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Abstract
A variation of polyform achievement games is studied, in which the cells the players
mark are the edges of the three tilings of the plane by regular polygons. Planar
game boards whose faces have a bijective correspondence to the edges of the tilings
by regular polygons are presented, and all but one of the edge animals on each tiling
are characterized as either a winner or loser.

1. Introduction

Abstractions of the game Tic-Tac-Toe called achievement games were first intro-
duced by Harary in [6]. The playing board is usually an infinite set of cells, which
is often a regular tiling of the plane by squares [7], by triangles [4] or by hexagons
[3, 8, 10]. Other boards such as the platonic solids [2], tilings of the hyperbolic
plane [1], and higher dimensional boards [12] have also been studied.

An animal is a finite set of connected cells of the board, considered up to con-
gruence. Thus, an animal can be translated, reflected, or rotated on the board and
is still considered to be the same animal. In a weak achievement game, two players
alternate marking empty cells of a board with their own marks. The first player
(the maker) is trying to mark a copy of the goal animal on the board. The second
player (the breaker) tries to prevent the maker achieving his goal. An animal is
called a winner if the maker can win the achievement game. The animal is called a
loser otherwise.

Our goal is to study achievement games on boards where the cells are the edges
and not the faces of a tiling of the plane. We call these boards the edge boards and
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call the usual boards with polygonal cells face boards. In particular, we are interested
in the three regular edge boards built from the regular tilings of the plane.

The regular edge boards are fairly complex. On complex playing boards the
number of winning animals is usually too large, so we study a biased version of the
game where the maker marks one cell while the breaker marks two cells each turn.
This is called the weak (1, 2)-achievement game. Biased (1, 2) games were studied
for example in [5].

Presenting strategies on the edge boards is not ideal because it is hard to attach
information to the cells. To avoid this difficulty, we find a face board for each edge
board that has equivalent game play.

2. Game Boards

Two cells of an edge board are adjacent if they share a common vertex. The
situation is not so simple on face boards. We say two cells of a face board are
adjacent if they share a common edge, and wildly adjacent if they share a common
edge or a common vertex.

A wild animal is a finite wildly connected set of cells. In a wild animal we can get
from any cell to any other cell by jumping through cells that are wildly adjacent.
Note that every regular animal is also a wild animal.

Our first goal is to switch to face boards. Figure 2.1 shows the three regular edge
boards and their corresponding face boards with equivalent game play. The gray
squares are holes in the board such that cells are not adjacent on opposite sides of
the holes. A corresponding face board is found by drawing faces around the vertices
of a representation of the line graph of the tiling.

Adjacency on the hexagonal edge board corresponds to adjacency on the cor-
responding face board. Adjacency on the triangular and rectangular edge boards
correspond to wild adjacency on the corresponding face boards. As a result, regular
animals on the triangular and rectangular boards become wild animals on the cor-
responding face boards. Note that the face boards corresponding to the hexagonal
and triangular edge boards seem to be the same but the adjacency relationship is
interpreted differently. We call this common face board the tumbling blocks board.

We use the notationsE!
i for triangular, E!

i for rectangular and E!
i for hexagonal

edge animals. We use the notation F♦
i for wild face animals on the tumbling blocks

board. The regular face animals corresponding to rectangular edge animals are
denoted by F"

i . In all cases, the indices get larger with the size of the animals.
Figure 2.2 shows all the edge animals with their corresponding face animals up to
size two.
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Figure 2.1: Edge boards and their corresponding face boards.
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Figure 2.2: All edge animals up to size two and their corresponding face animals.
Triangular and rectangular edge animals have wild corresponding face animals.
Hexagonal edge animals have regular corresponding face animals. Note that the
numbering of the hexagonal edge animals has gaps.
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3. Winning Strategies

This section will describe the strategies used by the maker and the breaker. A
strategy for the maker can be captured by a proof sequence (s0, . . . , sn) of situations
[3, 11]. A situation si = (Ci, Ni) is an ordered pair of disjoint sets of cells. We
think of the core Ci as a set of cells marked by the maker and the neighborhood Ni

as a set of cells not marked by the breaker. A situation is the part of the playing
board that is important for the maker. A situation does not contain any of the
breaker’s marks. Those marks are not important as long as the situation contains
enough empty cells in the neighborhood. As with animals, congruent situations are
considered to be the same. In the situations of a proof sequence, it is always the
breaker who is about to mark cells. The game progresses from sn towards s0. We
require that C0 is the goal animal and N0 = ∅. This means that the maker has
already won by marking the cells in C0 and there is no need for any free cells on the
board in N0. For each i ∈ {1, . . . , n} we also require that if the breaker marks any
two cells in Ni, then the maker can mark a different cell of Ni to reach a position
sj closer to his goal, that is, satisfying j < i. More precisely, for all {x, y} ⊆ Ni

there must be an x̃ ∈ Ni \ {x, y} and a j ∈ {0, . . . , i− 1} such that

Cj ⊆ Ci ∪ {x̃} and Nj ⊆ Ci ∪Ni \ {x, y}.

