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Abstract
A simultaneous generalization of well-known arithmetical criteria for irreducibility
in Q[X] of polynomials in Z[X], including a classical result of G. Pólya and G. Szegö,
will be achieved via a general framework for that family of irreducibility criteria.
A further generalization, which for any f(X) ∈ Z[X] provides an arithmetical func-
tion whose values are upper bounds for the number of irreducible factors of f(X)
in Q[X], will also be established.

1. Introduction

Let Z ∈ {Z, Q} and let U = {± 1} or U = Z according to whether Z = Z or Z = Q,
respectively. Let f(X) denote an arbitrary polynomial in Z[X]\U . We first remind
the reader that f(X) is called reducible (irreducible) in Z[X], if there are (there are
not, respectively) polynomials g(X), h(X) in Z[X]\U satisfying f(X) = g(X)h(X).

In this paper we focus our attention on a particular type of irreducibility cri-
teria in Z[X]. Such results could be called simple arithmetical criteria, because
they provide sufficient conditions for the irreducibility of f(X) that only depend
on the nature of the value f(q) in a unique and conveniently chosen integer q.
When |f(q)| > 1 we can write, possibly in several ways, f(q) = ± dp

e, where
d, p and e are positive integers with p prime. The most important criteria of this
kind were established, in chronological order, by P. Stäckel (case d = e = 1),
G. Pólya and G. Szegö (case d = e = 1), O. Ore (case e = 1), L. Weisner
(general case), and M. Filaseta (case e = 1). A useful review of the known ir-
reducibility criteria before 1935 is given in [6]; other results can be found in [13],
and [18]. In spite of the different formulations of these results, including a generaliza-
tion by the author of Pólya-Szegö’s criterion, a careful scrutiny of their hypotheses
allowed us to detect that besides the technical condition p � f

�(q))e−1 introduced
by Weisner in [21], which allows us to treat p

e like a prime number, similar sets of
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hypotheses are satisfied by ρ, q and d, where ρ denotes a real parameter which is
used to locate the zeros of f(X) in the complex plane. As a result of such observa-
tions a general framework for expanded versions of these criteria will be established.
Perhaps unexpectedly, an even more general result can be proved. Indeed, our gen-
eralization will be extended (in the last section of this paper) via a theorem that
for any “f -admissible” triple (ρ, q, d) provides integer upper bounds for Nf , the
number of irreducible factors of f(X) in Q[X].

2. A General Framework for Simple Arithmetical Criteria
of Irreducibility in Z[X]

First, summarizing our analysis of the sets of hypotheses of the aforementioned
irreducibility criteria, we introduce the notion of “admissible triple.”

Definition 2.1. Let S be a nonempty subset of R × Z and let Z be a mapping
defined in S × N whose values Z(ρ, q, d) are subsets of C. Let F be a function
defined in (Z[X] \ {0})× S with values F(f, ρ, q) in the real interval [1,+∞). Let
f(X) be any nonzero polynomial in Z[X].

The triple (S,Z,F) will be called f -admissible, if for any (ρ, q, d) ∈ S × N such
that

d|f(q), q /∈ Z(ρ, q, d) and the zeros of f(X) belong to Z(ρ, q, d)

the following condition is satisfied:

(Condition A) for any polynomial g(X) ∈ Z[X] of positive degree dividing f(X),
g(q)|d =⇒ |g(q)| > F(f, ρ, q).

Most of the above criteria are related to the irreducibility of f(X) in Q[X]. In
order to also include in our framework sufficient conditions for the irreducibility
of f(X) in Z[X] we recall that the greatest common divisor of the coefficients
of f(X), say c(f), is called content of f(X) and that f(X) is called primitive if
c(f) = 1. Notice now that the given definitions of irreducibility guarantee that
f(X) is irreducible in Z[X] if and only if

either f(X) = ± p, or f(X) is primitive and irreducible in Q[X]. (1)

Our theoretical framework also includes sufficient conditions for the irreducibility
of f(X) in Z[X] without invoking explicitly the primitivity of f(X), as described
below.
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Theorem 2.2. ((S,Z,F)–Irreducibility Criterion) Let f(X) be an arbitrary nonzero
polynomial in Z[X] and let (S,Z,F) be any f-admissible triple. Let (ρ, q, d) ∈ S×N
such that d|f(q), q /∈ Z(ρ, q, d) and the zeros of f(X) belong to Z(ρ, q, d). Suppose
also that

d ≤ F(f, ρ, q), f(q) = ± dp
e and p � (f �(q))e−1,

where p and e are positive integers with p prime. Then

f(X) is irreducible in Q[X] ⇐⇒ f(X) has positive degree ⇐⇒ p � c(f). (2)

Moreover,
f(X) is irreducible in Z[X] ⇐⇒ gcd(d, c(f)) = 1. (3)

Proof. First we will prove (2). Suppose f(X) = g(X)h(X) with g(X) and h(X) in
Z[X]. Since the definition of irreducibility in Q[X] requires that f(X) has positive
degree, to complete the proof of the first equivalence we only need to show that one
of the polynomials g(X), h(X) has degree zero.

From g(q)h(q) = ± dp
e it easily follows that there are nonnegative integers

d1, d2, e1, e2, with d = d1d2 and e = e1 + e2, such that |g(q)| = d1p
e1 and |h(q)| =

d2p
e2 . Certainly e1e2 = 0 if e = 1. We also have e1e2 = 0 if e > 1, because

otherwise from f
�(q) = g

�(q)h(q) + g(q)h�(q) we would obtain p|(f �(q))e−1, a con-
tradiction. Hence we can assume e1 = 0, that is, |g(q)| = d1. Then g(X) is a
constant polynomial, because otherwise (Condition A) yields |g(q)| > F(f, ρ, q)
against d1≤d ≤F(f, ρ, q).

On the other hand, it is clear that p|c(f) if f(X) is a constant polynomial.
To prove the converse statement we assume p|c(f). This clearly implies p|f �(q),
which combined with the hypothesis p � (f �(q))e−1 ensures e = 1. Hence we get
that f(X)/p is a divisor of f(X) satisfying |f(q)/q| = d. Then f(X) is a constant
polynomial, because otherwise (ConditionA) yields the contradiction d > F(f, ρ, q).

Finally, to prove (3), note that (2) guarantees that (1) is equivalent to

either f(X) = ± p, or f(X) has positive degree and gcd(d, c(f)) = 1,

and hence, via f(q) = ± dp
e, to gcd(d, c(f)) = 1.

Next we will show that Weisner’s hypothesis is unnecessary if d is appropriately
chosen. In fact, a precise result can be established via the following definition:

Definition 2.3 Let a, b be arbitrary positive integers. The b-part of a, say δ(a, b),
is defined by δ(a, b) = d0 · · · dk−1, where d0 = 1 and

dj = gcd
�

a

d0 · · · dj−1

, b

�
for j = 1, . . . , k − 1.

Here k denotes the smallest positive integer with dk =1.
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It can be readily seen that we have defined δ(a, b) so that the following is true:
δ(a, b) = min{c ∈ N : c|a and gcd(a/c, b) = 1}.

