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Abstract

In this paper we study the distribution of pairs (d1, d2) of positive integers such
that the product d1d2 divides a given integer n from a probabilistic point of view.
The number of these pairs, denoted by τ3(n), is equal to the number of ways to
write n as a product of three positive integers. To these pairs we associate a random
vector taking the values ( (log d1)/(log n), (log d2)/(log n) ) with uniform probability
1/τ3(n) and its distribution function Fn. We show that the mean of Fn uniformly
converges to the distribution function of the Beta two-dimensional law ( Dirichlet
law). Our study generalizes a work done by Deshouillers, Dress and Tenenbaum in
the case of the divisors of an integer where they showed that the average distribution
of divisors of a given integer follows the arcsine law.

1. Introduction

In order to study the distribution of divisors of a given integer n, Deshouillers,
Dress and Tenenbaum [1], introduce the random variable Dn which takes the val-
ues (log d)/(log n) as d runs through all divisors of n with uniform probability
1/τ2(n), where τ2(n) is the number of divisors of n, and its distribution function
Gn(u) := Prob(Dn � u), u ∈ [0, 1]. The sequence (Gn)n does not converge point-
wise in [0, 1], they studied its mean value and showed that

1
x

�

n�x

Gn(u) =
1
x

�

n�x

Prob(Dn � u) =
2
π

arcsin(
√

u) + O

�
1√

log x

�
,

uniformly for x � 2 and u ∈ [0, 1]. Moreover, the order of the remainder term’s
magnitude is optimal if the uniformity in [0, 1] is required. The method is based on
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the sums estimation Σn�x1/τ2(kn); see Théorème T of [1] and also II.5 of [2]. In
the present work we are interested in the distribution of pairs (d1, d2) of positive
integers such that the product d1d2 divides n. The number of these pairs is equal
to the number of ways to write n as a product of three positive integers, which will
be denoted as τ3(n). We consider the random vector

(Xn, Yn) :
�
(d1, d2) : d1d2|n

�
−→ [0, 1]× [0, 1],

which takes the values ( (log d1)/(log n), (log d2)/(log n) ) with uniform probability
equal to 1/τ3(n) and its distribution function, given by

Fn(u, v) := Prob(Xn � u, Yn � v) =
1

τ3(n)

�

qm|n,q�nu,m�nv

1 .

The sequence (Fn)n does not converge pointwise on [0, 1] × [0, 1], as can be easily
seen by observing that for a fixed (u0, v0), 1

3 < u0 <
2
3 and 1

3 < v0 <
2
3 , the

subsequences (Fp(u0, v0))p and (Fp3(u0, v0))p3 with p as a prime number, do not
converge to the same limit. We will study the convegence of the mean of (Fn)n:

1
x

�

n�x

Fn(u, v) =
1
x

�

n�x

Prob(Xn � u, Yn � v) =
1
x

�

n�x

1
τ3(n)

�

qm|n,q�nu,m�nv

1,

which gives the average distribution of solutions of the equation xyz = n in integers
x � 1, y � 1, z � 1. In the sequel, we will use the notation:

S(x;u, v) :=
�

n�x

1
τ3(n)

�

qm|n,q�nu,m�nv

1 . (1)

2. Statement of the Theorem

Denote by Γ the Euler gamma function and for a, b ∈]0,+∞[ let

B(a, b) =
� 1

0
y

a−1(1− y)b−1
dy =

Γ(a)Γ(b)
Γ(a + b)

·

Set

T1 = {(u, v) ∈ [0, 1]× [0, 1] : u + v < 1};T2 = {(u, v) ∈ [0, 1]× [0, 1] : u + v � 1} .

The following theorem shows that the mean of the distribution function defined
above uniformly converges in T1 to the distribution function of the Beta two-
dimensional law which has parameters 1/3, 1/3, 1/3 and uniformly converges in T2

to a sum of distribution functions of the Beta-dimensional laws which has parame-
ters 2/3, 1/3 .
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Theorem 2.1. 1.Uniformly for x > 1 and (u, v) ∈ T1, we have
1
x

�
n�x Prob(Xn � u, Yn � v) = 1

Γ3( 1
3 )

� u
0

� v
0 y−

2
3 z−

2
3 (1− y − z)− 2

3 dydz

+O

�
1

3√log x

�
·

2.Uniformly for x > 1 and (u, v) ∈ T2, we have
1
x

�
n�x Prob(Xn � u, Yn � v) = −1 + 1

B( 2
3 , 1

3 )

