applicable to find a lower bound for $Q_{k}(n)$. However, we are able to find a lower bound for $Q(n)$ by applying other methods. First, we take a detour and prove the convexity of $Q(n)$.

Lemma 3. If $n>3$, then $Q(n) \leq \frac{1}{2}\{Q(n+1)+Q(n-1)\}$.
Assuming $n>3$, we need to show that $Q(n+1)-Q(n) \geq Q(n)-Q(n-1)$. Consider a partition of n into distinct parts and increase the greatest summand by 1 ; we obtain a partition of $n+1$ into distinct parts in which the two greatest summands differ by at least 2 . Conversely, we can delete a 1 from the greatest summand of such partition and obtain a partition of n with distinct parts (for single part partitions of $n, n+1$ there is a similar correspondence).

Therefore, there is a bijection between the entire set of partitions of n into distinct summands, and set of distinct part partitions of $n+1$ for which the greatest summand is at least 2 more than the previous one (this set includes the single part partition of $n+1)$. Hence, we find that $Q(n+1)-Q(n)$ is the cardinality of the set of all partitions of $n+1$ into (more than 1) distinct summands with the greatest summand exactly 1 more than the previous summand. Denote this set by Y, and the analogous set pertaining to n by X.

Decompose X into two disjoint sets, one consisting of those partitions that contain 1, say X_{1}, and the other one including all partitions without 1 in their summands, say X_{2}. Partition Y in a similar way, and assume that $\left(1, \lambda_{1}, \cdots, k_{1}-\right.$ $\left.1, k_{1}\right) \in X_{1},\left(\lambda_{1}^{\prime}, \cdots, k_{2}-1, k_{2}\right) \in X_{2}$ (note that since $n>3, k_{1}, k_{2}>2$). Define the two mappings σ_{1}, σ_{2} in the following way:

$$
\begin{aligned}
& \sigma_{1}: X_{1} \rightarrow Y_{2}, \quad \sigma_{1}\left[\left(1, \lambda_{1}, \cdots, k_{1}-1, k_{1}\right)\right]=\left(\lambda_{1}, \cdots, k_{1}, k_{1}+1\right), \\
& \sigma_{2}: \quad X_{2} \rightarrow Y_{1}, \quad \sigma_{2}\left[\left(\lambda_{1}^{\prime}, \cdots, k_{2}-1, k_{2}\right)\right]=\left(1, \lambda_{1}^{\prime}, \cdots, k_{2}-1, k_{2}\right) .
\end{aligned}
$$

It is quite straightforward to see that σ_{1} is an injection from X_{1} into Y_{2}, and σ_{2} is a bijection between X_{2}, Y_{1}. Therefore, $\left|X_{1}\right| \leq\left|Y_{2}\right|,\left|X_{2}\right|=\left|Y_{1}\right|$, and we conclude that $|X| \leq|Y|$.

The recurrence equation (3) together with the convexity of $Q(n)$ leads us to the following lower bound.
Theorem 4. If $n>0$, then $Q(n)$ satisfies the following inequality:

$$
Q(n)>e^{-\frac{7}{12}} \sum_{k=1}^{\infty} \frac{(7 / 12)^{k}}{k!}\binom{n+k-1}{n}
$$

Proof. Starting with the equation (3), we divide the right hand sum into parts, each consisting of four consecutive terms with the first one index in the form $4 t+1$. If $k=4 t+1>1$, then we have

$$
\begin{aligned}
\sum_{j=0}^{3} \sigma^{o}(k+j) Q(n-k-j) \geq & (k+1) Q(n-k)+\frac{k+2}{3} Q(n-k-1) \\
& +(k+3) Q(n-k-2)+Q(n-k-3) \\
\geq & \frac{7}{12} \sum_{j=0}^{3}(k+j) Q(n-k-j)
\end{aligned}
$$

To acquire the last inequality, we have applied the monotonicity of $Q(n), n \geq 0$ (the last inequality also holds for the last part which may have less than 4 terms).