Now we can easily derive of Theorem 2.2 the following result.

Corollary 2.4. Let f(X) be an arbitrary primitive polynomial in Z[X] of positive
degree and let (S,Z,F) be any f-admissible triple. Let (ρ, q, d) ∈ S × N such that
d|f(q), δ(|f(q)|, |f �(q)|)|d, q /∈ Z(ρ, q, d) and the zeros of f(X) belong to Z(ρ, q, d).
Suppose also that d ≤ F(f, ρ, q) and f(q) = ± dp

e, where p and e are positive
integers with p prime. Then f(X) is irreducible in Q[X].

Proof. The aforementioned property of δ(|f(q)|, |f �(q)|) and δ(|f(q)|, |f �(q)|)|d
guarantees gcd(pe

, f
�(q)) = gcd(f(q)/d, f

�(q)) = 1, that is, p � f
�(q). Then, as

all hypotheses of Theorem 2.2 that are required to prove that f(X) is irreducible
in Q[X] are fulfilled, the proof is complete.

In the next section, for a better understanding of Definition 2.1, the irreducibil-
ity criteria listed above will be conveniently reformulated. The admissible triples
corresponding to the more general criteria will be presented in Section 5, after
establishing our generalizations of the Pólya-Szegö criterion.

3. A Review of Simple Arithmetical Criteria and Related Facts

There are irreducible polynomials in Z[X] that can not represent infinitely many
primes over the integers. For example, as an extreme case, the polynomial f(X) =
X

2 +X +4 is irreducible in Z[X] but |f(q)| = q(q +1)+4 is an even integer greater
than 3 for any integer q. We recall now a conjecture of V. Bouniakowsky (see cite
5, p. 333) that would generalize the celebrated Dirichlet’s Theorem on primes in
arithmetic progressions (1837). This conjecture, which has not yet been proved or
refuted, can be stated as follows.

Bouniakowsky’s Conjecture. (1857) For any f(X) ∈ Z[X] of positive degree m

that is irreducible in Z[X] there exist infinitely many integers q such that f(q)/d(f)
is a prime number, where d(f) denotes the greatest common divisor of all the values
of f(X) over the integers.

Remark 3.1. (I) Bouniakowsky also gave a complicated procedure to compute
d(f). A better one was given in 1896 by K. Hensel (see [5], pp. 332, 334]) who
proved, using the well-known Newton’s Formula

f(q + k)=
min{k,m}�

j=0

�
k

j

�
∆j

f(q), k=0, 1, . . . , where ∆j
f(q)=

j�

i=0

(−1)j−i

�
j

i

�
f(q+i),
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that d(f) is the greatest common divisor of the values of f(X) in any m + 1 con-
secutive integers, say q, q + 1, . . . , q + m.

(II) A stronger conjecture formulated in 1962 by Bateman and Horn (see [1])
would imply in the case d(f) = 1 (see [12]) that

π(n, f) ∼
n→∞

C(f)
m

n

log n
.

Here, π(n, f) denotes the number of integers q with 1 < q < n for which |f(q)| is
prime and

C(f) =
�

p prime

p− w(p)
p− 1

,

where w(p) stands for the number of solutions of the congruence f(x)≡ 0(mod p).

The converse of the case d(f) = 1 of the Bouniakowsky Conjecture is an easy
consequence of the following theorem of P. Stäckel (see [20], Satz 1).

Stäckel’s Theorem 1. (1918) A reducible polynomial f(X) ∈ Z[X] of degree
m ≥ 2 can represent at most 2m prime numbers over the integers, and as soon as
the absolute values of the integer q exceeds a certain limit, f(q) will represent only
composite numbers.

Remark 3.2. In a relatively recent work ([4]) it is proved that 2m can be replaced
by m + 2 if m /∈ {4, 5} and that there exist examples with m+1 instead of m + 2.
For m=4 or 5 the maximum possible value is 8.

Subsequently, Stäckel used a remark of O. Gmelin concerning the Fundamental
Theorem of Algebra to establish the following result about the polynomials that
represent prime numbers (see [20], Satz 7).

Stäckel’s Theorem 7. (1918) Let f(X) ∈ Z[X] and let S = 1+A, where A denotes
the maximum of the absolute values of the coefficients of f(X). If there is an integer
q with |q| > S for which f(q) is a prime number, then f(X) is irreducible in Z[X].

Remark 3.3. It should be noted that S constitutes the greatest possible value of
a well-known Cauchy’s upper bound for the absolute values of the zeros of f(X),
namely, ρ0 = 1 + (A/|an|), where an denotes the leading coefficient of f(X) (see
[11], Theorem (27, 2)). Previously, without using the Fundamental Theorem of
Algebra, Stäckel gave for the case n = deg(f) ≥ 2 (see [20], Satz 6) the value

S = 2 +
An!(n− 1)(n

2
+n+2)/2

1! · · · (n− 1)!
.

Stäckel’s Theorem 7 was improved by G. Pólya and G. Szegö through the follow-
ing result (see [15], 127, pp. 137, 350-351, or [17], 127, pp. 130, 330).

Pólya-Szegö’s Theorem. (1925) Let f(X) be an arbitrary polynomial in Z[X].
Assume that there exists an integer q such that the zeros of f(X) lie in the half
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plane �(z) < q − 1

2
, f(q − 1) �= 0 and f(q) = p, where p is a prime number. Then

f(X) is irreducible in Z[X].

Nine years later O. Ore gave a different generalization of Stäckel’s Theorem 7
establishing sufficient conditions for the irreducibility in Q[X] of the polynomials
in Z[X] that represent multiples of primes (see [14], Satz 5).

Ore’s Theorem. (1934) Let f(X) be an arbitrary polynomial in Z[X] of degree
n ≥ 2. Assume that there exist a real number ρ, an integer q and a positive integer d

such that ρ ≥ 1, d|f(q) and the zeros of f(X) are outside of the disk |z − q| ≤ ρ.
Suppose also that d ≤ ρ and f(q) = dp, where p is a prime number. Then f(X) is
irreducible in Q[X].

Remark 3.4. An equivalent result that does not use the real parameter ρ can be
established replacing the hypotheses

the zeros of f(X) are outside of the disk |z − q| ≤ ρ, d ≤ ρ

by a single statement, namely,

the zeros of f(X) are outside of the disk |z − q| ≤ d.

In the last paragraph of [14] Ore says that the sufficient conditions of irreducibility
of the previous theorem can be extended in distinct directions. This task was accom-
plished, almost simultaneously, by L. Weisner who established necessary conditions
for the reducibility of the polynomials that represent multiples of prime powers (see
[21]). In particular, besides establishing the case q = 0 of Ore’s Theorem, Weisner
derives from its first two theorems a result that we state as an irreducibility criterion
in the following equivalent way, where Z(1)[X] = Z[X] \ {−1, 1} and Z(2)[X] stands
for the set of polynomials in Z(1)[X] without rational roots.

