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Abstract
We consider the uniform distribution of solutions (x, y) to xy = N mod a, and
obtain a bound on the second moment of the number of solutions in squares of length
approximately a1/2. We use this to study a new factoring algorithm that factors
N = UV provably in O(N1/3+�) time, and discuss the potential for improving the
runtime to sub-exponential.

1. Introduction

Let gcd(a,N) = 1. A classic application of Kloosterman sums shows that the
points (x, y) mod a satisfying xy = N mod a become uniformly distributed in the
square of side length a as a → ∞. In this paper we investigate an application of
this fact to the problem of factoring integers. We give a new method to factor the
integer N which beats trial division, and prove that it runs in time O(N1/3+�).
Unlike many existing factoring algorithms that attempt to factor N by considering
various congruences modulo N , the method presented here revisits trial division
and exploits information available on a failed trial division, namely it considers the
remainder of N when divided by an integer a, and also by its neighbor, a− 1.

While the complexity of our method is not exciting, considering the existence
of several probabilistic sub-exponential factoring algorithms, the runtime here is
provable. For comparison, the best known provable factoring algorithm, Pollard-
Strassen, runs in time O(N1/4+�). Shank’s class group method runs in time
O(N1/5+�) assuming the GRH. It has a comparable runtime to Lehman’s method [7],
but the method is different. Our algorithm is described in Section 2.

Furthermore, proving this runtime requires understanding the finer distribution
of solutions to xy = N mod a, and our results in this regards are interesting in
their own right. We discuss the problem on uniform distribution in Sections 4 and 5.

Finally, all existing sub-exponential factoring algorithms have grown out of much
weaker exponential algorithms, and we hope that the factoring ideas presented here
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will be improved. In Section 3 we discuss some needed improvements to achieve a
better runtime.

We have not implemented the algorithms described in this paper. The purpose
of this paper is to present a new approach to factoring integers and analyze its
runtime.

2. Algorithm – Hide and Seek

Let N be a positive integer that we wish to factor. Say N = UV where U and V
are positive integers, not necessarily prime, with 1 < U ≤ V . For simplicity, assume
V < 2U , so that V < (2N)1/2. The general case, without this restriction, will be
handled at the end of this section.

The idea behind the algorithm is to perform trial division of N by a couple of
integers, and to use information about the remainder to determine the factors U
and V .

Let a be a positive integer, 1 < a < N . By the division algorithm, write

U = u1a + u0, with 0 ≤ u0 < a

V = v1a + v0, with 0 ≤ v0 < a. (1)

Assume that u0 is relatively prime to a, and likewise for v0, since otherwise we
easily extract a factor of N by taking gcd(a,N). If, for a given a, we can determine
u0, u1, v0, v1 then we have found U and V .

Consider N = u0v0 mod a. One cannot simply determine u0 and v0 from the
value of N mod a, because φ(a) pairs of integers (x, y) mod a satisfy xy = N
mod a (if x = mu0 mod a, then y = m−1v0 mod a, where gcd(m,a) = 1).

However, say a is large, a ≥ �(2N)1/3� > V 2/3, so that v1 and u1 are compara-
tively small, u1, v1 ≤ V 1/3, i.e., both are < a1/2. If we consider N mod a− δ

N = UV = (u1δ + u0)(v1δ + v0) mod a− δ, (2)

for δ = 0, 1, we get, as solutions (x, y) to xy = N mod a − δ, two nearby points,
(u0, v0) and (u0 + u1, v0 + v1), whose coordinates are within a1/2 of one another.
This pair of points is just one pair amongst the many pairs of solutions to the above
equations, for δ = 0, 1. However, the fact that the solutions are nearby reduces the
amount of checking that we need to do in order to find the pair of points, (u0, v0)
and (u0 + u1, v0 + v1), that we seek.

Figures 1 and 2 illustrate this fact, for N = 1910861 = 1061×1801, and a = 157.
Thus, U = 1061, u0 = 119, u1 = 8, and V = 1801, v0 = 74, v1 = 15. Rather
than just depict the solutions to xy = N mod a− δ, for δ = 0, 1, we also plot the
solutions for δ = 2, 3 (though our algorithm below only makes use of solutions for
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δ = 0, 1). Plotting four sets of solutions, for δ = 0, 1, 2, 3 makes it easier for the
human eye to tell the points (u0, v0) = (119, 74), (u0 + u1, v0 + v1) = (125, 85),
(u0 + 2u1, v0 + 2v1) = (131, 96), and (u0 + 3u1, v0 + 3v1) = (137, 107) from the
random coincidences of nearby points as these all lie equally spaced apart and on
one line.
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Solutions to xy = 1910861 mod 155.
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Solutions to xy = 1910861 mod 154.

Figure 1: The solutions (x, y) to xy = 1910861 mod 157− δ, for δ = 0, 1, 2, 3

So, we can set, say, a = �(2N)1/3�, and partition the Cartesian plane into squares
of side length a1/2, each square being of the form {(x, y) ∈ R2|ma1/2 ≤ x <
(m + 1)a1/2, na1/2 ≤ y < (n + 1)a1/2}, where m,n ∈ Z.