� u
0 y−

1
3 (1− y)− 2

3 dy

+ 1
B( 2

3 , 1
3 )

� v
0 y−

1
3 (1− y)− 2

3 dy + O

�
1

3√log x

�
·

Remark 2.2. The remainder term O

�
1

3√log x

�
in Theorem 2.1 is optimal if uni-

formity in (u, v) is required. Indeed, by using partial summation and lemma 3.1
below, we can show that for 0 � v < (log 2)/(log x)

1
x

�

n�x

Prob(Xn � 1
2
, Yn � v) ∼

c2Γ(1
3 )

Γ(2
3 )

1
3
√

log x
, (x→ +∞),

where c2 is a constant defined in (4) below.
We also note that the transition from the first formula to the second in Theorem 2.1
is regular. Indeed, we can show that for (u, v) such u + v = 1,

−1 + 1
B( 2

3 , 1
3 )

� u
0 y−

1
3 (1− y)− 2

3 dy + 1
B( 2

3 , 1
3 )

� 1−u
0 y−

1
3 (1− y)− 2

3 dy

= 1
Γ3( 1

3 )

� u
0

� 1−u
0 y−

2
3 z−

2
3 (1− y − z)− 2

3 dydz

For x � 2, we set

�x :=
log 2
log x

, �
��
x := (

log 2
log x

)η
, (2)

where 0 < η < 1/3 is an arbitrary fixed number.

Tx := {(u, v) ∈ [0, 1]× [0, 1] : u + v � 1− ���x},
T x := {(u, v) ∈ [0, 1]× [0, 1] : 1− ���x < u + v < 1} .

(3)

For technical reasons, we divide the proof of Theorem 2.1 into two parts. In the
first part we prove the first formula for (u, v) in Tx and in the second one we prove
the same formula for (u, v) in T x and we also prove the second formula for (u, v)
in T2. However, the two parts use the same ideas. In Section 3, we will give some
necessary lemmas. In Section 4, we will give full proof of Theorem 2.1 for (u, v) in
Tx. In Section 5, to avoid repetitions, we will just describe the proof of Theorem
2.1 for (u, v) in T x and for (u, v) in T2 without details. All notations introduced
here will be retained throughout the rest of the article.
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3. Lemmas

We introduce two multiplicative functions h1 et h2 that will be used in the sequel.
For a prime power they are defined by

h1(pr) =




�

j�0

1
pjτ3(pj+r)








�

j�0

1
pjτ3(pj)




−1

and

h2(pr) =




�

j�0

h1(pj+r)
pj








�

j�0

h1(pj)
pj




−1

.

We also set

c1 :=
�

p

(1− 1
p
)

1
3

�

j�0

p−j

C2
j+2

; c2 :=
�

p

(1− 1
p
)

1
3

�

j�0

h1(pj)
pj

;

c3 :=
�

p

(1− 1
p
)

1
3

�

j�0

h2(pj)
pj

· (4)

Lemma 3.1. The following hold:

1. For every θ ∈]0,+∞[ and every integer d � 1, there is a positive constant
Mθ,d := (1/3 + θ)ω(d), where ω(d) is the number of prime divisors of d, such
that uniformly for any real number x � 2 and any integer d � 1 we have

�
n�x

1
τ3(dn) = c1h1(d)

Γ( 1
3 )

x

log
2
3 (x)

+ O

�
Mθ,d x

log
5
3 (x)

�
;

�
n�x h1(dn) = c2h2(d)

Γ( 1
3 )

x

log
2
3 (x)

+ O

�
Mθ,d x

log
5
3 (x)

�
·

2. For every θ ∈]0,+∞[, and i = 1, 2, we uniformly have for x � 2,

�
n�x h2(n) = c3

Γ( 1
3 )

x

log
2
3 (x)

+ O

�
x

log
5
3 (x)

�
;
�

n�x
hi(n)

n = O

�
log

1
3 (x)

�
;

�
n�x

Mθ,n

n = O

�
log

1
3+θ(x)

�
·

Proof. The lemma is an immediate consequence of Théorème T of [1].