Weisner’s Theorem 3. (1934) Let v ∈ {1, 2} and let f(X) be an arbitrary polyno-
mial in Z(v)[X] of degree n ≥ 2 and leading coefficient an. Assume that there exist
a real number ρ, an integer q and a positive integer d such that ρ ≥ 1, |q| ≥ ρ + 1,
d|f(q) and the zeros of f(X) are in the disk |z| < ρ. Suppose also that

(A) d ≤ (|q|− ρ)v or (B) p
e ≥ |an|(|q|+ ρ)n−v

,

f(q) = ± dp
e and p � (f �(q))e−1

,

where p and e are positive integers with p prime. Then f(X) is irreducible in Q[X].

Remark 3.5. (I) Case v = e = 1 of part (A) was also established by Ore in the
last paragraph of [14] and rediscovered several times in the last forty years; see, for
example, [2], Theorem 1 and [9], Theorem 1.

(II) Since p
e ≥ |a|(|q| +ρ)n−v and d ≤ |f(q)|/(|an|(|q| + ρ)n−v) are equivalent

inequalities, we can rewrite
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(A) d ≤ (|q|− ρ)v
or (B) p

e ≥ |an|(|q|+ ρ)n−v

as
d ≤ max

�
(|q|− ρ)v

, |f(q)|/(|an|(|q|+ ρ)n−v)
�

.

More recently, using a well-known bound for the absolute value of the zeros with
positive real part of the polynomials in R[X] with nonnegative coefficients (say
|z| < ρ1; see, for example, [16], (24)), M. Filaseta improves a previous result of
J. Brillhart, M. Filaseta and A. Odlizko (see [3], Theorem 4) establishing the fol-
lowing theorem (see [7], Theorem 4]).

Filaseta’s Theorem 1. (1982) Let f(X) =
�

m

j=0
ajX

j be any polynomial in
Z(2)[X] with am > 0 and am−1 ≥ 0. Let ρ1 = (1 +

√
4M + 1)/2, where M =

max k=0,1,..., m−2 |ak/am|. Let q be any integer and let d be any positive integer such
that q ≥ ρ1 + 1 and d|f(q). Suppose also that d ≤ (q − ρ1)2 and f(q) = dp, where
p is a prime number. Then f(X) is irreducible in Q[X].

Filaseta also established the following result concerning the construction of irre-
ducible polynomials from multiples of primes (see [7], Theorem 2; case d = 1 can
be found in Corollary 2 of [3]; see also [19]).

Filaseta’s Theorem 2. (1982) Let p, d, q be positive integers, with p prime and
dp ≥ q > d. Let f(X) denote the polynomial in Z[X] which is obtained replacing q

by X in the representation of dp in base q. Then f(X) is irreducible in Q[X].

Remark 3.6. Other important results of Filaseta for polynomials in Z[X] with
nonnegative coefficients, also related to the case f(q) = dp, can be found in [8]. In
particular, the preceding theorem is improved by Theorem 5 which admits much
larger coefficients of relatively low order. It should be also noted that to prove this
theorem the case ρ=

√
d of Ore’s Theorem (which is proved in Lemma 1) is used.

4. Generalizations of the Pólya-Szegö Theorem

In this section we generalize Pólya-Szegö’s Theorem, which according to the best
knowledge of the author has not been done yet. We first present a result similar to
Ore’s Theorem (see Remark 3.4). Indeed, Pólya-Szegö’s Theorem is equivalent to
the case d = 1 of the following result (see Remark 2.3).

Theorem 4.1. Let f(X) be an arbitrary polynomial in Z(1)[X]. Assume that there
exist an integer q and a positive integer d such that d|f(q), gcd(d, c(f)) = 1 and the
zeros of f(X) lie in the punctured half plane �(z) < q− d

2
, z �= q− d. Suppose also

that f(q) = dp, where p is a prime number. Then f(X) is irreducible in Z[X].
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Remark 4.2. We can not conclude in all cases that f(X) is irreducible in Z[X] if
the fraction d/2 is replaced by d/k, where k is any real number greater than 2. In
this situation we have, for example, the reducible polynomial

f(X) = ((X − q)2n+1 + p)(p(X − q) + d),
where q, n, p and d are arbitrary positive integers with p prime and d < p < k.
Indeed, f(X) is primitive and has its zeros in the half plane �(z) ≤ q − d

p
< q − d

k
,

also satisfying f(q − d) = d(p + (−d)2n+1)(1− p) �= 0 and f(q)=dp.

A generalization of the above theorem using Weisner’s condition can be estab-
lished. Indeed, Theorem 4.1 is equivalent to the case v=e=1 of the following result.

Theorem 4.3. (Generalized Pólya-Szegö’s Theorem (1)) Let v ∈ {1, 2} and let
f(X) be an arbitrary polynomial in Z(v)[X]. Assume that there exist an integer q

and a positive integer d such that d|f(q), gcd(d, c(f)) = 1 and the zeros of f(X)
are in the punctured half plane

�(z) < q −min
�

d

2
,

v
√

d

�
, z �= q − d.

Suppose also that f(q) = ± dp
e and p � (f �(q))e−1, where p and e are positive

integers with p prime. Then f(X) is irreducible in Z[X].

Now, since for any real number ρ,

ρ ≤ q −min
�

d

2
,

v
√

d

�
if and only if d ≤ max{2(q − ρ), (q − ρ)v},

we state our final generalization of the Pólya-Szegö Theorem rewriting Theorem 4.3
in the following way, which became the model for Theorem 2.2.

Theorem 4.4. (Generalized Pólya-Szegö’s Theorem (2)) Let v ∈ {1, 2} and let
f(X) be an arbitrary polynomial in Z(v)[X]. Assume that there exist a real number ρ,
an integer q ≥ ρ+ 1

2
and a positive integer d such that d|f(q) and the zeros of f(X)

are in the punctured half plane �(z) < ρ, z �= q − d. Suppose also that

d ≤ max{2(q − ρ), (q − ρ)v}, f(q) = ± dp
e, and p � (f �(q))e−1,

where p and e are positive integers with p prime. Then

f(X) is irreducible in Q[X] ⇐⇒ f(X) has positive degree. (2∗)

Moreover,
f(X) is irreducible in Z[X] ⇐⇒ gcd(d, c(f)) = 1. (3∗)

Remark 4.5. Because |z| < ρ implies �(z) < ρ, Weisner’s Theorem 3 (A) can also
be derived of Theorem 4.4 (the proof of the case q < 0 requires to use f

∗(X) =
f(−X) and q

∗ = −q instead of f(X) and q, respectively). It is also clear that
Filaseta’s Theorem 1 is included in the case ρ = ρ1, e = 1, v = 2 of Theorem 4.4.
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A proof of Theorem 4.4 will be given in the next section. Now we use it to
build irreducible polynomials from multiples of prime powers. Given any integer
q ≥ 2 we shall say that a nonzero polynomial in Z[X] is a q-polynomial if all its
coefficients are in the interval 0 ≤ x < q. The following lemma, which will be proved
in Appendix A, gives a very simple upper bound for the real part of the zeros of
any q-polynomial.