We then list all φ(a) pairs of integers (x, y), with 1 ≤ x, y ≤ a, that satisfy
xy = N mod a, throwing them into our squares of side lengths a1/2. We can



INTEGERS: 13 (2013) 4

 0

 20

 40

 60

 80

 100

 120

 140

 0  20  40  60  80  100  120  140

y

x

Solutions to xy = 1910861 mod 157,156,155,154 superimposed.

Figure 2: The solutions (x, y) to xy = 1910861 mod 157 − δ, for δ = 0, 1, 2, 3,
superimposed. The four circled points are (u0, v0) = (119, 74), (u0 + u1, v0 + v1) =
(125, 85), (u0 + 2u1, v0 + 2v1) = (131, 96), and (u0 + 3u1, v0 + 3v1) = (137, 107).

assume that gcd(a,N) = 1, because, otherwise we easily extract a factor of N .
We can compute all inverses mod a, and hence all (x, y) = (x, x−1N) mod a

in O(a) operations mod a. To compute all inverses, start with m = 2, multiply
mod a by m until we arrive at 1, or hit a residue class already encountered (in
which case m is not invertible). Then, take the first residue not yet encountered
and repeat the previous step until all residue classes are exhausted.

Having produced all solutions for the modulus a, we then repeat the process for
the modulus a− 1. For each solution (x1, y1) to xy = N mod a− 1, we determine
which a1/2×a1/2 square it falls within, and consider all nearby (with each coordinate
within a1/2, wrapping to the opposite side of the larger a × a square if needed)
solutions (x0, y0) to xy = N mod a from our list of stored solutions. We set µ0 =
x0, ν0 = y0, µ1 = x1−µ0, ν1 = y1−ν0, and check whether (µ1a+µ0)(ν1a+ν0) = N .
If so, we have determined a non-trivial factor of N and quit.
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How much work does comparing pairs of points (x0, y0) and (x1, y1) entail? There
are φ(a− 1) solutions to xy = N mod a− 1, and, typically, we expect there to be
only a handful of solutions to xy = N mod a whose coordinates are each within
a1/2. Each such pair of solutions gives us candidate values µ0, ν0 and µ1, ν1 for u0, v0

and u1, v1, and we check to see whether they produce N = (u1a + u0)(v1a + v0).
On average, each a1/2× a1/2 square contains O(1) points, the overall time to check
all squares and points is roughly predicted to be O(a). In Section 4 we obtain a
runtime bound of O(a1+�). This algorithm terminates successfully when the true
points (u0, v0) and (u0 + u1, v0 + v1) are found. Since a = O(N1/3) this gives a
running time that is provably O(N1/3+�).

The idea that lies behind the algorithm suggests the name ‘Hide and Seek’. The
solutions that we seek (u0, v0) and (u0 + u1, v0 + v1) are hiding amongst many
solutions in the large a× a square, but, like children who have hidden next to one
another while playing the game Hide and Seek, they have become easier to spot.

We summarize the above in the following algorithm.

Algorithm 2.1. (Hide and Seek) Let N = UV be a positive integer, and assume
that 1 < U ≤ V < 2U , with U, V ∈ Z. Thus V < (2N)1/2. For given positive
integers N, r, define

HN,a = {(x, y) | xy = N mod a, 0 ≤ x, y < a} . (3)

Step 1 Set a = �(2N)1/3�.

Step 2 Use the Euclidean algorithm to compute gcd(N, a − δ) for δ = 0, 1. If either
gcd is > 1 then we have determined a non-trivial factor of N and quit.

Step 3 Compute and store in an array all φ(a) points of HN,a. This can be done
using O(a) arithmetic operations mod a as described above.

Step 4 For 0 ≤ m,n < a1/2, initialize a doubly indexed array, ‘Bin’. Each element,
Bin[m,n], will contain a list of points and be used to partition HN,a. Each is
initially set to empty.

Step 5 Partition the elements of HN,a according to squares of side length a1/2 by
computing, for each (x, y) ∈ HN,a, the values m = �x/a1/2� and n = �y/a1/2�,
and appending the point (x, y) to Bin[m,n].

Step 6 Compute the φ(a− 1) elements of HN,a−1. For each (x1, y1) ∈ HN,a−1:

Step 6a Determine which bin it corresponds to by computing m = �x1/a1/2� and
n = �y1/a1/2�.

Step 6b Loop through the nearby points (x0, y0) of HN,a whose coordinates lie,
left and downwards, within a1/2. Typically, this entails examining the
four bins Bin[m− �1, n− �2], where �1, �2 ∈ {0, 1}. However, slight care
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is needed when crossing over an edge of the a×a square- one should wrap
to the opposite side of the square.

Step 6c Set µ0 = x0, ν0 = y0, µ1 = x1 − µ0, ν1 = y1 − ν0, and check whether
(µ1a+µ0)(ν1a+ν0) = N . If so, we have determined a non-trivial factor
of N and quit.

The storage requirement of O(N1/3) can be improved to O(N1/6) by generating
the solutions (x, y) to xy = N mod a−δ lying in one vertical strip of width O(a1/2)
at a time (easy to do since we can choose x as we please, which then determines y).
In general, we are then no longer free to generate all modular inverses at once, and
must compute inverses in intervals of size a1/2, one at a time, at a cost, using the
Euclidean algorithm, of O(a�) per inverse.