Lemma 3.2. The following two equalities hold:
1. for any x ∈]0, 1[,

�
r�0

�
j�0

�
��0

xr+j+�

Cr+j+�
r+j+�+2

= 1
1−x ;

2. c1c2c3 = 1.
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Proof. 1. We clearly have

xr+j+�

C
r+j+�
r+j+�+2

=
2xr+j+�

r + j + � + 1
− 2xr+j+�

r + j + � + 2
=

2
x

� x

0
t
r+j+�

dt− 2
x2

� x

0
t
r+j+�+1

dt .

Then
�

r�0

�

j�0

�

��0

xr+j+�

C
r+j+�
r+j+�+2

=
2
x

� x

0

1
(1− t)3

dt− 2
x2

� x

0

t

(1− t)3
dt =

1
1− x

·

2. From definitions, we have

c1c2c3 =
�

p

�
1− 1

p

���
r�0 p−r

�
j�0

p−j

Cj+r
j+r+2

���
j�0 p−j

�
��0

p−�

Cj+�
j+�+2

�−1

×

��
r�0

�
j�0

�
��0

p−r−j−�

Cr+j+�
r+j+�+2

�
=

�
p

�
1− 1

p

���
r�0

�
j�0

�
��0

(p−r−j−�

Cr+j+�
r+j+�+2

�
,

which immediately yields c1c2c3 = 1 by the formula proved in 1.

Lemma 3.3. 1. For x � 2, let �x := (log 2)/(log x) and (u, v) ∈ [0, 1]2 be such
that �x � u + v � 1− �x. For 2 � t � xu, set

I(t, x, v) :=
� v

�x

z
− 2

3 (1− log t

log x
−z)−

2
3 dz, J(x, u, v) :=

� xu

2
(log t)−

2
3

∂

∂t
I(t, x, v) dt .

Then, we uniformly have J(x, u, v) = O(1).

2. Let

I(t, x, v) :=
� 1−�x− log t

log x

v
z
− 2

3 (1− log t

log x
− z)−

2
3 dz.

Uniformly for �x � v � 1 and x � 2, we have

J1(x, v) :=
� x

2

2
log−5/3(t) I(t, x, v)

dt

t
= O(1),

and

J(x, v) :=
� x

2

2
log−2/3(t)

∂

∂t
I(x, t, v) dt = O(1).

Proof. 1. We have ∂
∂tI(t, x, v) = 2

3t log x

� v
�x

z−
2
3 (1− log t

log x − z)− 5
3 dz. By a change of

variable y = log t/ log x, we obtain J(x, u, v) = 2
3(log x)2/3

� u
�x

� v
�x

y−
2
3 z−2/3(1 − y −

z)− 5
3 dzdy. When y → 0 (resp. y → 1), we have z → 0 or z → 1 (resp. z → 0),

as �x � u + v � 1 − �x. The integrand is therefore equivalent to y−
2
3 z−

2
3 or to

y−
2
3 (1 − z)−5/3 (resp. to z−

2
3 (1 − y)−5/3). An easy calculation yields J(x, u, v) =

O(1).
2. The proof is similar to 1.
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Lemma 3.4. 1. For x � 2, let ���x := (log 2)η/(log x)η, 0 < η < 1/3. For
u ∈ [�x, 1−���x], v ∈ [

√
�x, 1−���x], u+v � 1−���x, and 2 � q � xu, we uniformly

have

�I(x, v) :=
� xv

x
√

�x

log−
5
3 (t) log−

2
3 (

x/q

t
)

dt

t
= O

�
(log x)−1+ 4

3 η
�

,

and

��I(x, v) :=
� xv

x
√

�x

log−
2
3 (t) log−

5
3 (

x/q

t
)

dt

t
= O

�
(log x)−1+ 4

3 η
�
·

2. For �x � u � 1− ���x, 2 � m � x
√

�x and u + v � 1− ���x, we uniformly have

I(x, u) :=
� xu

2
log−

5
3 (t) log−

2
3 (

x/m

t
)

dt

t
= O

�
(log x)−

2
3+ 2

3 η
�

,

and

I(x, u) :=
� xu

2
log−

2
5 (t) log−

5
3 (

x/m

t
)

dt

t
= O

�
(log x)−

2
3+ 2

3 η
�
·

3. For �x � v � 1− ���x and 2 � q � √x, we uniformly have
� x

2q

xv

log−
2
3+θ(t) log−

5
3 (x/qt)

dt

t
= O

�
(log x)−

2
3+θ

�
·

4. For �x � v � 1− �x and 2 � q � x1−v, we uniformly have
� x/2q

xv

log−5/3(t) log−2/3(
x/q

t
)

dt

t
= O

�
(log x)−

4
3+ 4

3 η
�
·

Proof. The proofs of the four statements are similar. Let us prove the first one. We
write