Lemma 4.6. For every integer q ≥ 2, the zeros of any q-polynomial in Z[X] lie in
the half plane �(z) <

√
q.

A proof of the following theorem will be given in Appendix B.

Theorem 4.7. Let a, d, p and e be arbitrary positive integers, with a ≥ 2 and p

prime, such that d< q<dp
e, where q = pa. Let f(X) denote the polynomial in Z[X]

which is obtained replacing q by X in the representation of dp
e in base q. Then

f(X) is irreducible in Q[X] if q /∈
�

1≤ j< dpe−1

�
dp

e

pj + 1
,

dp
e

pj

�
. (4)

In particular,

f(X) is irreducible in Q[X] if a
2|(p− 1) and a � d. (5)

Furthermore,

if a
2|(p− 1) and gcd(d, [d/a]q) = 1, then f(X) is irreducible in Z[X]. (6)

Thus, for example, considering the simplest case of the above theorem, namely,
a = 2, p = 5 and d = 1, we get that all polynomials that are obtained from the
integer powers of 5, that is, 5, 2X + 5, X

2 + 2X + 5, 6X2 + 2X + 5, . . . , are
irreducible in Z[X].

5. Main Admissible Triples

In this section we present the admissible triples associated with the missing gen-
eralization of Ore’s Theorem, Weisner’s Theorem 3 (according to (II) of Remark
3.5) and Theorem 4.4, our final generalization of the Pólya and Szegö Theorem.
By comparing the definitions below with the corresponding statements it can be
readily seen that these theorems are immediate consequences of Theorem 2.2 and
the following result.

Theorem 5.1. Let v ∈ {1, 2} and let f(X) be an arbitrary polynomial in Z(v)[X].
Assume that f(X) has degree n and leading coefficient an. Then the following triples
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are f-admissible:

(S,Z,F)Ore

v
:






S = {(ρ, q) ∈ R× Z : ρ ≥ 1}

Z(ρ, q, d) ==

�
{z ∈ C : |q − z| > ρ} if v = 1
{z ∈ C \ Q : |q − z| > ρ} if v = 2

F(f, ρ, q) = ρ
v
,

(S,Z,F)Weisner

v
:






S = {(ρ, q) ∈ R× Z : ρ ≥ 1, |q| ≥ ρ + 1}

Z(ρ, q, d)=

�
{z ∈ C : |z| < ρ} if v = 1
{z ∈ C \ Q : |z| < ρ} if v = 2

F(f, ρ, q) = max {(|q|− ρ)v
, |f(q)|/(|an|(|q|+ ρ)n−v)} ,

(S,Z,F)P&S

v
:






S =
�
(ρ, q) ∈ R× Z : q ≥ ρ + 1

2

�

Z(ρ, q, d)=






{z ∈ C\{q−d} :�(z)<ρ} if v=1, d ≤ 2(q − ρ)
{z ∈ C \ Z : �(z) < ρ} if v=1, d > 2(q − ρ)
{z ∈ C \ Q : �(z) < ρ} if v = 2

F(f, ρ, q) = max{2(q − ρ), (q − ρ)v}.

Our proof that the triple (S,Z,F)P&S
v

is f -admissible depends on the following
lemma (which constitutes the core of the original proof of Pólya-Szegö’s Theorem;
see [17], 127, p. 330).

Lemma 5.2. Let G(X) be an arbitrary nonzero polynomial in Z[X]. Let ρ ∈ R
such that the zeros of G(X) are in the half plane �(z) < ρ and let q ∈ Z, with
q ≥ ρ + 1

2
, such that G(q − 1) �= 0 and G(q) = ±1. Then G(X) = ±1.

Proof. Clearly we only need to prove that G(X) is a constant polynomial. On
the contrary suppose that G(X) has positive degree. It easily follows from our
hypotheses that the zeros of G(X + q − 1

2
) lie in the half plane �(z) < 0, so all its

significant coefficients have the same sign. Therefore |G(−x+q− 1

2
)|< |G(x+q− 1

2
)|

for any positive real number x. Hence, letting x = 1/2, we get the contradiction
1 ≤ |G(q − 1)|< |G(q)| = 1.

We can now give a more simple proof of Theorem 5.1.

Proof. Note first that the triples previously defined satisfy the basic specifications
of Definition 2.1. Let (ρ, q, d) ∈ S × N with d|f(q) such that the zeros of f(X)
belong to Z(ρ, q, d), and let g(X) be an arbitrary polynomial of positive degree in
Z[X] that divides f(X). Assume that g(X) has degree m (so that m ≥ v), leading
coefficient cm, and zeros z1, . . . , zm. To prove that g(X) satisfies (Condition A) we
will show that in each case at least one of the two statements |g(q)| > F(f, ρ, q)
and g(q) � d holds.

In the first place we will prove that |g(q)| > F(f, ρ, q) for the first two triples.
For (S,Z,F)Ore

v
we have,
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|g(q)| = |cm|
�

m

j=1
|q − zj | ≥

�
m

j=1
|q − zj | > ρ

m ≥ ρ
v.

Considering (S,Z,F)Weisner
v

, in the case (|q|−ρ)v
> |f(q)|/(a|(|q|+ρ)n−v) we have,

|g(q)| = |cm|
�

m

j=1
|q − zj | ≥

�
m

j=1
||q|− |zj || > (|q|− ρ)m ≥ (|q|− ρ)v.

For the remaining case, assuming that h(X) := f(X)/g(X) has leading coefficient b

and roots zm+1, . . . , zn we have,

|f(q)|
|an|(|q|+ρ)n−v

≤ |g(q)||h(q)|
|b|(|q|+ρ)n−v

=
|g(q)|

�
n

j=m+1
|q − zj |

(|q|+ρ)n−v
<

|g(q)|
(|q|+ρ)m−v

≤ |g(q)|.

Then it only remains to consider the triple (S,Z,F)P&S
v

. In the first place we
prove that g(q) � d if d/2 ≤ q − ρ.

On the contrary, suppose d/2 ≤ q− ρ and g(q)|d. Let G(X) = g(dX + q)/|g(q)|.
From g(q)|d we get G(X) ∈ Z[X]. Clearly G(0) = ± 1. Note also that for any
complex root z of G(X) we have d�(z) + q < ρ, so �(z) < −(q− ρ)/d ≤ −1/2. On
the other hand, f(q − d) �= 0 implies G(−1) = g(q − d)/|g(q)| �= 0. Therefore, since
Lemma 5.2 applies to G(X) with ρ = −1/2 and q = 0, we have G(X) = ± 1 which
means that g(X) is a constant polynomial, a contradiction.

Now assume d/2 > q − ρ. We shall prove that |g(q)| > max{2(q − ρ), (q − ρ)v}.
Notice that

max{2(q − ρ), (q − ρ)v} =






(q − ρ)2 if v = 2 and q − ρ > 2
(q − ρ)2 = 2(q − ρ) if v = 2 and q − ρ = 2
2(q − ρ) if v = 1 or q − ρ < 2.