A slight improvement on the runtime of the algorithm can be achieved my mod-
ifying the choice of a so that φ(a) or φ(a− 1) are comparatively small. This can be
achieved by selecting an a or a− 1 with smaller distinct prime factors.

2.1. Variant: 1 < U ≤ V < N Without Restriction

Say U = Nα, V = N1−α, with 1/3 < α ≤ 1/2. We may assume that α > 1/3, for,
if not, we can find U by performing O(N1/3) trial divisions.

Let a = �2N1/3� (we do, here, mean 2N1/3, rather than (2N)1/3 of the previous
section, as explained below).

Instead of working with small squares of side length a1/2, partition the a × a
square into rectangles of width w and height h, with wh = N1/3. We would like to
select w roughly equal to Nα−1/3 and hence h = N1/3/w roughly equal to N2/3−α.

These rough values of w and h are needed to make sure that, using the same
notation as before, (u0, v0) and (u0 + u1, v0 + v1) are in the same, or neighboring,
rectangles. More precisely, say Nα−1/3 < w ≤ 2Nα−1/3. Then h = N1/3/w ≥
N2/3−α/2. Then, in (1), u1 = �U/a� ≤ Nα/�2N1/3� ≤ Nα−1/3/2 < w, and
v1 = �V/a� ≤ N1−α/�2N1/3� ≤ N2/3−α/2 ≤ h. Thus the x-coordinates of (u0, v0)
and (u0 + u1, v0 + v1) are < w apart and the y-coordinates are ≤ h apart.

Since we do not, a priori know α, we cannot simply set w and h. Instead, we
use an exponentially increasing set of w’s, for example starting with w = 2, and,
repeatedly applying the above procedure, each time doubling the size of w, until
w > Nα−1/3 and one successfully factors N .

The area of each rectangle is N1/3, and of the a×a square is approximately N2/3,
so there are O(N1/3) rectangles (at the top and right edges these will typically be
truncated), and, on average, each contains O(1) solutions to xy = N mod a − δ.
Running through each rectangle and its immediate neighbors, checking all pairs of
points in these rectangles suggests O(N1/3) operations are needed for a particular
choice of w and h. Since we might have to repeat this a few times, doubling the
size of w, the overall running time gets multiplied by O(log N) which is O(N �).
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In Section 5, a running time equal to O(N1/3+�) is proven.
The steps described in this section are summarized below.

Algorithm 2.2. Let N = UV be a positive integer, and assume that 1 < U ≤ V <
N , with U, V ∈ Z.

Step 1 Carry out trial division on N up to N1/3. If a non-trivial factor of N is
found, quit.

Step 2 Set a = �2N1/3�.

Step 3 Use the Euclidean algorithm to compute gcd(N, a − δ) for δ = 0, 1. If either
gcd is > 1 then we have determined a non-trivial factor of N and quit.

Step 4 Compute and store, in two arrays, all the points of HN,a and HN,a−1.

Step 5 Set j = 0. While we have not succeeded in finding a non-trivial factor of N :

Step 5a Increment j by 1 and set w = 2j and h = N1/3/w.
Step 5b For 0 ≤ m < a/w and 0 ≤ n < a/h, initialize a doubly indexed array,

‘Bin’, whose elements, Bin[m,n], will contain lists of points and be used
to partition HN,a. Each bin is initially set to empty.

Step 5c Partition the elements of HN,a according to rectangles of width w and
height h by computing, for each (x, y) ∈ HN,a, the values m = �x/w�
and n = �y/h�, and appending the point (x, y) to Bin[m,n].

Step 5d For each (x1, y1) ∈ HN,a−1:
Step 5d1 Determine which bin it corresponds to by computing m = �x1/w�

and n = �y1/h�.
Step 5d2 Loop through the nearby points (x0, y0) of HN,a whose coordinates

lie, left and downwards, within w and h respectively. Typically, this
entails examining the four bins Bin[m − �1, n − �2], where �1, �2 ∈
{0, 1}. However, slight care is needed when crossing over an edge of
the a× a square- one should wrap to the opposite side of the square.

Step 5d3 Set µ0 = x0, ν0 = y0, µ1 = x1−µ0, ν1 = y1− ν0, and check whether
(µ1a + µ0)(ν1a + ν0) = N . If so, we have determined a non-trivial
factor of N and quit.

Step 5e Free up the memory used by ‘Bin’.

3. Towards a Subexponential Bound

The above algorithm exploits the fact that when a is large, and δ is small, the points
with coordinates (U, V ) mod a−δ are close to one another. In fact they lie equally
spaced on a line with common horizontal difference u1, and vertical difference v1.



INTEGERS: 13 (2013) 8

An obvious thing to try is to reduce the size of a. However, as a decreases, u1

and v1 increase so that not only do the points (u0, v0) and (u0 + u1, v0 + v1) move
far apart, the latter point soon falls far outside the square of side length a.