For $k=1$, we could write that

$$
\begin{aligned}
\sum_{j=1}^{4} \sigma^{o}(j) Q(n-j) & =Q(n-1)+Q(n-2)+4 Q(n-3)+Q(n-4) \\
& >\frac{7}{12} \sum_{j=1}^{4} j Q(n-j)+\frac{1}{3} Q(n-1)
\end{aligned}
$$

Here, we have exploited the monotonicity of $Q(n)$ and the fact $Q(n-1)+Q(n-3)>$ $2 Q(n-2)$, valid for $n>5$. Thus, we conclude that

$$
Q(n) \geq \frac{1}{3 n} Q(n-1)+\frac{7}{12 n} \sum_{k=1}^{n} k Q(n-k), n>5
$$

Now, we define the function $t(n)$ by the recurrence equation

$$
t(n)=\frac{7}{12 n} \sum_{k=1}^{n} k t(n-k), t(0)=1
$$

A direct computation shows that $Q(i) \geq t(i), 1 \leq i \leq 5$. Hence, $Q(i) \geq t(i), i \geq 0$. Let $T(x)$ be the generating function of $t(n)$. It is easily seen that $T(x)$ satisfies the equation

$$
T(x) \sum_{i=0}^{\infty}(i+1) x^{i}=\frac{12}{7} T^{\prime}(x)
$$

After solving this differential equation, it turns out that

$$
T(x)=T_{0} e^{\frac{7}{12-12 x}}=T_{0} \sum_{k=0}^{\infty} \frac{(7 / 12)^{k}}{k!}(1-x)^{-k} .
$$

Since $t(0)=1$, the constant T_{0} is equal to $e^{-\frac{7}{12}}$. Thus, we have the following formula for $t(n), n>0$:

$$
t(n)=e^{-\frac{7}{12}} \sum_{k=1}^{\infty} \frac{(7 / 12)^{k}}{k!}\binom{n+k-1}{n}
$$

now the proof is complete.
Let $q_{k}(n)$ denote the number of partitions of an integer n into exactly k distinct parts (note that $q_{k}(n)$ is quite different from $Q_{k-1}(n-k)$). Clearly, $Q(n)=$ $\sum_{k=1}^{a} q_{k}(n), a=\left\lfloor\frac{1}{2}(-1+\sqrt{8 n+1})\right\rfloor$. It is easily verified that $q_{k}(n)=p_{k}\left(n-\binom{k}{2}\right)$. Since

$$
p_{k}(n) \geq \frac{1}{k!}\binom{n-1}{k-1}
$$

(see [2], pp. 56-57), we obtain a finite sum lower bound for $Q(n)$:

$$
\begin{equation*}
Q(n)=\sum_{k=1}^{a} p_{k}\left(n-\binom{k}{2}\right) \geq \sum_{k=1}^{a} \frac{1}{k!}\binom{n-\binom{k}{2}-1}{k-1} \tag{8}
\end{equation*}
$$

Remark. To improve the lower bound series in Section 3, one may sort terms of the recurrence identity concerning $Q(n)$, modulo 8 or even 16 ; also a similar argument could be done to derive a lower bound for the partition function $P(n)$. The first lower bound series is a quickly convergent satisfying lower bound. The second lower bound sum, although not as straightforward as the first one, is sharp. In fact, empirical evidence shows that if n is greater than 350000 , then the amount of the lower bound series is greater than $e^{0.84 \pi \sqrt{n / 3}} / n^{3 / 4}$, and for $n>12500$, the amount of the second lower bound is greater than $e^{0.93 \pi \sqrt{n / 3}} / n^{3 / 4}$.