In the first place we suppose m=1, so v = 1. In this situation we have |c1| ≥ 2,
because otherwise g(X) has an integer root against the definition of Z(ρ, q, d).
Therefore, |g(q)| = |c1||q − z1| > 2|q − ρ| = 2(q − ρ) = max{2(q − ρ), (q − ρ)v}.

We assume then that m ≥ 2. Note that for any real t ≥ ρ all the significant
coefficients of g(X + t) have the same sign. Hence, letting t = ρ, X = q− t we easily
get,

|g(q)| > |cm|(q − ρ)m ≥ (q − ρ)m ≥






(q − ρ)2 if v = 2 and q − ρ > 2
(q − ρ)2 = 2(q − ρ) if q − ρ = 2
2(q − ρ) if v = 1 and q − ρ > 2,

which proves that |g(q)| > max{2(q − ρ), (q − ρ)v} in the case q − ρ ≥ 2.
Thus it only remains to show that |g(q)| > 2(q−ρ) when q−ρ < 2. As q−ρ ≥ 1/2

and �
1

2
, 2

�
=

�
1

2
, 1

�
∪

�
1, 3

2

�
∪

�
3

2
, 2

�
,

it will be sufficient to prove that for k = 1, 2, 3,
q − ρ ∈ [k/2, (k + 1)/2) implies |g(q)| > k.
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This holds for k = 1 because otherwise Lemma 5.2 applies to G(X) = g(X) giving
the contradiction g(X) = ± 1. Then suppose k ∈ {2, 3}. Notice that g

(j)(q − 1)/j!
and 2m−j

g
(j)

�
q − 3

2

�
/j! are integer numbers for j = 0, 1, . . . ,m. Consequently,

|g(q)| =
m�

j=0

�����
g
(j)

�
q − k

2

�

j!

�����

�
k

2

�j

=






�
m

j=0

����
g
(j)(q − 1)

j!

���� if k = 2

1
2m

�
m

j=0

�����
2m−j

g
(j)

�
q − 3

2

�

j!

����� 3
j if k = 3

≥






�
m

j=0
1 = m + 1 > 2 if k = 2

1
2m

�
m

j=0
3j =

�
3
2

�m+1

− 1
2m+1

≥
�

3
2

�3

− 1
8

> 3 if k = 3,

as we wanted to show.

6. On the Number of Irreducible Factors of the Polynomials in Z[X]

In this section we will extend Theorem 2.2 via a theorem that for any polyno-
mial f(X) ∈ Z[X] of positive degree and any “f -admissible triple” (ρ, q, d) yields
an integer upper bound for Nf , the number of irreducible factors of f(X) in Q[X]
(multiplicities counted). Better bounds for the number of distinct irreducible factors
of f(X) in Q[X] will be obtained under certain additional hypotheses which guar-
antee that f(X) is square free, which means that there does not exist a polynomial
k(X) ∈ Z[X] of positive degree such that k

2(X)|f(X).

Remark 6.1. In general, since f(X) is square free if and only if f(X) and f
�(X)

have no common divisors of positive degree in Z[X], to obtain better estimates of
the number of distinct irreducible factors of f(X) in Q[X] we should replace f(X)
by its square free part, say fsqf(X), defined by

fsqf(X) =
f(X)

gcd(f(X), f �(X))
,

where gcd stands for the greatest common divisor in Z[X] (an algorithm to compute
it can be found in [13]). Such denomination is justified by the fact that fsqf(X) is the
product of the different irreducible factors of f(X) in Z[X] of positive degree, so that
fsqf(X) is also primitive. Furthermore, in order to also diminish the computational
cost of factoring large values of |f(q)|, it is convenient to work separately with the
nonconstant components P1(X), . . . , Pn(X) of the so-called square free factorization
of f(X),
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f(X) = P1(X)P 2
2 (X) · · ·Pn

n
(X), n = deg(f),

which are square free and pairwise coprime polynomials in Z[X] (so fsqf(X) =
P1(X)P2(X) · · ·Pn(X)). This can be done using, for example, the well-known
Tobey-Horowitz algorithm, which is described together with a new procedure in [10].

Some definitions are needed to establish the bounds for Nf associated to a suit-
able triple (ρ, q, d). First we define two closely related counting functions which will
be used to estimate the maximum number of irreducible factors of positive degree
that can have a divisor of f(X) in Z[X], say g(X), satisfying g(q)|d.

Definition 6.2. Let d be a positive integer and let x be a real number, x ≥ 1. Let
∆x(d) = ∆∗

x
(d) = 0 if d ≤ x. Otherwise,

(a) ∆x(d) denotes the largest positive integer k for which we can write d = d1 · · · dk

with dj > x for j = 1, . . . , k;
(b) ∆∗

x
(d) denotes the largest positive integer k for which we can write d = d1 · · · dk

with d1, . . . , dk pairwise coprime and dj > x for j = 1, . . . , k.

Remark 6.3. Given the factorization 1 < d = p
e1
1
· · · p

et
t

, with p
e

1 < · · · < p
et
t

, it
is clear that ∆∗

x
(d) ≤ t and ∆x(d) ≤ e1 + · · · + et. It can also be shown without

difficulty that ∆x(d) < log
x

d if x > 1. Hence, for any f(X) ∈ Z(v)[X] with
v ∈ {1, 2} and any of the f -admissible triples considered in Theorem 5.1, from the
case d = |f(q)|, x = F(f, ρ, q) it can be readily deduced that for any q sufficiently
large, ∆F(f,ρ,q)(|f(q)|) ≤ deg(f)/v.

Next we present a quantitative version of Weisner’s condition p � (f �(q))e−1,
which will be used to estimate the maximum number of irreducible factors of positive
degree that can have a divisor of f(X) in Z[X], say h(X), satisfying h(q)|(f(q)/d).

Let Π(a) denote the set of positive prime divisors of an arbitrary nonzero inte-
ger a. For each p ∈ Π(a) let ep = ep(a) be the largest positive integer k satisfying
p

k|a. As usual, a is called square free if ep = 1 for each p ∈ Π(a). The square free
part of a, say sqf(a), is defined as the product of the primes p ∈ Π(a) with ep = 1.

Definition 6.4. Let f(X) be an arbitrary primitive polynomial in Z[X], and let
q, d be any integers such that f(q) �= 0 and d|f(q). For each p ∈ Π(f(q)/d) we
define:

rp(f, q) = min
�

k ∈ N : p �
�

f
(k)(q)
k!

�ep−1�
..

It should be noted that rp(f, q) is a well defined integer belonging to the set
{1, . . . ,deg(f)}. Indeed, rp(f, q) = 1 if ep = 1, and for ep ≥ 2 the supposition
p|f (k)(q)/k! for k = 1, . . . , n− deg(f) implies p|f(X), via

f(X) = f(q) + f
�(q)(X − q) + · · ·+ f

(n)(q)
n!

(X − q)n,
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which contradicts that f(X) is primitive.