To fix this, one can view (1) as the base a expansion of U and V . When a is
smaller, one could instead use a polynomial expansion

U = ud1a
d1 + . . . + u1a + u0, 0 ≤ ui < a

V = vd2a
d2 + . . . + v1a + v0, 0 ≤ vi < a, (4)

with ud1 �= 0 and vd1 �= 0. For simplicity in what follows, assume that the degrees
of both polynomials are equal, d1 = d2 = d, so that both U and V satisfy ad ≤
U, V < ad+1.

A polynomial of degree d is determined uniquely by d + 1 values. Imitating the
approach in Section 1, we evaluate N mod a − δ for d + 1 values of δ. A natural
choice might be δ = 0,±1,±2, . . ., but, to keep our polynomial values positive,
we consider non-negative values of δ, and, for good measure, take extra values,
δ = 0, 1, 2, . . . 2d (by extra, we mean δ ≤ 2d rather than d leqd). Now,

N = UV = (udδ
d + . . . + u1δ + u0)(vdδ

d + . . . + v1δ + v0) mod a− δ. (5)

Since 0 ≤ uj < a, we have

udδ
d + . . . + u1δ + u0 < aλ(d, δ) (6)

where

λ(d, δ) = δd + δd−1 + . . . + 1 = (δd+1 − 1)/(δ − 1) ∼ δd, as δ →∞. (7)

and similarly for the vj ’s.
For each δ one lists all solutions (x, y) to

xy = N mod a− δ (8)

0 < x, y < aλ(d, δ). (9)

The number of points (x, y) for a given δ is φ(a − δ) per a × a square, and hence,
overall, equals

φ(a− δ)λ(d, δ)2 = O(a(2d)2d). (10)

We are again assuming that gcd(a − δ, N) = 1, otherwise one easily pulls out a
factor of N .

We need a method to recognize the solutions that we seek (udδd + . . .+u0, vdδd +
. . . + v0) hiding amongst all the (x, y)’s. This leads to the question:

Let X > 0 and let S0, S1, . . . , S2d be 2d + 1 sets of points ∈ Z2 all of whose
coordinates are positive and ≤ X. Assume that amongst these points there exists
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2d + 1 points, one from each Sδ, whose coordinates are described by polynomials
u(δ), v(δ) ∈ Z[δ] of degree d. More precisely, for each 0 ≤ δ ≤ 2d there exists a
point (xδ, yδ) ∈ Sδ such that

xδ = u(δ) = udδ
d + . . . + u0

yδ = v(δ) = vdδ
d + . . . + v0. (11)

Can one find these 2d+1 points much more efficiently than by exhaustively searching
through all possible 2d+1 tuples of points? For example, can one find these points
in time O(Xαdβd) for some α,β > 0?

In our application, X = O(a(2d)2d). Since N = UV and ad ≤ U < V < ad+1, we
have a < N1/(2d). Assuming that there is an O(Xαdβd) time algorithm for finding
points with polynomial coordinates, on taking d proportionate to

�
log N

log log N

�1/2

(12)

one gets a factoring algorithm requiring

exp
�
γ(log N log log N)1/2

�
(13)

time and storage, for some γ > 0.
One can cut back a bit on the search space, by noting, for example, that the

coefficients of u(δ) and v(δ) are integers (this imposes a divisibility restriction on
finite differences between points lying on the polynomial), and, in our particular
application, that the coefficients are non-negative and bounded, and this restricts
the rate of growth of the polynomials. However, to get down to a running time
polynomial in X, one needs to do much better.

4. Uniform Distribution

Let gcd(a,N) = 1. A classic application of Kloosterman sums shows that the points
(x, y) mod a satisfying xy = N mod a become uniformly distributed in the square
of side length a as a →∞. While the tools used in this section are fairly standard,
they will also be applied in the next section to estimate the running time of the
Hide and Seek algorithm. Similar theorems can be found in the literature ([1], [2],
[3], [4], [8], [9], [11]), often with restrictions to prime values of a or to N = 1.

Consider the following identity which detects pairs of integers (x, y) such that
xy = N mod a:

1
a

a−1�

k=0

e

�
k

a
(y − x̄N)

�
=

�
1 if xy = N mod a

0 otherwise
(14)
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where e(z) = exp(2πiz), and where x̄ stands for any integer congruent to x−1

mod a, if the inverse exists. Recall that we have assumed gcd(a,N) = 1 so that
any solution to xy = N mod a must have gcd(x, a) = 1. Thus, for such solutions,
x−1 mod a exists.

Let R be the rectangle bounded horizontally by x1, x2 ∈ Z and vertically by
y1, y2 ∈ Z, where 0 ≤ x1 < x2 ≤ a and 0 ≤ y1 < y2 ≤ a:

R = R(x1, x2, y1, y2) = {(x, y) ∈ Z2|x1 ≤ x < x2, y1 ≤ y < y2}. (15)

Let cR(N, a) denote the number of pairs of integers (x, y) that lie in the rectangle
R, and satisfy xy = N mod a:

cR(N, a) =
�

(x,y)∈R
xy=N mod a

1. (16)

The identity above gives

cR(N, a) =
1
a

a−1�

k=0

�

(x,y)∈R
gcd(x,a)=1

e

�
k

a
(y − x̄N)

�
. (17)

Notice that we only need to restrict x to gcd(x, a) = 1 and that y runs over all
residues in y1 ≤ y < y2. This will allow us to deal with the sum over y as a
geometric series.