�I(x, v) = log−2/3(x/q)
� xv

x
√

�x

log−5/3(t) (1− log t

log(x/q)
)−2/3 dt

t
,

and by the change of variable y = 1− log t
log(x/q) , we get

�I(x, v) = log−4/3(x/q)
� 1−

√
�x log x

log(x/q)

1− v log x
log(x/q)

y−2/3(1− y)−5/3 dy

� log−4/3(x/q)(1− v log x
log(x/q) )

−2/3
� 1−

√
�x log x

log(x/q)

1− v log x
log(x/q)

(1− y)−5/3 dy

� 3
2 log−4/3(x/q)(1−u−v

1−u )−2/3(
√

�x log x
log(x/2) )−2/3 � log−1+(4/3)η(x)·
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4. Proof of Theorem 2.1 for (u, v) in Tx

Recall that the notation T x has been introduced in (3), �x and ���x in (2) and S(x;u, v)
in (1). First, we note that Theorem 2.1 is obvious for x bounded. From now on we
suppose that x is sufficently large. We divide Tx into two zones: [0, �x]×[0, 1]∪[0, 1]×
[0, �x], and D0 :=

�
(u, v) ∈ [�x, 1− ���x]2, u + v � 1− ���x

�
. In the first zone, we show

that S(x, u, v) has the same order of magnitude as the remainder term (see Lemma
4.1 below). In order to study the sum S(x;u, v) in the second zone, we decompose
it as follows: S(x, u, v) = S1(x, u, v)− S2(x, u, v)− S3(x, u, v)− S4(x, u, v), with

S1(x, u, v) :=
�

q�xu,m�xv

d� x
qm

1
τ3(qmd)

; S2(x, u, v) :=
�

nu�q�xu,nv<m�xv

n=qmd�x

1
τ3(qmd)

;

S3(x, u, v) :=
�

q�nu,nv<m�xv

n=dmq�x

1
τ3(qmd)

; S4(x, u, v) :=
�

nu�q�xu,m�nv

n=qmd�x

1
τ3(qmd)

·

We then show that S2(x, u, v), S3(x, u, v) and S4(x, u, v) have the same order of
magnitude as the remainder term (see Lemma 4.2 below) and that S1(x, u, v) pro-
vides the main term (see Lemma 4.3 below).

Lemma 4.1. Uniformly for x � 2 and (u, v) ∈ [0, 1]× [0, �x[∪[0, �x[×[0, 1], we have

S(x, u, v) = O

�
x

3
√

log x

�
·

Proof. By symmetry, it suffices to prove the lemma for (u, v) ∈ [0, 1] × [0, �x[. We
have

S(x, u, v) �
�

q�xu

�

d�x/q

1
τ3(dq)

�
�

q�x

�

d�x/q

1
τ3(dq)

·

The condition dq � x implies that d � √x or q � √x, we clearly have
�

q�x

�

d�x/q

1
τ3(dq)

�
�

q�√x

�

d�x/q

1
τ3(dq)

=: L .

Applying Lemma 3.1 and observing that q � √x, we get

L� x log−2/3(x)
�

q�√x

h1(q)
q

� x

3
√

log x
·

Lemma 4.2. Let �x = log 2/ log x. Uniformly for x � 2 and (u, v) ∈ [�x, 1]2, we
have

Si := Si(x, u, v) = O

�
x/

3
�

log x

�
, (i = 2, 3, 4)·
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Proof. Let M2 := min(M3,M4), with M3 = x1−v

q , M4 = x1−u

m and

�S3 = �S3(x, u, v) :=
�

q�xu,m�xv

d�M3

1
τ3(qmd)

, �S4 = �S4(x, u, v) :=
�

q�xu,m�xv

d�M4

1
τ3(qmd)

·

We clearly have

S2 �
�

q�xu,m�xv

d�M2

1
τ3(qmd)

� min(�S3,
�S4), S3 � �S3, S4 � �S4,

�S3(x, u, v) = �S4(x, v, u)·

Then to prove the lemma, it suffices to prove that �S4 = O
�
x/

3
√

log x
�

uniformly in
[�x, 1]2. Set ��x :=

�
log 2/ log x. We will first give the estimate for (u, v) ∈ [�x, ��x]2.