Now, to shorten the proof of the main theorem of this section, we establish a
technical lemma which actually constitutes the part of such theorem that does not
depend on admissibility.

Lemma 6.5. Let h(X) be a primitive polynomial in Z[X] and let q be any integer
with h(q) �= 0. Suppose that dh is a positive divisor of h(q) such that there is no
polynomial k(X) in Z[X] of positive degree satisfying k(X)|h(X) and k(q)|dh. Then

Nh ≤
�

p∈Π(h(q)/dh)

rp(h, q). (7)

Furthermore,
�

p∈Π(h(q)/dh)

rp(h, q) = #(Π(h(q)/dh)) ⇐⇒ gcd(h(q)/dh, h
�(q))|sqf(h(q)/dh). (8)

Proof. Let Π = Π(h(q)/dh) and, for each p ∈ Π, let ep = ep(h(q)/dh), rp = rp(h, q).

Proof of (7). In case |h(q)| = 1 we have Nh = 0 = #(Π) =
�

p∈Π
rp. Now assume

|h(q)| �= 1. Thus h(X) has positive degree and t := #(Π) ≥ 1. Let Π = {p1, . . . , pt},
ej = epj and rj = rpj for j = 1, . . . , t. Thus we can write |h(q)| = dhp

e1
1

. . . p
et
t

and
h(X) = h1(X) · · ·hNh(X), where each hj(X) has positive degree and is irreducible
in Z[X]. Because hj(q) � dh for j = 1, . . . , Nh we can assume |hj(q)| = djp

∗
j
, where

the dj ’s are positive integers with d1 · · · dNh = dh and the p
∗
j
’s are integers greater

than 1 with p
∗
1 · · · p∗Nh

= p
e1
1

. . . p
et
t

.
We now define two polynomial sequences in Z[X], say P0(X), . . . , Pt(X) and

H1(X), . . . , Ht(X). The Pj(X)’s are recursively defined starting with P0(X) = 1.
For 1 ≤ j ≤ t the polynomial Pj(X) is defined as the product of all polynomials
hk(X) with k ∈ {1, . . . , Nh} that are relatively prime to P0(X) · · ·Pj−1(X) and sat-
isfy pj |p∗k. Notice that h(X) = P1(X) · · ·Pt(X). On the other hand we define Hj(X)
for j ∈ {1, . . . , t} as the product of all polynomials hk(X) with k ∈ {1, . . . , Nh}
that satisfy pj |p∗k. It is clear that each Pj(X) divides Hj(X). Therefore, letting
Nj = NHj it will be enough to prove that Nj ≤ rj , j = 1, . . . , t.

Let j ∈ {1, . . . , t}. We can write |Hj(q)| = δp
ej

j
for some δ | dh

�
1≤i≤t

i�=j

p
ei
i

. From

|h(q)|/dh = p
e1
1

. . . p
et
t

and the definition of Hj(X) we easily get Nj ≤ ej . Hence,
to prove Nj ≤ rj , we can suppose rj < ej . Assume Hj(X) = Q1(X) · · ·QNj (X),
where each Qk(X) is an irreducible polynomial in Z[X]. By definition of Hj we
can write |Qk(q)| in the form |Qk(q)| = δkp

�k
j

, where �k, δk are positive integers
with ej = �1 + · · · + �Nj and δ = δ1 · · · δNj . Let Gj(X) = h(X)/Hj(X) and let
rjk = rpj (Qk, q) for k = 1, . . . , Nj . Hence, h(X) = Gj(X)Q1(X) · · ·QNj (X).

From Leibniz’s Formula for the successive derivatives of a product of polynomials
we obtain
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h
(k)(q)
k!

=
�

k0+k1+···+km=k

each ki ≥ 0

G
(k0)
j

(q)
k0!

Q
(k1)
1

(q)
k1!

· · ·
Q

(km)

Nj
(q)

km!
, k = 1, 2, . . . .

In the case k < rj1 + · · ·+ rjNj , from ej > 1 and Definition 6.4 it easily follows that
for every term of the sum on the right there exists i ∈ {1, . . . , Nj} such that ki = 0.
In other words,

k < rj1 + · · ·+ rjNj =⇒ pj

����

�
h

(k)(q)
k!

�ej−1

,

from which follows immediately rj ≥ rj1 + · · ·+ rjNj ≥ Nj .

Proof of (8). From Definition 6.4 it can be easily deduced that for each p ∈ Π,

rp = 1 ⇐⇒ p � (h�(q)ep−1,

p � (h�(q))ep−1 ⇐⇒ gcd(pep , h
�(q))|sqf(pep).

Now, since each rp ≥ 1, the equivalence follows immediately from the basic equality
gcd(h(q)/dh, h

�(q)) =
�

p∈Π
gcd(pep , h

�(q)).

The following theorem contains our main result about Nf and some of its con-
sequences. For the sake of simplicity and without lost of generality we will limit
ourselves to consider primitive polynomials (the general case requires the use of
the so-called primitive part of f(X), that is, of the primitive polynomial fpr(X) :=
f(X)/c(f)).

Theorem 6.6. Let f(X) be an arbitrary primitive polynomial in Z[X] of positive
degree, and let (S,Z,F) be any f-admissible triple. Let (ρ, q, d) ∈ S × N such that
d|f(q), q /∈ Z(ρ, q, d) and the zeros of f(X) belong to Z(ρ, q, d). We have

Nf ≤ ∆F(f,ρ,q)(d) +
�

p∈Π(f(q)/d)

rp(f, q). (9)

Suppose also that gcd(f(q)/d, f
�(q))|sqf(f(q)/d). Then

Nf ≤ ∆F(f,ρ,q)(d) + #(Π(f(q)/d)). (10)

Moreover,

if gcd(f(q), f �(q))|sqf(f(q)), then (11)

f(X) is square free and Nf ≤ ∆∗
F(f,ρ,q)

(d) + #(Π(f(q)/d));

if d ≤ F(f, ρ, q) and f(q)/d is squarefree, then (12)

f(X) is square free and Nf ≤ #(Π(f(q)/d)).
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Proof. Let Π=Π(f(q)/d) and let ep =ep(f(q)/d), rp =rp(f, q) for each p ∈ Π. Let
g(X) be a divisor of f(X) in Z[X] with the highest possible degree satisfying g(q)|d.

Proof of (9). Letting h(X) = f(X)/g(X) and dh = d/|g(q)| we get at once that
h(X) is primitive, |h(q)|/dh = |f(q)|/d and y Nf = Ng + Nh. Therefore, it will be
sufficient to prove

(i)Ng ≤ ∆F(f,ρ,q)(d) and (ii) Nh ≤
�

p∈Π

rp.

Proof of (i). In case that g(X) = ± 1 we have Ng = 0 ≤ ∆F(f,ρ,q)(d). Assume
that g(X) has positive degree. Therefore we can write g(X) = g1(X) · · · gNg(X),
where Ng ≥ 1 and each gj(X) is a polynomial in Z[X] of positive degree that is
irreducible in Z[X]. From gj(X)|g(X) and g(q)|d we obtain gj(X)|f(X) and gj(q)|d
for j = 1, . . . , Ng. Hence, since g(q)|d, (Condition A) yields

|gj(q)| > F(f, ρ, q), j = 1, . . . , Ng,

Consequently, as d = |g1(q)| · · · |gNg(q)|dh, (i) follows via Definition 6.2 (a).