The k = 0 term provides the main contribution while the other terms can be
estimated using bounds for Kloosterman sums. We require two lemmas. The first
considers the main contribution, and the second bounds the remaining terms.

Lemma 4.1. The k = 0 term in (17) equals

area(R)
a2

φ(a) + O(a�) (18)

for any � > 0.

Proof. The k = 0 term is

1
a

�

(x,y)∈R
gcd(x,a)=1

1 =
(y2 − y1)

a

�

x1≤x<x2
gcd(x,a)=1

1. (19)

Using the Mobius function we have
�

x1≤x<x2
gcd(x,a)=1

1 =
�

x1≤x<x2

�

d| gcd(x,a)

µ(d) =
�

d|a

µ(d)
�

x1/d≤x<x2/d

1

=
�

d|a

µ(d)((x2 − x1)/d + O(1)) = (x2 − x1)
�

p|a

(1− 1/p) + O(τ(a)),(20)
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where τ(a) equals the number of divisors of a and is O(a�) for any � > 0. This
implies that the k = 0 contribution to cR(N, a) equals

area(R)
a2

φ(a) + O((y2 − y1)a−1+�) (21)

which gives the lemma.

The next lemma bounds the contribution of the k ≥ 1 terms in (17).

Lemma 4.2. For any � > 0 we have

1
a

a−1�

k=1

�

(x,y)∈R
gcd(x,a)=1

e

�
k

a
(y − x̄N)

�
= O(a1/2+�). (22)

Proof. One can separate the sum over y and evaluate it as a geometric series ob-
taining for the left-hand side above

1
a

a−1�

k=1

e
�

k
ay2

�
− e

�
k
ay1

�

e
�

k
a

�
− 1

�

x1≤x<x2
gcd(x,a)=1

e

�
−k

a
x̄N

�
. (23)

Taking absolute values we get an upper bound of

1
a

a−1�

k=1

��sin
�

πk
a (y2 − y1

���
��sin

�
πk
a

���

�������

�

x1≤x<x2
gcd(x,a)=1

e

�
−k

a
x̄N

�
�������
. (24)

Next, notice that the terms k and a − k give the same contribution, so we may
restrict our attention to just the terms 1 ≤ k ≤ (a−1)/2. If a−1 is odd, the middle
term is left out at a cost of O(1), and the bound becomes

2
a

�

1≤k≤(a−1)/2

��sin
�

πk
a (y2 − y1

���
��sin

�
πk
a

���

�������

�

x1≤x<x2
gcd(x,a)=1

e

�
−k

a
x̄N

�
�������
+ O(1). (25)

The second sum above over x can be expressed in terms of Kloosterman sums,
and using estimates for Kloosterman sums one has

�

x1≤x<x2
gcd(x,a)=1

e

�
−k

a
x̄N

�
= O(a1/2+� gcd(k, a)1/2). (26)

For a proof, see Lemma 4 on page 36 of Hooley’s book [5] where a proof is given
(his r corresponds to our a, and his l is −kN . Also recall that we are assuming
gcd(N, a) = 1 so that N does not appear in the gcd of the O term).
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Furthermore, using the Taylor expansion of sin(x) one obtains the two inequalities

sin(x) ≤ min(x, 1), x ≥ 0,
1/ sin(x) < 2/x, 0 < x < π/2. (27)

For the second inequality, use 0 < x/2 < x− x3/3! < sin(x) in the stated interval.
Applying (27) and (26) gives an upper bound for (25) of

O



a−1/2+�
�

1≤k≤(a−1)/2

min(
πk

a
(y2 − y1), 1)

2a
πk

gcd(k, a)1/2 + 1



 . (28)

Breaking up the sum into 1 ≤ k ≤ a/(π(y2−y1)) and a/(π(y2−y1)) < k ≤ (a−1)/2,
the sum over k in the O term equals

2(y2 − y1)
�

1≤k≤a/(π(y2−y1))

gcd(k, a)1/2 +
2a
π

�

a/(π(y2−y1))<k≤(a−1)/2

gcd(k, a)1/2/k.

(29)
Both kinds of sums can be easily handled (the first can also be found in Hooley).
Let X > 0. Then,

�

1≤k≤X

gcd(k, a)1/2 ≤
�

d|a

d1/2
�

1≤k≤X
d|k

1 ≤ X
�

d|a

d−1/2 = O(Xa�). (30)

Next, let 0 < X1 < X2. Then
�

X1<k≤X2

gcd(k, a)1/2/k ≤
�

d|a

d1/2
�

X1<k≤X2
d|k

1/k

= O



log(X2 −X1 + 2)
�

d|a

d−1/2



 (31)

which equals
O(log(X2 −X1 + 2)a�). (32)

Applying (30) and (32) to (29), we have that (28) is

O(a1/2+�), (33)

completing the proof.

These two lemmas together give the following theorem.