We present proof sequences graphically. Figure 4.3 shows an example. On the
figures, filled cells represent the marks of the maker in Ci. Cells with letters in them
are the neighborhood cells in Ni that must be unmarked. Each letter represents a
possible continuation for the maker. After the marks of the breaker, the maker picks
a letter unaffected by the breaker marks. The maker marks the cell with the capital
version of this letter. The cells with the lower case version of the chosen letter
become the neighborhood cells of the new situation. Each situation is constructed
to make sure that the breaker cannot mark two cells which contain every single
letter. We include a flow chart for each proof sequence. The letter on the arrows of
the flow chart is used to determine which situation the maker can reach by picking
that letter. The lack of letters indicate that all choices lead to the same situation.

The most useful strategies for the breaker are based on pairings of the cells of
the board. A double paving of the board is a symmetric and irreflexive relation on
the set of cells where each cell is related to at most 2 other cells. In the visual
representation of a double paving, related cells are connected by a line segment. A
double paving is said to kill an animal if every translation, reflection, and rotation
of that animal contains at least one pair of related cells. A killing double paving
determines a winning paving strategy for the breaker in the (1, 2) game as follows. In
each turn, the breaker marks the unmarked cells related to the cell last marked by
the maker. If there are fewer than two such cells then she uses her remaining marks
randomly. The breaker wins following the paving strategy, since every placement
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Figure 4.1: The tree of the winners and losers on the tumbling blocks board. Chil-
dren of losers are not drawn. Animal F♦

28 remains a mystery but all of its children
are losers. The middle cell containing the dot in animal F♦

41 is an empty cell.

of the goal animal contains a pair of related cells and the maker cannot mark any
two related cells.

4. Tumbling Blocks Games

We now turn to the game played with face animals on the tumbling blocks board.
We will study all possible animals, regular and wild, in order to find the hexagonal
and triangular edge winners. We use the terminology child for an animal created
from a parent animal by adding an extra cell. We collect the size i winning animals
in Wi, the size i losing animals in Li and the size i potential winning animals
in Vi. We start with the animal F♦

1 containing only one cell which is clearly a
winner. So we let V1 = W1 = {F♦

1 } and L1 = ∅. Now we proceed inductively. Any
animal containing a losing animal is a loser as well. So the set Vi+1 of potential
winning animals of size i + 1 contains all the children of animals in Wi which are
not descendants of any animal in Lj for j ≤ i. We analyze the animals in Vi+1 and
collect the winners in Wi+1 and losers in Li+1 so that Vi+1 = Wi+1 ∪ Li+1. The
procedure is summarized in Figure 4.1. Each level of the tree shows the elements
of Vi. The known winners are the animals with children.

There are three animals in V2 = {F♦
2 , F♦

3 , F♦
4 }. It is clear that F♦

3 and F♦
4 are

winners.

Proposition 4.1. The animal F♦
2 is a loser.
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F♦
2

Figure 4.2: The animal F♦
2 and the paving that kills it.

Proof. The breaker wins using the paving strategy shown in Figure 4.2.

There are 8 animals in V3, shown in the third row of Figure 4.1. Only two of
them are winners.

Proposition 4.2. The animal F♦
9 and F♦

10 are winners.

Proof. The maker wins using the proof sequences shown in Figures 4.3 and 4.4,
respectively.

Proposition 4.3. The animals F♦
11, F

♦
12, F

♦
13, F

♦
14, F

♦
15, and F♦

16 are losers.

Proof. The breaker wins using a strategy based on double pavings shown in Fig-
ure 4.5.

We include an alternate breaker strategy for F♦
13 called priority strategy. Priority

strategies are new and we believe they have great potential. A more extensive
description and several variations with examples are presented in [9].

Proposition 4.4. The animal F♦
13 is a loser.

Proof. Figure 4.6(a) shows a priority strategy for the breaker. The diagrams show
the three possible orientations of the current mark of the maker. The cells with
numbers in them are the possible response cells. The numbers are the priorities of
the response cells. A smaller number represents a higher priority response cell. In
each case, the breaker marks two of the unmarked response cells with the highest
priorities. If all the response cells are already marked, then the breaker marks
random cells.

Figure 4.6(b) shows the six different placements of the goal animal on the board
together with their dependency digraphs. The vertex set of the digraph is the set
of cells of the goal animal. We use three types of arrows:
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Figure 4.3: A proof sequence for F♦
9 .

C

B

A

C
A

B

B

C

A
c

c

C c

A
B

s0 s1 s2 s3 s4

c
c

c

A

C

B
•

c

c

c

A

C

B

ae
fh

be
fg

f

ae
fh

aB
FGh

AbE
gH

be
fg

e

cf

de

c

bcd

abC
gh

abD
gh

acd

d

cdg

cdh

s1

((

s4

C

""

A,B

))!!!!!!!!!!!!!!!

s0

s2

""

s5

C

""

A,B

%%

s7

A,B

**

C,D,E,F

""

G,H

++

s3

,,

s6

C

""

A,B

--"""""""""""""""

s5 s6 s7

Figure 4.4: A proof sequence for F♦
10.