Proof of (ii). The given definition of g(X) guarantees that there is no polynomial
k(X) in Z[X] of positive degree with k(X)|h(X) and k(q)|dh. Therefore (ii) follows
directly from (7) of Lemma 6.5.

Proof of (10). Considering the case h(X) = f(X), dh = d of Lemma 6.5, we get
from (8) that gcd(f(q)/d, f

�(q))|sqf(f(q)/d) and
�

p∈Π
rp = #(Π) are equivalent

statements. Now (10) is an immediate consequence of (9).

Proof of (11). Assume gcd(f(q), f �(q))|sqf(f(q)). Hence it readily follows

gcd(d, f
�(q))|sqf(d) and gcd(f(q)/d, f

�(q))|sqf(f(q)/d).

Therefore, taking into account what has already been proved, it will be sufficient
to show that

(iii) f(X) is square free and (iv) gcd(d, f
�(q))|sqf(d) implies Ng ≤ ∆∗

F(f,ρ,q)
(d).

Proof of (iii). Suppose that k1(X) ∈ Z[X] satisfies k
2
1(X)|f(X), say f(X) =

k
2
1(X)k2(X) with k2(X) ∈ Z[X]. Note first that |k1(q)| = 1. Indeed, otherwise

there is a prime p dividing k1(q) and f
�(q) = 2k�1(q)k1(q)k2(q) + k

2
1(q)k�2(q), which

together with p
2|f(q) contradicts our assumption. From the proof of (ii) above

it follows directly that k1(X) is relatively prime to h(X), so that k1(X)|g(X).
Therefore k1(X) is a constant polynomial, because otherwise, since (S,Z,F) is
f -admissible we would have 1= |k(q)|>F(f, ρ, q) against the definition of F .

Proof of (iv). Suppose that k1(X), k2(X) are polynomials in Z[X] of positive
degree with g(X) = k1(X)k2(X). From Definition 6.2 (b) and the above proof of
(i) we only need to show that k1(q) and k2(q)) are coprime integers. On the contrary,
suppose that a prime p divides gcd(k1(q), k2(q)). From f(X) = g(X)h(X) it follows
that

f
�(q) = k

�
1(q)k2(q)h(q) + k1(q)k�2(q)h(q) + k1(q)k2(q)h�(q),
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whence we get p|f �(q). Therefore p| gcd(d, f
�(q)), which together with p

2|d contra-
dicts gcd(d, f

�(q))|sqf(d).

Proof of (12). Assume d ≤ F(f, ρ, q) and that f(q)/d is square free. These as-
sumptions guarantee ∆F(f,ρ,q)(d)=0 and gcd(f(q)/d, f

�|sqf(f(q)/d) respectively, so
(10) yields Nf ≤ #(Π). In order to prove that f(X) is square free suppose that
k(X) is a polynomial in Z[X] satisfying k

2(X)|f(X). Certainly we can write
k(q) = ab, with a|d and b|(f(q)/d). Since k

2(q) = a
2
b
2 and f(q)/d is square

free, we have ab|d, that is, k(q)|d. Therefore k(X) is a constant polynomial, because
otherwise, as (S,Z,F) is f -admissible we would have |k(q)| > F(f, ρ, q) against
d ≤ F(f, ρ, q).

At this point it can be readily seen that the case f(X) primitive of positive
degree of Theorem 2.2 is equivalent to the case ∆F(f,ρ,q)(d) = 0, #(Π(f(q)/d) = 1
of (10). Furthermore, replacing here the hypothesis gcd(f(q)/d,f

�(q))|sqf(f(q)/d)
by δ(|f(q)|, |f �(q)|)|d (see Definition 2.3) we get a direct generalization of Corollary
2.4. Consequently, the case d = |f(q)| of Theorem 6.6 yields (see Remark 6.3)

(9*)Nf ≤ ∆F(f,ρ,q)(|f(q)|) and (11*)Nf ≤ ∆∗
F(f,ρ,q)

(|f(q)|),

which in general improve the estimations for Nf established in (9) and (11). It is
also clear that (12) generalizes the case e = 1 of Theorem 2.2. As an application
we will prove the following extension of Filaseta’s Theorem 2.

Corollary 6.7. Let t be a positive integer and let p1, . . . , pt be distinct prime
numbers. Let q, a be positive integers with ap1 · · · pt ≥ q > a. Let f(X) denote
the polynomial in Z[X] which is obtained replacing q by X in the representation of
ap1 · · · pt in base q. Then

f(X) is squarefree and Nf ≤ t. (13)

Proof. Let d = a/ gcd(a, c(f)). As f(X) has nonnegative coefficients the hypothesis
ap1 · · · pt≥q> a ≥ d ensures that f(X) has positive degree and f(q−d) �= 0. Hence,
from Lemma 4.6, we can use in Theorem 6.6 the triple (S,Z,F)P&S

v=1 with ρ = √q.
Note also that q − 1 < 2(q −√q), so that d ≤ a ≤ q − 1 < 2(q −√q) = F(f, ρ, q).

At this point it should be noticed that the aforementioned properties of f(X)
are also satisfied by fpr(X) = f(X)/c(f), the primitive part of f(X). Furthermore,
since c = c(f)/ gcd(a, c(f)) is relatively prime to a and therefore to d, we have
that c divides p1 · · · pt from which it follows fpr(q) = ap1 · · · pt/c(f) = d(p1 · · · pt/c),
which ensures that fpr(q)/d is square free. Thus, since all the conditions required
in Theorem 6.6 to prove (12) are satisfied with fpr(X) instead of f(X), and the
equality above also implies #(Π(fpr(q))/d)≤ t, we get that fpr(X) is square free
and Nfpr ≤ t. Hence, as Nf = Nfpr and f(X) is square free if and only if fpr(X)
is, the proof of (13) is complete.
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[20] P. Stäckel, Arithmetischen Eigenschaften ganzer Funktionen, Journal für Mathemathik 148
(1918), 101–112.

[21] L. Weisner, Criteria for the irreducibility of polynomials, Bulletin of the Amer. Math.
Society 40 (1934), 864–870.



INTEGERS: 13 (2013) 19

Appendix A

Here we prove Lemma 4.6. A straightforward calculation shows that
√

3(1 +√
4m + 1)/4 ≤

√
m + 1 for any positive integer m (equality holds if and only if

m = 2). Thus Lemma 4.6 is an immediate consequence of the case M ≤ q − 1 of
the result below.

Lemma 4.6*. Let f(X) =
�

n

k=0
akX

k ∈ C[X], �(an) ≥ 1 and �(an−k)≥ 0 for
k = 1, 2, 3. Let M = max k=0,1,..., n−2 |ak/�(an)|. Then the zeros of f(X) lie in the
half plane

�(z) <

√
3(1 +

√
4M + 1)

4
.