4. Identities Involving Prime Factors of the Bound Integer

In this section, we find a group of interesting identities which arise from a combinatorial problem. The key idea here is the uniqueness of a basis representation for the cyclotomic field $Q\left(\zeta_{p}\right)$, when you look at it as a \mathbb{Q}-vector space. We consider

$$
(-x ; x)_{k}=\prod_{j=1}^{k}\left(1+x^{j}\right)=\sum_{n=0}^{\frac{k(k+1)}{2}} Q_{k}(n) x^{n}
$$

and consider p as an odd prime factor of k. Let ζ be the primitive p-th root of unity, i.e., $\zeta=e^{2 \pi i / p}$. Let $Q(\zeta)$ be the field extension of ζ over \mathbb{Q}. First, we calculate the amount of $(-\zeta ; \zeta)_{k}$ in $Q(\zeta)$. We have

$$
(-\zeta ; \zeta)_{k}=\prod_{j=1}^{k}\left(1+\zeta^{j}\right)=\left(\prod_{j=0}^{p-1}\left(1+\zeta^{j}\right)\right)^{k / p}
$$

Since ζ is a primitive root of unity we have

$$
P(z)=z^{p}-1=\prod_{j=0}^{p-1}\left(z-\zeta^{j}\right)
$$

Let $z=-1$ in this equation to find that

$$
\prod_{j=0}^{p-1}\left(1+\zeta^{j}\right)=2
$$

Therefore, we have $(-\zeta ; \zeta)_{k}=2^{k / p}$.

The polynomial

$$
\frac{P(z)}{z-1}=1+z+z^{2}+\cdots+z^{p-1}
$$

is a minimal polynomial for ζ over \mathbb{Q}. So we conclude that the set

$$
A=\left\{1, \zeta, \zeta^{2}, \zeta^{3}, \cdots, \zeta^{p-2}\right\}
$$

constitutes a \mathbb{Q}-basis for $Q(\zeta)$ as a \mathbb{Q}-vector space. Thus,

$$
(-\zeta ; \zeta)_{k}=2^{k / p}=2^{k / p} \cdot 1+0 \cdot \zeta+0 \cdot \zeta^{2}+\cdots+0 \cdot \zeta^{p-2}
$$

is the basis representation of $(-\zeta ; \zeta)_{k}$ in $Q(\zeta)$. On the other hand, let us assume that

$$
(-\zeta ; \zeta)_{k}=\prod_{j=1}^{k}\left(1+\zeta^{j}\right)=a_{0}+a_{1} \zeta+a_{2} \zeta^{2}+\cdots+a_{p-1} \zeta^{p-1}
$$

In fact, we have expanded the product and reduced the powers modulo p. It is clear that

$$
\begin{equation*}
a_{i}=\sum_{j=0}^{\alpha_{i}} Q_{k}(j p+i), \text { where } \alpha_{i}=\lfloor k(k+1) / 2 p-i / p\rfloor . \tag{9}
\end{equation*}
$$

The expansion above could be written in the form

$$
\left(a_{0}-a_{p-1}\right) \cdot 1+\left(a_{1}-a_{p-1}\right) \cdot \zeta+\left(a_{2}-a_{p-1}\right) \cdot \zeta^{2}+\cdots+\left(a_{p-2}-a_{p-1}\right) \cdot \zeta^{p-2}
$$

as a representation over the basis A. Since the representation over a basis is unique, we have the following system of equations:

$$
a_{0}-a_{p-1}=2^{k / p}, \quad a_{i}-a_{p-1}=0,1 \leq i \leq p-2 \quad \text { and } \quad \sum_{i=0}^{p-1} a_{i}=2^{k}
$$

which leads to the solution

$$
a_{0}=2^{k / p}+\frac{2^{k}-2^{k / p}}{p}, \quad a_{i}=\frac{2^{k}-2^{k / p}}{p} \text { for } 1 \leq i \leq p-1
$$

So we have the following result:
Theorem 5. Let k be a positive integer and p an odd prime factor of it. Then, we have the following identities:

$$
\sum_{j=0}^{\alpha_{0}} Q_{k}(j p)=2^{k / p}+\frac{2^{k}-2^{k / p}}{p}, \quad \sum_{j=0}^{\alpha_{i}} Q_{k}(j p+i)=\frac{2^{k}-2^{k / p}}{p} \text { for } 1 \leq i<p
$$

where $\alpha_{i}=\lfloor k(k+1) / 2 p-i / p\rfloor$.