Theorem 4.3. Let gcd(N, a) = 1 and R as described in (15). Then, cR(N, a), the
number of solutions (x, y) to xy = N mod a with (x, y) lying in the rectangle R, is
equal to

area(R)
a2

φ(a) + O(a1/2+�) (34)

for any � > 0.
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This theorem shows that the points (x, y) satisfying xy = N mod a are uni-
formly dense in the sense that the rectangle R contains its fair share of solutions,
so long as the area of R is of larger size than a3/2+�.

For example, if R is a square, it needs to have side length at least a3/4+� to
contain its fair share of points. This is considerably larger than the side length of
a1/2 that is used in the algorithm of Section 1.

The papers of Shparlinski ([8], [9]) contain many references to the problem of
uniform distribution and discusses improved results on average over N .

5. Second Moment and Running Time

We now examine the assertion made in Section 1 that O(a1+�) time is needed to scan
across all a squares of side length a1/2 and their immediate neighbors, comparing
all pairs of points contained in said squares.

The running time of the algorithm in Section 2.1, i.e., in the case U ≤ V < 2U
depends on how the solutions to xy = N mod a and x�y� = N mod (a − 1) are
distributed amongst the small squares of side length a1/2. In Section 5.1 we will
consider the running time of the variant in Section 2.1 which is used for the general
situation 1 < U ≤ V < N .

Let S denote one such square, i.e., of side length a1/2. Then the running time
needed to examine just the square S, looking at all pairs of points (x, y), (x�, y�)
in S is O(cS(N, a)cS(N, a − 1)), which, by the arithmetic geometric inequality is
O(cS(N, a)2 + cS(N, a− 1)2). The algorithm also requires us to compare points in
neighboring squares, say S1 and S2, which, similarly, takes O(cS1(N, a)2+cS2(N, a−
1)2) time. Hence, the overall running time to compare pairs of points is

O

�
�

S

cS(N, a)2 + cS(N, a− 1)2
�

, (35)

the sum being over the roughly a squares of side length a1/2 that partition the a×a
square {(x, y) ∈ Z2|0 ≤ x, y < a} (at the top and right edges we get rectangles,
unless a1/2 is an integer).

Consider now the contribution from the points mod a:
�

S

cS(N, a)2. (36)

For convenience, rather than deal with squares S of side length a1/2, we will estimate
(36) by making a small adjustment and partitioning the a× a square into squares
of side length

b = �a1/2�. (37)
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We also assume that gcd(b, a) = 1. If not, replace b with b + 1 until this condition
holds. By equation (20), this will not take long to occur, so that, for any � > 0,
b = a1/2 + O(a�).

Thus, consider the squares

Bij = {(x, y) ∈ Z2|ib ≤ x < (i + 1)b, jb ≤ y < (j + 1)b} (38)

with 0 ≤ i, j < a/b− 1.
Since b � a , these will not entirely cover the a × a square, but the number of

points (x, y) ∈ Z2 satisfying xy = N mod a that are neglected at the right most
and top portions of the a × a square is, by (20), O(φ(a)b/a), and these therefore
contribute O(φ(a)2b2/a2) = O(φ(a)) to (36).

The points (x, y) ∈ Z2 belonging to an a1/2×a1/2 square S are contained entirely
in at most four squares, say Bi1j1 , Bi2j2 , Bi1j3 , Bi4j4 , of side length b. Therefore,

cS(N, a)2 ≤ (cBi1j1
(N, a) + cBi2j2

(N, a) + cBi3j3
(N, a) + cBi4j4

(N, a))2 (39)

which, by the Cauchy-Schwartz inequality is

≤ 4(cBi1j1
(N, a)2 + cBi2j2

(N, a)2 + cBi3j3
(N, a)2 + cBi4j4

(N, a)2). (40)

Since each B square overlaps with O(1) S squares, we thus have that

�

S

cS(N, a)2 = O

�
φ(a) +

�

B

cB(N, a)2
�

, (41)

the φ(a) accounting for the contribution from the neglected portion at the right
most and top portions of the a× a square.

A similar consideration for the points satisfying xy = N mod (a− 1), partition-
ing the larger a× a square into squares D of side length d, where d is the smallest
integer greater than �(a− 1)1/2� which is coprime to a, gives the same kind of sum

�

S

cS(N, a− 1)2 = O

�
φ(a− 1) +

�

D

cD(N, a− 1)2
�

. (42)

Therefore, we need to estimate the second moment
�

B

cB(N, a)2 (43)

where B ranges over all �a/b�2 squares of the form (38). To prove that the running
time of the hide and seek algorithm of Section 1 is O(N1/3+�) we need to prove
that (43) is O(a1+�).
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Theorem 5.1. Let
P = {Bij}0≤i,j<a/b−1 (44)

Then �

B∈P

cB(N, a)2 = O(a1+�). (45)

Proof. Rather than look at just the a×a square, it is helpful to consider the ba×ba
square {(x, y) ∈ Z2|0 ≤ x, y < ba}. The advantage of looking at the larger square
will become apparent when we turn to the discrete Fourier transform, and will be
summing over all the ath roots of unity.

This larger square can be partitioned into b2 squares of side length a. Because
the solutions to xy = N mod a repeat mod a, we can count each cB(N, a)2

once per a × a square, by summing cB�(N, a)2 = cB(N, a)2 over all b2 translates
B� = B + (r1a, r2a) of B, with 0 ≤ r1, r2 < b.