Proof. Let w be any complex number with |w| > 1. For k = 1, . . . , n we have,
����
f(w)
wn

���� ≥
���an +

an−1

w
+ · · · +

an−k

wk

���−
|an−k−1|
|w|k+1

− · · ·− |a0|
|w|n

> �
�
an +

an−1

w
+ · · ·+ an−k

wk

�
− M�(an)
|w|k+1 − |w|k

. (14)

Now we assume �(w) > 0. Certainly

�
�

1
w

�
=
�(w)
|w| > 0. (15)

Hence, letting k = 1 in (14), from �(an) ≥ 1 and �(an−1) ≥ 0 we get,
����
|w|2 − |w|

wn

���� |f(w)| > |w|2 − |w|−M)

=
�
|w|− 1 +

√
4M + 1
2

��
|w|− 1−

√
4M + 1
2

�
.

In this way we arrive to a well-known fact, namely, the roots of f(X) with positive
real part are in the disk

|w| < 1 +
√

4M + 1
2

. (16)

Now assume �(w) ≥ B(M), where B(M) =
√

3(1 +
√

4M + 1)/4. From (16) we
obtain

cos(arg(w)) =
�(w)
|w| >

B(M)
1 +

√
4M + 1
2

=
√

3
2

.

Consequently, arg(w) < π/ 6, whence �(1/w
k) = cos(k arg(w))/|w|k > 0 for k =

2, 3. Thus, letting k = 3 in (14), from (15), �(an−2) ≥ 0 and �(an−3) ≥ 0 we get
����
|w|4 − |w|3

wn

���� |f(w)| > |w|4 − |w|3 −M .
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The function h defined over R by h(x) = x
4 − x

3 − M is strictly increasing in
the interval (3/4,+∞). On the other hand, it can be readily verified that −M =
−4B2(M)/3 + 4B(M)/

√
3. Then, since |w| ≥ B(M) ≥

√
3/2 > 3/4 and 3X3 −

3X2 − 4X + 4
√

3 has no positive real zeros, we have
����
|w|4 − |w|3

wn

���� |f(w)| > h(|w|) ≥ h(B(M)) = B
4(M)−B

3(M)−M

= B(M)(3B3(M)− 3B2(M)− 4B(M) + 4
√

3)/3 > 0
> 0.

Hence, as f(w) �= 0 for �(w) ≥ B(M), the proof is complete.

Appendix B

Here we shall prove Theorem 4.7.

Proof. Let (bm . . . b1b0)(q) denote the base q representation of b = dp
e (with bm �= 0),

which means (as usual [x] stands for the integer part of any real number x)

b =
�

0≤k≤m

bkq
k, with bk = [b/q

k]− q[b/q
k+1] for k=0, 1, . . . ,m = [log b/ log q].

Obviously, we have f(q) = dp
e. Our assumption d < q < dp

e guarantees that f(X)
has positive degree and f(q − d) �=0. On the other hand, Lemma 4.6 ensures that
the zeros of f(X) are in the half plane �(z) <

√
q. Now, since q >

√
q + 1

2
, from

(2∗) of the case ρ = √q of Theorem 4.4 it follows immediately that for proving that
f(X) is irreducible in Q[X] only remains to show that p � (f �(q))e−1. To this end,
note first that from the above definition of f(X) and q = pa are easily deduced the
following equivalences:

p � f
�(q) ⇐⇒ p � [dp

e−1
/a] ⇐⇒ p � b1. (17)

Proof of (4). It can be readily shown that for arbitrary positive integers n, k and
j, with k, j ∈ {1, . . . , n},

[n/k] = j ⇐⇒ n/(j + 1) < k ≤ n/j.

Replacing n, k and j by dp
e, q and jp, respectively, for the case e > 1 we obtain

[dp
e
/q] = jp ⇐⇒ dp

e
/(jp + 1) < q ≤ dp

e
/jp for j = 1, 2, . . . , dp

e−1
.

Equivalently, we can write

p � [dp
e
/q] ⇐⇒ q /∈

�

1≤ j< dpe−1

�
dp

e

pj + 1
,

dp
e

pj

�
,

which togheter with the first equivalence of (17) completes the proof of (4).
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From now on r denotes the remainder of dividing d by a.

Proof of (5). Suppose that a
2|(p − 1) and r �= 0. From (17) it follows that we

only need to show that p � b
e−1

1
, so here we also assume e ≥ 2. First we will prove,

inductively, that there is a positive integer n such that the base q representation of
p

e has the form p
e = (cn . . . c0)(q) with (c1, c0) = (a∗, p), where a

∗ = (p− 1)/a.
When e = 2 we have p

2 = p(aa
∗ + 1) = a

∗
pa + p = (a∗p)(q). Now suppose

2 ≤ i < e and p
i = (cn . . . c0)(q) with (c1, c0) = (a∗, p). Therefore, since p

i+1 ≡
p(a∗q + p) (mod q

2), we just need to prove that the representation of p(a∗q + p) in
base q has the form (sa∗p)(q). From a

2|(p−1) we get a
∗ = sa with s = (p−1)/a

2
< q,

so p(a∗q + p) = s(pa)2 + p
2 = s(pa)2 + a

∗(pa) + p, as we wanted to show.
Therefore, assuming that the base q representation of p

e has the form p
e =

(cn . . . c0)(q) with (c1, c0) = (a∗, p), we have dp
e ≡ d(a∗q + p) (mod q

2). As before
we only need to consider the representation of d(a∗q + p) in base q. Let j = [d/a].
From d = ja + r we get

d(a∗q + p) = da
∗
q + dp = da

∗
q + jq + rp

= (da
∗ + j)q + rp = (jaa

∗ + ra
∗ + j)q + rp

= (jp + ra
∗)q + rp.

Notice that jp + ra
∗ = (pd − r)/a < pd/a < p

2
< q

2. Consequently, there are
integers s1, s2 in the interval [0, q) such that

jp + ra
∗ = s2q + s1.

From 0 < r < a, a|a∗ and a
∗

< p it follows that both a
∗ and r are relatively prime

to p. Then p � s1, because otherwise we have the contradiction p|ra∗. Finally, since
rp < q, the equality

d(a∗q + p) = s2q
2 + s1q + rp

yields b0 = rp, and hence s1 = b1 as we needed to show.

Proof of (6). Assume that a
2|(p− 1) and gcd(d, [d/a]q) = 1. From a ≥ 2 and

gcd(d, rp) = gcd(d, (d− r)p) = gcd(d, [d/a]q) = 1 (18)

it easily follows r �= 0, so the previous proof and (17) guarantee that p � (f �(q))e−1.
We have also proved above that b0 = rp when e ≥ 2. Since dp = [d/a]q + rp,
such equality holds as well for e = 1. Thus, since (18) implies gcd(d, c(f)) = 1, in
accordance with (3∗) of Theorem 4.4 we can conclude that f(X) is irreducible in
Z[X].


