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Abstract

A set A C [n] U {0} is said to be a 2-additive basis for [n] if each j € [n] can
be written as j = z 4+ vy, z,y € A, © < y. If we pick each integer in [n] U {0}
independently with probability p = p,, — 0, thus getting a random set A, what is
the probability that we have obtained a 2-additive basis? We address this question
when the target sum-set is [(1 — a)n, (1 + a)n] (or equivalently [an, (2 — «)n]) for
some 0 < o < 1. We use a delicate application of Janson’s correlation inequalities
in conjuction with the Stein-Chen method of Poisson approximation to tease out
a very sharp threshold for the emergence of a 2-additive basis. Generalizations to
k-additive bases are then given.

1. Introduction

In 1956, Erdés [3] answered a question posed in 1932 by Sidon by proving that there
exists an infinite sequences of natural numbers S and constants ¢; and c¢s such that
for large n,

c1logn < ra(n) < cylogn, (1)
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where, for k > 2, ri(n) is the number of ways of representing the integer n as the
sum of k elements from S, a so-called asymptotic basis of order k. The result was
generalized in the 1990 work of Erdés and Tetali [4] which established that there
exists an infinite sequence S for which (1) was true for each fixed k > 2, i.e., for
each large n,

rx(n) = O(logn). (2)

To achieve this result for fixed k, Erdés and Tetali constructed a random sequence
S of natural numbers by including z in S with probability

1 1/k .
p(z) = (z?kg—zl))/k , ifz >z
0 otherwise

where C' is a determined constant and zg is the smallest constant such that

(log 29)'/*
20
They then showed that (2) holds a.s. for large n (implying that S is an asymptotic
basis of order k).
A natural finite variant of the above problem concerns the notion of k-additive
bases.

Definition 1. With [n] := {1,2,...,n}, a set A C [n] U {0} is said to be a k-
additive basis for [n] if each j € [n] can be written as j = x1 +x2+... +xg, x; € A,
i=1,... k.

Note that this definition allows for z; = z; i # j. In [4], Erd8s and Tetali showed
that in some probability space, almost all infinite sequences S satisfy (2) and are
asymptotic bases of order k. It is natural to then ask, for finite A, how small A
can be while still being a k-additive basis. For k = 2, if A is a 2-additive basis we
must clearly have (|A\2+1) > n, so that |A| > v2n(1+ o(1)) = 1.4142(1 + o(1))\/n.
Extensive work, using predominantly analytic techniques, has been done to improve
this trivial lower bound to |A| > 1.428/n ([9]); |A| > 1.445+/n ([6]); | A| > 1.459/n
([13]);, and |A] > 1.463+/n ([5]). The best upper bound appears to be |A] <
1.871y/n(1 + o(1)) ([10], [7]).

In this paper, we will use a probability model in which each integer in [n] U {0}
is chosen to be in A with equal (and low) probability p = p,. We will then give
sharp bounds on the probability that the random set A is a k-additive basis. It is
evident that smaller numbers must be present in an additive basis, since, e.g., the
only way to represent 1 in a 2-additive basis is as 140, and so in the random model
edge effects come into play. Therefore, the random ensemble is unlikely to form an
additive basis unless we adopt a different approach.
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Definition 2. A set A C [n] U {0} is said to be a truncated k-additive basis for
[n] if each j € [an, (k — a)n] can be written as j = x1 + x2 + ... + x, z; € A,
i=1,....kae(0,1).

Although our model differs from that of Erdés and Tetali (our set is constructed
using constant probability p as opposed to the p(z) used in [4]), the output threshold
probabilities for the size of a truncated (or modular) k-additive basis end up being
remarkably close to the input probabilities used by Tetali-Erdés to construct their
asymptotic bases. We will stress the similarities between our results as appropriate.
It also bears mentioning that the threshold size for our random A to be a 2-additive
basis is, up to a logarithmic factor, similar to the bounds outlined above which were
derived using predominantly analytic techniques.

Our work is organized as follows: We present threshold results on truncated 2-
additive bases in Section 2, using the Stein-Chen method of Poisson approximation
(see [2]). This method allows one to not just find the limiting probability that A
forms an additive basis, but also to approximate the probability distribution £(X) of
the random variable X, defined as the number of integers j that cannot be expressed
as a sum of elements in 4. In Section 3, we consider similar questions for truncated
k-additive bases; where we make use of the Janson exponential inequalities ([1], [8])
to estimate some critical baseline quantities that were calculated exactly in Section
2 for k = 2.

Remark 3. An alternate way of dealing with the boundary effects encountered in
finite additive bases is to define modular k-additive bases. A set A C [n—1]U {0}
is said to be a modular k-additive basis for [n] if each j € [n — 1] U {0} can be
written as j = 1 +a9+...+x, (mod n), z; € A, i =1,..., k. Definitive results on
the emergence of modular additive bases have been proved in the paper of Sandor
using the method of Brun’s sieve [12], and in the papers by Yadin [14] and Yu
[13] using Janson’s correlation inequalities. We have recovered these results using
the implementation of the Janson’s inequality and the Stein-Chen method outlined
below though details are omitted for the sake of brevity.