On the other hand, we can also partition the ba × ba square into a2 squares of
side length b:

P2 = {Bij}0≤i,j≤a−1 (46)

with Bij given by (38).
Each translate of a B square, B� = B + (r1a, r2a), is covered by at most four

Bij ∈ P2, and each Bij ∈ P2 overlaps at most four such translates of B.
Hence, applying the Cauchy-Schwartz inequality as before,

b2
�

B∈P

cB(N, a)2 = O

�
�

B∈P2

cB(N, a)2
�

. (47)

To study cB(N, a)2 we multiply equation (17) by its conjugate, giving

cB(N, a)2 =
1
a2

�

0≤k1,k2≤a−1

�

(x1,y1)∈B
gcd(x1,a)=1

�

(x2,y2)∈B
gcd(x2,a)=1

e

�
k1

a
(y1 − x̄1N)− k2

a
(y2 − x̄2N)

�
.

(48)
Next, sum over all Bij ∈ P2, and break up each sum over (x, y) ∈ Bij into a double
sum ib ≤ x < (i + 1)b, jb ≤ y < (j + 1)b,

�

B∈P2

cB(N, a)2 =
1
a2

�

0≤k1,k2≤a−1




a−1�

i=0

�

ib≤x1,x2<(i+1)b
gcd(x1,a)=gcd(x2,a)=1

e

�
−N

a
(k1x̄1 − k2x̄2)

�




×




a−1�

j=0

�

jb≤y1,y2<(j+1)b

e

�
k1y1 − k2y2

a

�

 . (49)
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Now, the inner most sum,

�

jb≤y1,y2<(j+1)b

e

�
k1y1 − k2y2

a

�
, (50)

is a product of two geometric series and equals

e((k1 − k2)jb/a)
e(k1b/a)− 1
e(k1/a)− 1

e(−k2b/a)− 1
e(−k2/a)− 1

. (51)

We understand e(kb/a)−1
e(k/a)−1 to equal b if k = 0 mod a. Summing (51) over 0 ≤ j ≤

a− 1 gives 



a

��� e(k1b/a)−1
e(k1/a)−1

���
2

if k1 = k2 mod a

0 otherwise

(recall that we have chosen b so that gcd(b, a) = 1). Therefore, only the terms with
k1 = k2 contribute to (49) and it equals

1
a

a−1�

k=0




a−1�

i=0

�

ib≤x1,x2<(i+1)b
gcd(x1,a)=gcd(x2,a)=1

e

�
−N

a
(k(x̄1 − x̄2))

�



����
e(kb/a)− 1
e(k/a)− 1

����
2

. (52)

The k = 0 term gives, on separating the sum over x1 and x2,

b2

a

a−1�

i=0




�

ib≤x<(i+1)b
gcd(x,a)=1

1





2

(53)

which, by (20) and using b ∼ a1/2, equals

b2(φ(a)b/a + O(a�))2 = O(φ(a)2). (54)

Next, we deal with the terms 1 ≤ k ≤ a− 1. The sum over i in (52) equals

a−1�

i=0

�

ib≤x1,x2<(i+1)b

Ax1,x2(−Nk), (55)

where

Ax1,x2(t) =

�
0 if gcd(x1x2, a) > 1
e(t(x̄1 − x̄2)/a) otherwise.

To analyze this sum, we use the two dimensional discrete Fourier transform

Âm1,m2(t) =
�

0≤x1,x2≤a−1

Ax1,x2(t)e
�
−m1x1 + m2x2

a

�
, (56)
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so that
Ax1,x2(t) =

1
a2

�

0≤m1,m2≤a−1

Âm1,m2(t)e
�

m1x1 + m2x2

a

�
, (57)

and (55) equals, on changing order of summation,

1
a2

�

0≤m1,m2≤a−1

Âm1,m2(−Nk)




�

0≤i≤a−1

�

ib≤x1,x2<(i+1)b

e

�
m1x1 + m2x2

a

�

 .

(58)
The bracketed sum over i is similar to the sum over j worked out above and equals





a

��� e(m1b/a)−1
e(m1/a)−1

���
2

if m2 = −m1 mod a

0 otherwise.

Therefore, (58) equals

1
a

a−1�

m=0

Âm,a−m(−Nk)
����
e(mb/a)− 1
e(m/a)− 1

����
2

. (59)

So, (52), and hence (49), equals

1
a2

a−1�

k=0

a−1�

m=0

Âm,a−m(−Nk)
����
e(mb/a)− 1
e(m/a)− 1

����
2 ����

e(kb/a)− 1
e(k/a)− 1

����
2

. (60)

But,

Âm,a−m(−Nk) =
�

0≤x1,x2≤a−1
gcd(x1x2,a)=1

e

�
−Nk

a
(x̄1 − x̄2)

�
e

�
−mx1 −mx2

a

�

=

�������

�

0≤x≤a−1
gcd(x,a)=1

e

�
−Nkx̄ + mx

a

�
�������

2

. (61)