By Lemma 3.1, we get

�S4 � x1−u
�

q�xu,m�xv
h1(qm)

m log−2/3(x1−u

m )
� x(u(1− u− v))−2/3 log−4/3(x)

�
m�xv

h2(m)
m � x

3√log x
·

Let us now estimate �S4 for (u, v) in [��x, 1]× [�x, 1]. We distinguish two cases:
1st case, suppose that u + v � 1− ��x. Lemma 3.1 gives

�S4 � x(u(1− u− v))−2/3 log−4/3(x)
�

m�xv

h2(m)
m

� x

3
√

log x
,

as u−2/3 � (��x)−2/3 � log1/3(x) and (1− u− v)−2/3 � (��x)−2/3 � log1/3(x).
2nd case, suppose that u + v > 1− ��x. Then, we can write �S4 = T1 + T2, with

T1 :=
�

m�x1−u−��x ,q�xu,d�M4

1
τ3(qmd)

, T2 :=
�

x1−u−��x<m�xv,q�xu,d�M4

1
τ3(qmd)

·

Consider T1. By Lemma 3.1 we obtain, as before,

T1 �
�

m�x1−u−��x ,q�xu x1−u h1(qm)
m log−2/3(x1−u/m)

� xu−2/3 log−2/3(x)(��x)−2/3 log−2/3(x) log1/3(x)� x
3√log x

·

Consider now T2. The condition d � M4 that is dm � x1−u implies that d �
√

x1−u

or m �
√

x1−u. We therefore have, by symmetry, T2 � T3 + 2T4 with

T3 :=
�

q�xu,m�
√

x1−u,d�
√

x1−u

1
τ3(qmd)

, T4 :=
�

q�xu,m�
√

x1−u,
√

x1−u<d� x1−u
m

1
τ3(qmd)

·

In order to evaluate T3 and T4 we consider three cases:
1st case. We suppose that ��x � u � 1− ��x. By Lemma 3.1, we obtain

T3 � x
1−u

2 x
u
x

1−u
2 log−2/3(x

1−u
2 ) log−2/3(xu) log−2/3(x

1−u
2 )� x

log x
,
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and

T4 � x
1−u log−2/3(x

1−u
2 )xu log−2/3(xu)

�

m�
√

x1−u

h2(m)
m

� x

3
√

log x
·

2nd case. We suppose that 1− ��x < u � 1− �x. We obtain

T3 � x
1−u

2 x
u
x

1−u
2 log−2/3(x

1−u
2 ) log−2/3(xu) log−2/3(x

1−u
2 )� x

(log x)2/3
,

and

T4 � x
1−u log−2/3(x

1−u
2 )xu log−2/3(xu)

�

m�
√

x1−u

h2(m)
m

� x

3
√

log x
·

3rd case. We suppose that 1 − �x < u � 1. We have, 1 � d � x
1−u

2 < x
�x
2 =

√
2

then d = 1. Similarly m = 1. Hence

T3 = T4 =
�

q�x

1
τ3(q)

� x(log x)−2/3
.

To complete the proof, it remains to estimate �S4 for (u, v) in [�x, ��x]× [��x, 1]. Using
the notations T3 and T4 above, we have �S4 � T3 +2T4 and by Lemma 3.1, we easily
see that T3 � x/ log4/3

x and T4 � x/
3
√

log x for (u, v) in [�x, ��x]× [��x, 1].

Lemma 4.3. Uniformly for (u, v) ∈ D0 and x � 2, we have

S1 =
x

Γ3(1
3 )

� u

0
y
−2/3(1− y)−1/3

� v
1−y

0
t
−2/3(1− t)−2/3

dt dy + O

�
x

3
√

log x

�
.

