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Abstract
wythoff queens is a classical combinatorial game related to very interesting
mathematical results. An amazing one is the fact that the P-positions are given

by (!ϕn", !ϕ2n") and (!ϕ2n", !ϕn") where ϕ = 1+
√
5

2 . In this paper, we analyze a
different version where one player (Left) plays with a chess bishop and the other
(Right) plays with a chess knight. The new game (call it chessfights) lacks a
Beatty sequence structure in the P-positions as in wythoff queens. However, it
is possible to formulate and prove some general results of a general recursive law
which is a particular case of a partizan subtraction game. 3

1Research in Play mathematics - A Workshop in Combinatorial Game Theory, Center for
Mathematics and Fundamental Applications, Lisbon, November, 2010.

http://ptmat.fc.ul.pt/arquivo/docs/seminarios/confwork/2010/Mini workshop.pdf
2Correspondent author: Alameda das Linhas de Torres, 179, 1750-142, Lisboa, Portugal
3Supported by the research centers CEMAPRE-ISEG, CIMA-UE, LabMAg (Laboratório de

Modelação de Agentes), FCT-Portugal funding program.
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1. Introduction

wythoff queens is played on a quarter-infinite chessboard, extending downwards
and to the right. A chess queen is placed in some cell of the board. On each turn,
a player moves the queen as in chess, except that the queen can only move left, up,
or diagonally up-left. The player who moves the queen to the corner (0, 0) wins.
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We can also interpret wythoff queens as a pile game. There are two piles of
stones and, on each turn, a player either removes an arbitrary number of stones
from one pile, or the same number of stones from both piles. The player who makes
the last move wins.

A nice result about wythoff queens is the following one (first proved in [6]):
The P-positions of wythoff queens are given by (!ϕn", !ϕ2n") and (!ϕ2n", !ϕn")
where ϕ = 1+

√
5

2 .

There are some variations of the game. One very interesting, analyzed in [2] (page
56), is the game white knight. In this variation, instead of a queen, the players
move a chess knight. The legal moves are the following (row x and column y):

(x, y) → (x − 1, y − 2) or (x, y) → (x + 1, y − 2) or (x, y) → (x − 2, y − 1) or
(x, y) → (x − 2, y + 1)

× ×
× ×
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We consider a variation of wythoff queens, the game chessfights. The rules
of this variation are the following ones:
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— The board is as in wythoff queens and white knight;

— Right plays with the knight as in white knight;

— Left plays with the bishop: (x, y) → (x − i, y − i) or (x, y) → (x + i, y − i)
(in the first case, we must have x− i ! 0 ∧ y − i ! 0 and, in the second case,
we must have x+ i ! 0 ∧ y − i ! 0, in other words, the move must be made
inside the board).
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chessfights is a partizan game. For ease, the game with the piece in the cell (x, y)
will be represented by the pair (x, y).

The game converges to the end because, after two moves, (x, y) '→ (x′, y′) '→
(x′′, y′′), we have x′′ + y′′ < x+ y.

2. Some Theorems of chessfights

The options of a game are all those positions which can be reached in one move. In
combinatorial game theory, games can be expressed recursively as G = {GL | GR}
where GL are the Left options and GR are the Right options of G. The followers
of G are all the games that can be reached by all the possible sequences of moves
from G (this is the usual notation of [3], [2], and [1]).

In the particular case of chessfights, we can compute the values of the cells (or,
rather, the games corresponding to the placement of a single piece in a cell). The
best way to do it is to choose a diagonal path:
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With this procedure, we get an organized table (the following example corresponds
to 9× 9):