However, the sum on the right-hand side is a Kloosterman sum,

�

0≤x≤a−1
gcd(x,a)=1

e

�
−Nkx̄ + mx

a

�
= S(−m,−Nk, a), (62)

and are known [10] [6] to satisfy the bound

|S(−m,−Nk, a)| ≤ τ(a) gcd(m,k, a)1/2a1/2 = O(a1/2+� gcd(k, a)1/2) (63)
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(recall we are assuming that gcd(N, a) = 1 so that N does not appear on the
right-hand side of this inequality). Applying this bound to Âm,a−m(−Nk), shows
that (60) is

O

�
a�

a

a−1�

k=1

a−1�

m=0

gcd(k, a)
����
e(mb/a)− 1
e(m/a)− 1

����
2 ����

e(kb/a)− 1
e(k/a)− 1

����
2

+ φ(a)2
�

. (64)

The φ(a)2 terms comes from the k = 0 contribution, (54). We must isolate this
term, otherwise the estimate below will be too large.

Separating sums gives

O

�
a�

a

�
a−1�

k=1

gcd(k, a)
����
e(kb/a)− 1
e(k/a)− 1

����
2
��

a−1�

m=0

����
e(mb/a)− 1
e(m/a)− 1

����
2
�

+ φ(a)2
�

. (65)

Both sums can be bounded using the same approach as for (24) in the previous
section, namely: combining terms k and a− k (similarly for the m sum, but taking
the m = 0 term alone), breaking up the sum into the terms with k ≤ a/(πb) ∼
a1/2/π (respectively, m), applying inequalities (27), estimating the resulting sums,
using b ∼ a1/2, we find, for any � > 0, that (65) equals

O(b2a1+�). (66)

We have thus estimated the sum that appears on the right-hand side of (47). The
sum that we wish to bound appears on the left-hand side of (47) but with an extra
factor of b2. Hence, dividing the above by b2 gives O(a1+�) for the sum in theorem.

Remark: In certain cases, such as when a = p2, with p prime, one can improve the
above estimate for the second moment to O(a) by taking b = p and, for x = jp + l,
with gcd(l, p) = 1, using x̄ = l̄2(l − jp).

5.1. Running Time of the Variant for 1 < U ≤ V < N

Instead of partitioning the a×a square into smaller squares of side length b ∼ a1/2,
we partition it into rectangles R of width w < a and height h < a, where w, h ∈ Z
and, for convenience, gcd(w, a) = gcd(h, a) = 1.

We partition the a× a square and also the larger wa× ha rectangle into smaller
rectangles R:

R = Rij = {(x, y) ∈ Z2|iw ≤ x < (i + 1)w, jh ≤ y < (j + 1)h}
Q = {Rij} 0≤i<a/w−1

0≤j<a/h−1

Q2 = {Rij}0≤i,j≤a−1.
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As in Section 4.1, we have

wh
�

R∈Q

cR(N, a)2 = O




�

R∈Q2

cR(N, a)2


 . (67)

with wh appearing on the left-hand side since the large wa× ha rectangle has that
many copies of the a× a square.

Using the discrete Fourier transform, as before,

�

R∈Q2

cR(N, a)2 =
1
a2

a−1�

k=0

a−1�

m=0

|S(−m,−Nk, a)|2
����
e(mw/a)− 1
e(m/a)− 1

����
2 ����

e(kh/a)− 1
e(k/a)− 1

����
2

.

(68)
This useful identity expresses the second moment for the larger wa× ha rectangle
as a sum involving Kloosterman sums.

The k = 0 term can be estimated as in (54) and asymptotically equals

h2w2

a2
φ(a)2. (69)

For the k ≥ 1 terms, we use bound (63) to estimate the Kloosterman sums and
separate the double sum above to get a contribution of

O

�
a�

a

�
a−1�

k=1

gcd(k, a)
����
e(kh/a)− 1
e(k/a)− 1

����
2
��

a−1�

m=0

����
e(mw/a)− 1
e(m/a)− 1

����
2
��

. (70)

The first sum is estimated to equal O(τ(a)ah) while the second sum is O(aw),
giving, for k ≥ 1, a contribution of

O(a1+�wh) (71)

for any � > 0. Putting (69) and (71) together, then dividing the left-hand side of
(67) by wh gives the following estimate for the second moment:

Theorem 5.2. Let 1 < w, h < a, with gcd(w, a) = gcd(h, a) = 1. Then, using the
notation above, we have an estimate for the second moment that depends on the
area wh of the rectangles R:

�

R∈Q

cR(N, a)2 =

�
O(a1+�) if wh = O(a1+�),
O(whφ(a)2/a2) if wh � aλ for some λ > 1.

(72)

Remark: if gcd(w, a) = gcd(h, a) = 1 does not hold, one can bound the left-
hand side of (72) by comparing with the same kind of sum, but where w and h are
incremented, as before, by at most O(a�) until this gcd condition holds. So long as
w, h � a� to begin with, the estimates in the above theorem are unaffected.
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In Section 1.2, our choice of w and h has wh = O(a), and the estimate for the
second moment is thus O(a1+�), as in the previous section.

The second estimate of the theorem (not relevant for our particular application),
O(whφ(a)2/a2), can probably be turned into an asymptotic formula and a central
limit theorem proven. This will remain an inquiry for the future.
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