4.1. Application

Case 1. Let $X=\{1,2,3, \cdots, k\}$, and consider p as an odd prime factor of k. We are interested in the number of subsets of X for which the sum of the members is congruent to i modulo p. In fact, $Q_{k}(i), Q_{k}(p+i), Q_{k}(p+2 i), \cdots$ are equal to the numbers of subsets of X for which the sum of the members are $i, p+i, p+2 i, \cdots$, respectively. Looking at equation (9) makes it clear that each a_{i} in the expansion of

$$
(-\zeta ; \zeta)_{k}=\prod_{j=1}^{k}\left(1+\zeta^{j}\right)=a_{0}+a_{1} \zeta+a_{2} \zeta^{2}+\cdots+a_{p-1} \zeta^{p-1}
$$

describes the number of subsets of X for which the sum of the members is congruent to i modulo p. So if we denote the sum of the members of $S \subseteq X$ by $\sigma(S)$, then we have

$$
\#\{S \subseteq X: \sigma(S) \equiv i \quad(\bmod p)\}=\left\{\begin{array}{ll}
2^{k / p}+\frac{2^{k}-2^{k / p}}{p}, & i=0 \\
\frac{2^{k}-2^{k / p}}{p}, & i \neq 0
\end{array} .\right.
$$

Case 2. In the case $X=\{1,2,3, \cdots, k\}, k=p t+1$, there would be a similar argument for the coefficients a_{i} of $(-\zeta ; \zeta)_{k}$. But in this case we have

$$
(-\zeta ; \zeta)_{k}=\left(\prod_{j=0}^{p-1}\left(1+\zeta^{j}\right)\right)^{t}(1+\zeta)=2^{(k-1) / p}+2^{(k-1) / p} \zeta
$$

So we have the following system of equations:

$$
\begin{aligned}
& a_{0}-a_{p-1}=2^{(k-1) / p}, \quad a_{1}-a_{p-1}=2^{(k-1) / p}, \\
& a_{i}-a_{p-1}=0,2 \leq i \leq p-2, \quad \text { and } \quad \sum_{i=0}^{p-1} a_{i}=2^{k},
\end{aligned}
$$

with the solutions

$$
a_{0}=a_{1}=\frac{2^{k}+(p-2) 2^{(k-1) / p}}{p}, \quad a_{i}=\frac{2^{k}+2^{(k+p-1) / p}}{p} \text { for } 2 \leq i \leq p-1
$$

Hence, we conclude that

$$
\#\{S \subseteq X: \sigma(S) \equiv i \quad(\bmod p)\}= \begin{cases}\frac{2^{k}+(p-2) 2^{(k-1) / p}}{p}, & i=0,1 \\ \frac{2^{k}+2^{(k+p-1) / p}}{p}, & i \neq 0,1\end{cases}
$$

Case 3. In the case $X=\{1,2,3, \cdots, k\}, k=p t-1$, we have

$$
(-\zeta ; \zeta)_{k}=\prod_{j=1}^{k}\left(1+\zeta^{j}\right)=\left(\prod_{j=0}^{p-1}\left(1+\zeta^{j}\right)\right)^{t-1} \prod_{j=1}^{p-1}\left(1+\zeta^{j}\right)=2^{(k-p+1) / p}
$$

which by a similar argument finally leads us to the following answer:

$$
\#\{S \subseteq X: \sigma(S) \equiv i \quad(\bmod p)\}= \begin{cases}2^{(k-p+1) / p}+\frac{2^{k}-2^{(k-p+1) / p}}{p}, & i=0 \\ \frac{2^{k}-2^{(k-p+1) / p}}{p}, & i \neq 0\end{cases}
$$

Remark. The problem can be solved for the cases $k=p t \pm(p-1) / 2$ in a similar way.