0 1 {1|0} 1
2 1 {1| ↑} 1

2 1 {1| ↑ 3∗}
0 1 {1|0} ↑ 1 {1| 12 , {1|∗}} ↑ 3∗ 1 {1| 12}
0 ∗ {1|0} {1|∗} ⇑ {1| ↑} {1|1, {1|∗2}} ↑ 3 {1| ↑ 3∗}
0 ∗ ↑ ∗ {1|∗} {1|∗2} ⇑ ∗ {1| ⇑, {1|∗2}} {1|{1| ↑}, ↑ 3∗} ↑ 3∗3
0 ∗ ∗2 ↑ {1|∗2} {1| ↑} ⇑ ∗2 {1| ⇑ ∗, {1||0|∗, ∗2}} {1| ↑ 3, {1| ↑ ∗3}}
0 ∗ ∗2 ↑ ↑ ∗3 {1||0|∗, ∗2} {1| ↑ ∗3} {0||0|∗, ∗2} {1| ⇑ ∗2}
0 ∗ ∗2 {0|∗, ∗2} ↑ ∗3 {0||0|∗, ∗2} {1| ↑ ∗3} {1|||0||0|∗, ∗2} {0||0|∗2, {0|∗, ∗2}}
0 ∗ ∗2 {0|∗, ∗2} ↑ ∗3 {0||0|∗, ∗2} {0||0|∗2, {0|∗, ∗2}} {1|||0||0|∗, ∗2} {1|||0||0|∗2, {0|∗, ∗2}}
0 ∗ ∗2 {0|∗, ∗2} {0|∗2, {0|∗, ∗2}} {0||0|∗, ∗2} {0||0|∗2, {0|∗, ∗2}} {0||0|∗, ∗2} {1|||0||0|∗2, {0|∗, ∗2}}

The same table just with the reduced canonical forms:

0 1 {1|0} 1
2 1 {1|0} 1

2 1 {1|0}
0 1 {1|0} 0 1 {1| 12} 0 1 {1| 12}
0 0 {1|0} {1|0} 0 {1|0} 1 0 {1|0}
0 0 0 {1|0} {1|0} 0 {1|0} {1|0} 0
0 0 0 0 {1|0} {1|0} 0 {1|0} {1|0}
0 0 0 0 0 {1|0} {1|0} 0 {1|0}
0 0 0 0 0 0 {1|0} {1|0} 0
0 0 0 0 0 0 0 {1|0} {1|0}
0 0 0 0 0 0 0 0 {1|0}

A visual inspection of the table allows us to guess some patterns. In fact, it is
possible to prove some results.

Proposition 1. (x, 0) = 0.

Proof. Left has no options. Right has no options (cases (0, 0) and (1, 0)) or Right
has just one option to (x − 2, 1). If so, Left plays to (x − 1, 0) and, by induction,
Right loses.

In the next results, it is important to consider the following groups of cells:

— Red −→ (x, y) : y − x ≡ 0 (mod 3)
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— Yellow −→ (x, y) : y − x ≡ 1 (mod 3)

— Green −→ (x, y) : y − x ≡ 2 (mod 3)
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Lemma 1. From the games in the following region (call it R),
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Right to move, has a strategy allowing, at all times, if the sub-position is still not
zero, a Right move to a green cell or a Right move to zero.

Proof. Let us analyze all the possible sub-positions (a, b) (Right moving).

— If b = 0 then the position (a, b) = 0 (Proposition 1).

— If (a, b) ∈ R is green (b− a ≡ 2 (mod 3)) then Right moves to (a+ 1, b− 2).
We can see that (a + 1, b − 2) remains green because (b − 2) − (a + 1) ≡ 2
(mod 3).

— If (a, b) ∈ R is red (b−a ≡ 0 (mod 3)) then Right moves to (a−1, b−2). We
can see that (a− 1, b− 2) turns green because (b− 2)− (a− 1) ≡ 2 (mod 3).
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— If (a, b) ∈ R is yellow (b−a ≡ 1 (mod 3)) then Right moves (a−2, b−1). We
can see that (a− 2, b− 1) turns green because (b− 1)− (a− 2) ≡ 2 (mod 3).

— The only possible Left moves to (a, b) -∈ R are (a, 0) (item 1) and (a, 1)∧a > 1
(in this case, the Right option to (a − 2, b − 1) = 0 is available). The moves
indicated in the previous items never allow other options (a, b) -∈ R for Left.

Proposition 2. (0, 3k + 1) = 1 (k ! 0) and (0, 3k) = 1
2 (k ! 1).

Proof. Let us prove that (0, 3k + 1) = 1 (k ! 0).
The base case (0, 1) = 1 is calculated by hand. We want to prove that, for k ! 1,
(0, 3k + 1) + { | 0} = 0, i.e., (0, 3k + 1) + { | 0} is in P .