INTEGERS: 12 (2012) 8

F♦
11 F♦

15

F♦
13 , F♦

14 , F♦
12 , F♦

16 ,

F♦
18 , F♦

20 F♦
24 , F♦

41

•

Figure 4.5: Animals and the pavings that kill them.

1

1
3 2

3

2

1

1

1 1
3

2

(a)

a

b c c

b a

c

b

a

b ..
c
//

c

a

00####

c

ba a

bc

a

b

c

a .. b

11
$$

$$
c2222

c

(b)

Figure 4.6: (a) The priority strategy for the breaker to prevent the maker from
marking F♦

13. (b) Dependency digraphs of the cells in the orientations of F♦
13.
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• The unconditional arrow a ..b indicates that cell b cannot be marked by
the maker after cell a because an unmarked cell b is going to be marked by
the breaker right after the maker marks cell a. The other unconditional arrow
from b to c indicates that cell c cannot be marked by the maker after cell b.

• The conditional arrow b
c ..a in the first digraph indicates that cell a cannot

be marked by the maker after cell b if cell c has already been marked by either
the maker or the breaker in an earlier turn. In this situation, cell a is going
to be marked by the breaker right after the maker marks cell b because the
priority 1 response cell c is not available so the breaker marks the priority 2
response cell a.

• The secondary arrow b
c .. ..a in the second digraph indicates that cell a cannot

be marked by the maker after cell b if cell c is already marked by the maker
in an earlier turn. To see this, note that cell c is the priority 1 response cell
to cell b and the priority 1 response cell to cell c is the priority 2 response cell
to cell b. So if cell c is already marked by the maker then cell a, the priority
3 response cell to b, is going to be marked by the breaker.

It is clear from the digraphs that the maker needs to mark cells a and b in the same
turn if he wants to mark the goal animal in any orientation. This is not possible
since the maker can only mark one cell in a turn. Thus the goal animal must be a
loser.

There are 5 animals in V4, shown in the fourth row of Figure 4.1. Four of them
are losers.

Proposition 4.5. The animals F♦
18, F

♦
20, F

♦
24, and F♦

41 are losers.

Proof. The breaker wins using a strategy based on corresponding double pavings
shown in Figure 4.5.

The animal F♦
28 remains a mystery. All of its five cell children are losers as shown

in Figure 4.7, so we know that no animals with more than four cells can be winners.
Figure 4.8 shows a proof sequence in the (1, 1)-game. This strategy is fairly complex
which suggests that F♦

28 is likely a (1, 2)-loser. Perhaps a priority strategy could be
used to prove this. We used a backtracking search on a computer cluster to show
that there is no paving strategy for the breaker in the (1, 2)-game.

5. Face Board Games Corresponding to Rectangular Edge Games

We now turn to the game played with face animals corresponding to rectangular
edge animals. We carry out the procedure described in Section 4 using Vi, Wi
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Figure 4.7: Each of the 19 distinct five cell children of F♦
28 are losers. Adding one of

the unmarked cells results in an animal that is the descendant of the losing animal
whose name is written in the cell.
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Figure 5.1: The tree of the winners and losers on the face board corresponding to
the rectangular edge board. Children of losers are not drawn.
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Figure 5.2: Animals and the paving that kills them.

and Li. The one cell animal is clearly a winner. There are two animals in V2 =
{F"

2 , F"
3 }, shown in the second level of Figure 5.1. It is easy to see that F"

2 is a
winner.

Proposition 5.1. The animal F"
3 is a loser.

Proof. The breaker wins following the strategy based on the double paving shown
in Figure 5.2.

There are two animals in V3 = {F"
6 , F"

7 }, shown in the third level of Figure 5.1.

Proposition 5.2. The animal F"
6 and F"

7 are losers.

Proof. The breaker wins following the strategy based on the double paving shown
in Figure 5.2.

Since V4 = ∅, the largest winner has two cells.

6. Edge Winners and Losers

Now we can translate our results to classify the edge animals. Figure 6.1 shows the
triangular edge winners and their corresponding face animals. We were not able to
classify F♦

28.

Proposition 6.1. The only winning triangular edge animals in the weak (1, 2)-
achievement game are the animals E!

1 , E!
3 , E!

4 , E!
9 , E!

10, and possibly E!
28.

Figure 6.2 shows the hexagonal edge winners and their corresponding face ani-
mals.
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Figure 6.1: Known triangular edge winners and the mystery animal F♦
28 together

with their corresponding face animals.
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Figure 6.2: Hexagonal edge winners and their corresponding face animals.
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Figure 6.3: Rectangular edge winners and their corresponding face animals.

Proposition 6.2. The only winning hexagonal edge animals in the weak (1, 2)-
achievement game are the animals E!

1 and E!
4 .

Figure 6.3 shows the rectangular edge winners and their corresponding face ani-
mals.

Proposition 6.3. The only winning rectangular edge animals in the weak (1, 2)-
achievement game are the animals E!

1 and E!
2 .
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