5. Concluding Remarks

Real Integral form of $\boldsymbol{Q}_{\boldsymbol{k}}(\boldsymbol{n})$. Consider $Q_{k}(z)$ az a complex variable generating function of $Q_{k}(n)$. The fact that it has no singularities at $z=1$ makes it possible to find a real integral form of $Q_{k}(n)$. Since $Q_{k}(z)$ is analytic over \mathbb{C}, we find that

$$
\begin{equation*}
Q_{k}(n)=\frac{1}{2 \pi i} \oint_{|z|=1} \frac{Q_{k}(z)}{z^{n+1}} d z \tag{10}
\end{equation*}
$$

Substituting z by $e^{i \theta}$, it follows that

$$
\begin{equation*}
Q_{k}(n)=\frac{2^{k-1}}{\pi} \int_{0}^{2 \pi} \cos \left[\frac{1}{4}\left(k^{2}+k-4 n\right) \theta\right]\left(\prod_{j=1}^{k} \cos \frac{j \theta}{2}\right) d \theta \tag{11}
\end{equation*}
$$

This formula enables us to study the behavior of $Q_{k}(n)$ for various amounts of k, n, on the background of basic calculus.

Let $q_{k}(n, r)$ denote the number of partitions of n with exactly r distinct parts, each $\leq k$. If $p_{k}(n, r)$ denotes the number of partitions of n with exactly r parts, each $\leq k$, it is easily seen that $q_{k}(n, r)=p_{k-r+1}\left(n-\binom{r}{2}, r\right)$, and $p_{k}(n, r)=p(k-$ $1, r, n-r)$, where $p(k, r, n)$ is the coefficient of q^{n} in the Gaussian polynomial

$$
\left[\begin{array}{c}
k+r \\
r
\end{array}\right]_{q}
$$

(see [2], pp. 33-36). Since $Q_{k}(n)$ is the sum of $q_{k}(n, r)$'s, having a lower bound on Gaussian polynomials coefficients leads to a finite sum lower bound for $Q_{k}(n)$.

In Section 4, if we had considered a factor m of k that was not necessarily prime, then we would have had to deal with the cyclotomic polynomial

$$
\begin{equation*}
\Phi_{m}(X)=\prod_{\zeta \in U_{m}^{\prime}}(X-\zeta) \tag{12}
\end{equation*}
$$

where U_{m}^{\prime} is the subset of primitive m-th roots of unity in the set of complex numbers (to learn more about cyclotomic fields see [3, pp. 140-148]. In this case, there are difficulties with a basis representation; also we have more variables than equations. However, it still is possible to obtain some new identities.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, New York: Dover, 1972.
[2] G. E. Andrews, The Theory of Partitions, Advanced Book Program Reading, Massachusetts: Addison-Wesley, 1976.
[3] H. Cohen, Number theory Volume I: Tools and Diophantine Equations, New York: SpringerVerlag, 2007.
[4] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge: Cambridge University Press, 2009.
[5] P. Hagis, Jr., Partitions into Odd and Unequal Parts, Trans. Amer. Math. Soc. 86, 1964a, 317-324.
[6] P. Hagis, Jr., On a Class of Partitions with Distinct Summands, Trans. Amer. Math. Soc. 112, 1964b, 401-415.
[7] P. Hagis, Jr., A Correction of Some Theorems on Partitions, Trans. Amer. Math. Soc. 118, 1965, 550.
[8] R. Honsberger, Morsel. 46 On the Partition Function p(n), More mathematical Morsels, The Mathematical Association of America, vol. 10, 1991, 237-239.
[9] B. Hopkins and R. Wilson, Euler's Science of Combinations, Studies in the History and Philosophy of Mathematics, Vol. 5, 2007, 395-408.
[10] J. W. B. Hughes, Partitions of integers and Lie algebras, Group Theoretical Methods in Physics: Sixth International Colloquium Tbingen, Editor: P. Kramer, A. Rieckers, Lecture Notes in Physics, vol. 79, 1977, 491-493.
[11] W. A. Pribitkin, Simple upper bounds for partition functions, Ramanujan J., vol. 18, 2009, 113-119.
[12] R. P. Stanley, Unimodality and Lie Superalgebras, Studies in Applied Mathematics, vol. 72, 1985, 263-281.

[^0]: ${ }^{1}$ The author is currently a guest researcher of the School of Mathematics at the Institute for Research in Fundamental Sciences (IPM).