If Right plays to (0, 3k + 1), Left replies to (3k + 1, 0) = 0 (Proposition 1).

If Right plays to (1, 3k − 1) + { | 0}, Left replies to
(0, 3k − 2) + { | 0} = (0, 3(k − 1) + 1) + { | 0} = 1− 1 (induction).

So, if Right plays, Right loses.

If Left plays first to (a, b) + { | 0} then (a, b) ∈ R or (a, b) = (a, 0) or (a, b) =
(a, 1) ∧ a > 1. The last two cases are trivial. For the first case, Right just plays
in (a, b) with the strategy of the Lemma 1 eventually ending in 0 − 1. So, playing
first, Left loses.

Let us prove that (0, 3k) = 1
2 (k ! 1). The base case (0, 3) = 1

2 is calculated by
hand. We want to prove that, for k > 1, (0, 3k)+{−1| 0} = 0, i.e., (0, 3k)+{−1| 0}
is in P .

If Right plays to (0, 3k), Left replies to (3k, 0) = 0 (Proposition 1).

If Right plays to (1, 3k − 2) + {−1| 0}, Left replies to
(0, 3k − 3) + {−1| 0} = (0, 3(k − 1)) + {−1 | 0} = 1

2 − 1
2 (induction).

So, if Right plays, Right loses.

If Left plays first to (1, 3k − 1) + {−1 | 0}, Right replies to
(0, 3k − 3) + {−1 | 0} = (0, 3(k − 1)) + {−1 | 0} = 1

2 − 1
2 (induction).

If Left plays to (a, b) + {−1 | 0} with a > 1 then (a, b) ∈ R or (a, b) = (a, 0) or
(a, b) = (a, 1) ∧ a > 1. The last two cases are trivial. For the first case, Right just
plays in (a, b) with the strategy of the Lemma 1 eventually ending in 0 − 1

2 . So,
playing first, Left loses.

The next proposition is a useful inequality. With this result it will be possible
to make some arguments of domination and reversibility.

We will write (x, y) to represent the game (x, y), but Left playing with the Knight
and Right with the Bishop. We have −(x, y) = (x, y). This is a nice tool to perform
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proofs on the board with two different pieces. Also, we call principal diagonal to
the set of cells such that x = y.

Lemma 2. If k ! 2 and x′ > y − k then (x, y) + (x′, y − k) ! 0 (if the second
component is below the principal diagonal and the components are separated by
more than one column, Left wins playing first).

Proof. If y− k = 0 then (x′, y − k) = 0 (Proposition 1). So, Left plays in the other
component to (x + y, 0) + (x′, 0) going to zero.

If y−k = 1, Left moves to (x, y)+(x′ − 2, 0) which is equal to (x, y) (Proposition
1). Following, after a move by Right in (x, y), Left moves this component to the
column 0.

If y− k > 1, Left moves to (x, y)+ (x′ + 1, y − k − 2). Following, all the possible
moves by Right maintain the Lemma conditions. So, by induction, Left wins.

Proposition 3. If x > y then (x−k, y) ! (x, y) (k ! 0, positions inside the board).

Proof. We want to prove that, if x > y, (x−k, y)− (x, y) ! 0. So, we want to prove
that Right loses playing first in the game (x− k, y)+ (x, y). We will analyze all the
Right options (consider the principal diagonal, red cells such that x = y).

— Right plays to (x− k, y) + (x+ i, y − i).
Left moves to (x− k + i, y − i) + (x+ i, y − i) and, by induction, Left wins.

b
N

B
n

b
N

B
n

b
N

B
n

— Right plays to (x− k, y) + (x− 1, y − 1) (and k¿1).
Left moves to (x− k + 1, y− 1) + (x − 1, y − 1) and, by induction, Left wins.

b
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n

— Right plays to (x− k, y) + (x− 1, y − 1) (and k " 1).
Left moves to (x− k− 1, y− 1)+ (x− 1, y − 1) (available) and, by induction,
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Left wins.
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— Right plays to (x− k, y) + (x− i, y − i)(i > 1).
By Lemma 2, Left wins.