Proof. Write the decomposition S1 = S1,1 + S1,2 with

S1,1 :=
�

q�xu

�

x
√

�x<m�xv

�

d� x
qm

1
τ3(qmd)

, S1,2 :=
�

q�xu

�

m�x
√

�x

�

d� x
qm

1
τ3(qmd)

·

We will estimate these two quantities.
1. Estimation of S1,1. The application of Lemma 3.1(1) gives

�

d� x
qm

1
τ3(qmd)

= x
c1

Γ(1
3 )

h1(qm)
qm

log−
2
3 (

x

qm
) + O

�
Mqm,θ

x

qm
log−

5
3 (

x

qm
)
�
· (5)

Consider the remainder term. Recall that Mqm,θ = (1
3 + θ)ω(qm), θ > 0. Hence

�

q�xu

�

x
√

�x<m�xv

Mqm,θ

qm
�

�

q�xu

(1
3 + θ)ω(q)

q

�

m�xv

(1
3 + θ)ω(m)

m
� log2(θ+ 1

3 )(x),
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by Lemma 3.1(2) and log−5/3(x/qm) � log−5/3(x1−u−v) � log−5/3(x���x )�
log−5/3+(5/3)η(x). From the choices 0 < θ < (1− (5/2)η) /3 and η < 2/5, it follows
that

O



x

�

q�xu

�

x
√

�x<m�xv

Mqm,θ

qm
log−

5
3 (

x

qm
)



 = O

�
x

3
√

log x

�
. (6)

Now, we consider the main term in (5). By partial summation and Lemma 3.1(1)
we have

�
x
√

�x<m�xv
h1(qm)

m log−
2
3 ( x

qm ) = −
� xv

x
√

�x

��
m�t h1(qm)

�
d( log−

2
3 ( x/q

t )
t )

+ O

�
log−1+ 2

3 η(x)h2(q)
�
·

(7)

Taking the sum over q, and using Lemma 3.1(2), we see that the remainder term is

O



log−1+ 2
3 η(x)

�

q�xu

h2(q)
q



 = O

�
1

3
√

log x

�
· (8)

Now, consider the first term in the second member of (7). By Lemma 3.1(1), we
get

c2h2(q)
Γ(1

3 )

� xv

x
√

�x

log−2/3(t) log−2/3(
x/q

t
)

dt

t
+ O(h2(q)

��I(x, v)) + O(Mq,θ�
�I(x, v)), (9)

where �I(x, v) and ��I(x, v) are defined in Lemma 3.4 (1). Summing over q and using
Lemma 3.4 (1) and Lemma 3.1 (2) in each of the two remainder terms, we get

O

�
(log x)−1+ 4

3 η
�

q�xu

Mq,θ�

q

�
= O

�
1

3√log x

�
;

O

�
�I(x, v)

�
q�xu

h2(q)
q

�
= O

�
1

3√log x

�
·

(10)

In the first term of (9), by the changes of de variables y = log t
log x/q and z = y(1− log q

log x ),
and summation over q, we get

c2

Γ(1
3 )

log−
1
3 (x)

�

q�xu

h2(q)
q

� v

√
�x

z
− 2

3 (1− log q

log x
− z)−

2
3 dz. (11)

It remains to study the quantity

K :=
�

q�xu
h2(q)

q

� v√
�x

z−
2
3 (1− log q

log x − z)− 2
3 dz

=
�

2�q�xu
h2(q)

q

� v√
�x

z−
2
3 (1− log q

log x − z)− 2
3 dz + O(1).

(12)
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By partial summation, Lemma 3.1 (2) and Lemma 3.3 (1) with the notations therein,
we get

K = −
� xu

2

��
q�t h2(q)

�
d

�
1
t

� v√
�x

z−
2
3 (1− log t

log x − z)− 2
3 dz

�
+ O(1)

= c3
Γ( 1

3 )

� xu

2 log−
2
3 t

�
I(t,x,v)

t − ∂
∂tI(t, x, v)

�
dt + O(1)

= c3
Γ( 1

3 )

� xu

2 log−
2
3 (t) I(t,x,v)

t dt + O (J(x, u, v))) + O(1)

= c3
Γ( 1

3 )

� xu

2 log−
2
3 (t) I(t,x,v)

t dt + O(1)·

Now, the changes of variables y = log t
log x , and t = z

1−y yield

K = c3
Γ( 1

3 )
log1/3(x)

� u
�x

y−2/3(1− y)−1/3
� v

1−y√
�x

1−y

t−2/3(1− t)−2/3 dt dy

+O(1).
(13)

Finally by collecting successively (5), (6),(7), (8), (9), (10), (11), (12), (13) and
using the equality c1c2c3 = 1 established in Lemma 3.2 (2) we get

S1,1 =
x

Γ3(1
3 )

� u

�x

y
−2/3(1− y)−1/3

� v
1−y

√
�x

1−y

t
−2/3(1− t)−2/3

dt dy + O

�
x

3
√

log x

�
. (14)