b
N
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— Right plays to (x− k + 1, y − 2) + (x, y).
Left moves to (x− k + 1, y− 2) + (x + 1, y − 2) and, by induction, Left wins.
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— Right plays to (x− k − 1, y − 2) + (x, y)
Left moves to (x− k − 1, y− 2) + (x − 1, y − 2) and, by induction, Left wins.
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— Right plays to (x− k − 2, y + 1) + (x, y)
Left moves to (x− k − 1, y) + (x, y) and, by induction, Left wins.
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— Right plays to (x− k − 2, y − 1) + (x, y) and (x− 1 > y or k = 0).
Left moves to (x− k − 2, y− 1) + (x − 2, y − 1) and, by induction, Left wins.
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— Right plays to (x − k − 2, y − 1) + (x, y) and, using the previous notation,
(x− k − 2, y − 1) is a red or a yellow cell.
Left moves to (0, y − x + k + 1) + (x, y) and, because (0, y − x + k + 1) = 1

or (0, y − x + k + 1) = 1
2 (Proposition 2), Left wins maintaining the second

component below the principal diagonal.
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— Right plays to (x− k − 2, y− 1) + (x, y) and (x− k − 2, y− 1) is a green cell.
Left moves to (x − k − 2, y − 1) + (x− 1, y − 2) and, if Right wants to avoid
the induction, must move to (x− k− 4, y− 2)+ (x− 1, y − 2). After this pair
of moves, (x− k − 4, y − 2) turns red or yellow and Left chooses the strategy
of the previous item.
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Proposition 4. If x ! 2 then (x, 1) = ∗.

Proof. We can calculate by hand (2, 1) = ∗. Now we prove the theorem by induction
in x. The Left options of (x, 1) are 0 (Proposition 1). The Right options are
(x−2, 0) = 0 and (x−2, 2). Against a Right’s move to (x−2, 2), Left can immediately
reply to (x − 1, 1). By Proposition 3, (x − 1, 1) ! (x, 1). So, by reversibility, the
Right option (x − 2, 2) can be replaced by Right options of (x − 1, 1). But, by
induction, (x− 1, 1) = ∗ and (x − 2, 2) can be replaced by 0.

Lemma 3. If x > y then 1 ! (x, y).

Proof. Let us analyze 1 + (x, y) to see that Right, playing first, loses. Against a
Right move (if he has one)

— To 1 + (x′, 0). In that case, the game turned 1 + 0.

— To 1 + (x′, 1). In that case, the game turned 1∗.

— To 1+(x′, k) (k ! 2). In that case, Left answers to 1+(x′ + 1, k − 2) reaching
the same kind of position as before.

In all cases, Left wins.

Lemma 4. If x > y then (x− 2, y + 1) ! (x + 1, y − 2).

Proof. Let us analyze (x− 2, y+1)+ (x+ 1, y − 2) to see that Right, playing first,
loses. If Right plays in the component (x − 2, y + 1), Left replies in the same
component to the column y − 2 and wins (Proposition 3).

If Right plays to (x − 2, y + 1) + (x+ 1− i, y − 2− i), Left replies to (x − 2 −
i, y+1− i)+(x+ 1− i, y − 2− i) maintaining the situation. If the Left answer was
not available, that was because Right’s move was to (x − 2, y + 1) + (k, 1) (k ! 2)
or to (x − 2, y + 1) + (k, 0) (k ! 1). Against the first, Left moves the component
(x − 2, y + 1) to the column 1 and against the second, Left moves the component
(x− 2, y + 1) to the column 0.

In both cases, Left wins.
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Theorem 1. The games (x, y) for x > y are all-small.

Proof. Let us consider y ! 2 (the cases y = 0 and y = 1 are already known). By
induction, Left options are all-small. Right has 4 options. By induction, (x+1, y−2)
and (x− 1, y − 2) are all-small.

— Right option to (x − 2, y − 1).
If (x− 2, y− 1) is not in the principal diagonal, by induction, (x− 2, y− 1) is
all-small.
If (x− 2, y− 1) is in the principal diagonal, Left can answer to (1, 1) = 1. By
Lemma 3, 1 ! (x, y). So, the Right option is reversible to ∅.

— Right option to (x − 2, y + 1).
By Lemma 4 (x+ 1, y− 2) dominates (x− 2, y+ 1). Because we are thinking
for columns with index y ! 2, (x+ 1, y − 2) is available.

3. The General Recursive Process

As we saw in the previous section, the Right option (x− 2, y+1) is dominated (see
Theorem 1). For the sensible options, the column number is decreased by one or
two. This strongly motivates the analysis of the recursion

g(n) = {g(0), . . . g(n− 1) | g(n− 1), g(n− 2)}.

This is a special case of a partizan subtraction game (see [4]). The first elements
of the sequence are

0 1 2 3 4
0 ∗ ∗2 {0|∗, ∗2} {0| ∗ 2, {0|∗, ∗2}}

5 6
{0|{0|∗, ∗2}, {0| ∗ 2, {0|∗, ∗2}}} {0|{0| ∗ 2, {0|∗, ∗2}}, {0|{0|∗, ∗2}, {0|∗ 2, {0|∗, ∗2}}}}

We can generalize the recursive law for similar chess knights (capable of making
“larger” moves):

gk(n) = {gk(0), . . . gk(n− 1) | gk(n− k), gk(n− 2k)} (n ! 0).

There is no problem with the gk(i) not previously defined. The empty set is
available for the construction of the games.

For impartial subtraction games, it is well-known that subtraction(ms1, . . . ,msk)
is the m−plicate of subtraction(s1, . . . , sk) ([2], page 98 and a proof in [5], page
36). We will prove that the general gk is also a kind of “dilation” of g1. Just for
intuition, we list the first elements of g2(n) and g3(n):
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0 1 2 3 4 5 6
0 1 {1|0} 1∗ {1, 1 ∗ |0, {1|0}} 1 ∗ 2 {1|{1|0}, {1, 1 ∗ |0, {1|0}}}

7 8
{1|1∗, 1 ∗ 2} {1|{1, 1 ∗ |0, {1|0}}}, {1|{1|0}, {1, 1 ∗ |0, {1|0}}}}

0 1 2 3 4 5 6 7
0 1 2 {2|0} {2|1} 2 ∗ {2, 2 ∗ |0, {2|0}} {2, 2 ∗ |1, {2|1}}

8 9 10
2 ∗ 2 {2|{2|0}, {2, 2 ∗ |0, {2|0}}} {2|{2|1}, {2, 2 ∗ |1, {2|1}}}

We start with a result about the left options of gk(n).

Lemma 5. For k ! 1, we have

gk(n) = {gk(0), . . . , gk(n− 1) | gk(n− k), gk(n− 2k)}

=






n n " k − 1
{k − 1, (k − 1) ∗ | gk(n− k), gk(n− 2k)} 2k " n " 3k − 1
{k − 1 | gk(n− k), gk(n− 2k)} other cases

.

Proof. Case (a) n " k − 1. By definition,

gk(0) = { | } = 0

gk(1) = {gk(0) | } = {0 | } = 1

(. . .)

gk(k − 1) = {gk(k − 2) | } = {k − 2 | } = k − 1.

Case (b) k " n " 2k − 1. We already know that gk(0) = 0, gk(1) = 1,. . .,
gk(k − 1) = k − 1. Therefore, by definition (and domination),

gk(k) = {k − 1 | 0}

gk(k + 1) = {k − 1, {k − 1 | 0} | 1}

gk(k + 2) = {k − 1, {k − 1 | 0}, {k− 1, {k − 1 | 0} | 1} | 2}

(
...).

We can use reversibility arguments:
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gk(k + 1) = {k − 1, {k − 1 | 0} | 1}

{k − 1 | 0}

0 " gk(k + 1)

Replacement by the left options of 0

({k − 1 | 0} reverses out)

gk(k + 1) = {k − 1 | 1}.

Similarly,

gk(k + 2) = {k − 1, {k − 1 | 0}, {k− 1, {k − 1 | 0} | 1} | 2}
= {k − 1, {k − 1, {k − 1 | 0} | 1} | 2}

{k − 1, {k − 1 | 0} | 1}

1 " gk(k + 2)

Replacement by the left options of 1

gk(k + 2) = {k − 1, 0 | 2} = {k − 1 | 2}.