2. Estimation of S1,2. We invert the first two sums that we estimate:

S1,2 =
�

m�x
√

�x

�

q�xu

�

d� x
qm

1
τ3(qmd)

·

The method described above works. To study various remainder terms, we use
Lemma 3.4 (2). We obtain in each case O

�
x/

3
√

log x
�
. we obtain

S1,2 = x
Γ3( 1

3 )

�√�x

�x
y−2/3(1− y)−1/3

� u
1−y√

�x
1−y

t−2/3(1− t)−2/3 dt dy + O

�
x

3√log x

�

= x
Γ3( 1

3 )

� u√
�x

y−2/3(1− y)−1/3
� √

�x
1−y
�x

1−y
t−2/3(1− t)−2/3 dt dy + O

�
x

3√log x

�
·

(15)

The last equality is obtained by a change of variables.

Finally, we obtain the required formula for S1 = S1,1 + S1,2 from (14) and (15).
This completes the proof of Lemma 4.3.

5. Description of the Proof of Theorem 2.1 for (u, v) in T x and for

(u, v) in T2

Recall that the notation T x has been introduced in (3), �x and ���x in (2) and S(x;u, v)
in (1). Also T2 = {(u, v) ∈ [0, 1] × [0, 1] : u + v � 1}. In T x ∪ T2, we will use the



INTEGERS: 13 (2013) 12

expression of S(x, u, v) given in the following lemma which reduces the estimate of
S(x, u, v) to that of the three quantities Σi, 1 � i � 3, with

Σ1 =
�

2�q�x;xv<m�x;dmq�x

1
τ3(dmq)

; Σ2 =
�

xu<q�x;2�m�x;dmq�x

1
τ3(dmq)

;

Σ3 =
�

xu<q�x;xv<m�x;dmq�x

1
τ3(dmq)

·

Lemma 5.1. For every (u, v) ∈ [�x, 1]2 and x � 2, we uniformly have

S(x, u, v) = [x]− Σ1 − Σ2 + Σ3 + O

�
x

3
√

log x

�
·

By following the proof of Theorem 2.1 in Tx, we can prove the following two
lemmas:

Lemma 5.2. Uniformly for �x � v � 1, �x � u � 1, and x � 2, we have,

Σ1 = x
Γ3( 1

3 )

� 1−v
0 y−

2
3 (1− y)− 1

3
� 1

v
1−y

s−
2
3 (1− s)− 2

3 dy ds + O

�
x

3√log x

�

= x− x
B( 2

3 , 1
3 )

� v
0 y−

1
3 (1− y)− 2

3 dy + O

�
x

3√log x

�
,

and

Σ2 = x
Γ3( 1

3 )

� 1−u
0 y−

2
3 (1− y)− 1

3
� 1

u
1−y

s−
2
3 (1− s)− 2

3 dy ds + O

�
x

3√log x

�

= x− x
B( 2

3 , 1
3 )

� u
0 y−

1
3 (1− y)− 2

3 dy + O

�
x

3√log x

�
·

Remark 5.3. We trivially have Σ3 = 0 if u + v � 1. So, the formula of Theorem
2.1 for (u, v) ∈ T2 results from the estimates of Σ1 and Σ2, given in Lemma 5.2.

Lemma 5.4. Uniformly for (u, v) ∈ T x, with u + v < 1 and x � 2, we have

Σ3 = x− x
B( 2

3 , 1
3 )

� u
0 y−

1
3 (1− y)− 2

3 dy − x
B( 2

3 , 1
3 )

� v
0 y−

1
3 (1− y)− 2

3 dy

+ x
Γ3( 1

3 )

� u
0 y−2/3(1− y)−1/3

� v
1−y

0 t−2/3(1− t)−2/3 dt dy + O

�
x

3√log x

�
·

The Proof of Theorem 2.1 in T x and in T2 results from Lemmas 5.2 and 5.3 and
Remark 5.1. Note that by a change of variable z = (1− y)t, we have

1
Γ3(1

3 )

� u

0
y
−2/3(1− y)−1/3

� v
1−y

0
t
−2/3(1− t)−2/3

dt dy

=
1

Γ3(1
3 )

� u

0

� v

0
y
− 2

3 z
− 2

3 (1− y − z)−
2
3 dy dz.
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