In general, for 0 " j " k − 1,

gk(k + j) = {k − 1, gk(k), gk(k + 1), . . . , gk(k + j − 1) | j}

and
gk(k) reverses out through 0;
gk(k + 1) reverses through 1 to 0 which is dominated by k − 1;
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(
...)
gk(k + j − 1) reverses through j − 1 to j − 2 which is dominated by k − 1.

The reversibility effects are justified by the inequality

{k − 1, gk(k), gk(k + 1), . . . , gk(k + j − 1) | j} ! j − 1

We can conclude that the property is true for k " n " 2k − 1.

Case (c) 2k " n " 3k − 1. We have,

gk(2k) = {k − 1, (k − 1) ∗ | 0, {k − 1 | 0}}

gk(2k + 1) = {k − 1, (k − 1)∗, gk(2k) | 1, {k − 1 | 1}}}

gk(2k + 2) = {k − 1, (k − 1)∗, gk(2k), gk(2k + 1) | 2, {k− 1 | 2}}}

(...)

As the previous cases, it is easy to check that only the left options k − 1 and
(k − 1)∗ don’t reverse. In fact, in general, for 0 " j " k − 1,

gk(2k + j) = {k − 1, (k − 1)∗, gk(2k), gk(2k + 1), . . . , gk(2k + j − 1) | j, {k − 1 | j}}

and
gk(2k) reverses out through 0;
gk(2k + 1) reverses through 1 to 0 which is dominated by k − 1;

(
...)
gk(2k + j − 1) reverses through j − 1 to j − 2 which is dominated by k − 1.

The reversibility effects are justified by the inequality

{k − 1, (k − 1)∗, gk(2k), gk(2k + 1), . . . , gk(2k + j − 1) | j, {k − 1 | j}} ! j − 1.

We can conclude that the property is true for 2k " n " 3k − 1.

Case d) Other cases. In the other cases, also (k−1)∗ reverses. This is true because,
in these cases, we have

{k − 1, (k − 1) ∗ | gk(n− k), gk(n− 2k)} ! k − 1.

We can see that, in the game

{k − 1, (k − 1) ∗ | gk(n− k), gk(n− 2k)}+ 1− k,

if Right begins, Right loses. This happens because the Left option k− 1 is available
in the games gk(n− k) and gk(n− 2k).

Now, we are able to prove a kind of “dilation” theorem.
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Theorem 2. Consider n ! 0 and k ! 1.

1. If n " k − 1, gk(n) = n.

2. If n > k−1, we obtain gk(n) from g1(n) as indicated: consider i ∈ {0, . . . , k−
1} such that n ≡ i (mod k). Let G be the game g1

(⌊
n
k

⌋)
(the form of the

game according to its initial definition) and J the game constructed from G
executing the following:

(a) Add k − 1 to the games GL, GRL, GRRL,...

(b) Add i to the games GR, GRR, GRRR,... not affected by the first step.

We have gk(n) = J .

Proof. The theorem is compatible with Lemma 5 because adding k − 1 to the Left
options of the game g1

(⌊
n
k

⌋)
generates exactly the same Left options for gk(n)

indicated in the Lemma 5. So, we just have to analyze the Right options.

Just the induction step is non-trivial. Consider the game

gk(n+ 1) = {gk(0), . . . , gk(n) | gk(n+ 1− k), gk(n+ 1− 2k)}.

By induction, we have to add k−1 and i in the games g1
(⌊

n+1−k
k

⌋)
and g1

(⌊
n+1−2k

k

⌋)

where n+ 1− 2k ≡ n+ 1− k ≡ i (mod k).

But this is exactly the same as adding k − 1 and i in the Right options of
g1

(⌊
n+1
k

⌋)
. This is true because the Right options of g1

(⌊
n+1
k

⌋)
are g1

(⌊
n+1
k

⌋
− 1

)

= g1
(⌊

n+1−k
k

⌋)
and g1

(⌊
n+1
k

⌋
− 2

)
= g1

(⌊
n+1−2k

k

⌋)
and n+ 1 ≡ i (mod k).
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