We believe that the truncated basis is the more natural finite variant of the prob-
lem considered by Erdés and Tetali in [4]. They were concerned with constructing
a basis with r;(n) = O(logn) for all integers greater than a fixed but arbitrary N.
This allowed them great flexibility in choosing the threshold N to be large enough
to achieve the desired behavior. A natural question is how small N can be while still
maintaining an additive basis with r,(n) = O(logn), which is a natural analogue
to the truncated basis question explored below. Also, in a sequel to this paper, we
will recover the logarithmic behavior of r; in the truncated basis setting.

Remark 4. Throughout the rest of the paper, we suppress the descriptor “addi-
tive,” referring simply to “truncated k-bases.” Here and in the sequal, we write

f(n) = g(n) to signify that 55:; =1+ o(1). Also, we write Y ~ Po(X) to signify
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that Y is a random variable distributed as Poisson(\).

2. 2-Additive Bases

We begin by investigating truncated 2-bases in our random model outlined above.
We first select each integer from {0,1,...,n} independently with probability p =
pn. We thus obtain a random set A, and denote by X the number of integers in

[an, (2 — a)n] that cannot be written in the form x; + 29, x; € A. Evidently, A is
a truncated 2-basis if and only if X = 0. We can write X = Z]L(:Z(_;;L)W"J
equals one or zero according as the integer j cannot or can be represented as a 2-sum

of elements in A. To simplify the notation a bit, we will write simply Zgi;ogn I;

I;, where I;

for th(jr; O;L)]”J I; in the sequel. The main results of this section are summarized in
the following theorem:

Theorem 5. Pick each integer in [n]U{0} independently with probability p = p, —
0 thus getting a random set A.

(i) Let Y ~ Po(A = E(X)). Let § > 0; then for all

(£ +0)logn
p [l oloen, ®)

we have that dry(X,Y) — 0 (n — o0), where

dry(X,Y) = sup |[P(X € A) —P(Y € A)|.

ACz+
(i) With
:\/ilognilog;lognJrAn7 )
n
A, — 00 = P(A is a truncated 2 — basis) — 1 (n — 00);
A, — —o0 = P(A is a truncated 2 — basis) — 0 (n — 00);
and

A, — A= P(Ais a truncated 2 — basis) — exp {—204@*‘”1/2} (n — ).

Proof. Here and throughout the paper, let S denote the random sumset generated
by A. The first step in the proof will be to calculate the precise asymptotics of
E(X):
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Proposition 6. With X as above,

(2—a)n n
. 4
E(X) = E P(I; =1)=2 E (1 —p2)]/2 = —2exp{—np2a/2},
j=an j=an p

Proof. This is a critical computation and needs to be justified for the entire range
of p’s that we encounter, in particular for all p satisfying (3). The first direction is
easy:

n oo

23 (1-p?)/? 23 (1-p?)/?
j=an j=an

2(1 _p2)om/2
1—4/1—p?

4 an
< E(l_p% /2

IN

IN

4
< ZgeXp{—np%é/?},

2
using the inequalities 1 —z < e™ and /1 — p? < 1 — &-. For the other direction,
we have

n . _ n2\an/2 _ _ 2 \n/2
iZam 1—+/1-p2
2(1 _p2)an/2(1 _ (1 _ p2)(17a)n/2)
1—/1-p?

2(1 _p2)om,/2 (1 _ efan(lfa)/Z)

=S =
2
4 an
= F(l —p?)n?
= Z§exp~{—7”bp a/2},
as desired. O

With p defined as in (4) we see that E(X) = (14 0(1))(2a-exp{—a4, /2}). Asis
often the case with threshold phenomena, Markov’s inequality can be used to easily
establish the first part of (ii), as we have P(X > 1) < E(X) — 0 provided that
A, — oo in (4).

To establish the second and third statements in part (ii) of the theorem, we go
beyond estimating the point probability P(X = 0), using instead the Stein-Chen
method of Poisson approximation [2] to establish a total variation approximation
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for the distribution £(X) of X. If the distribution of X is approximately Poisson,
then we will have e™* —¢,, <P(X = 0) < e > + &, where A = E(X) is the mean
of the approximating Poisson variable and ¢, is the total variation error bound for
the approximation. We have that E(X) — oo if 4, — —o0; E(X) — 0if A, — oo;
and E(X) — 20e~A/2 if A, — A. Thus, if we can show that e, tends to zero in a

window around
2
[ <logn
- [e]
p —n ,

we will have that P(X = 0) — 0if 4, — —o0; P(X =0) — 1if 4, — oo;
P(X = 0) — exp{—2ae~ 42} if A, — A.

With Y ~ Po(A = E(X)), and throughout writing drv (4, B) instead of the
more appropriate dry (L(A), L(B)), we seek to bound dry (X,Y). Following [2], we
first need to determine, for each j separately, an auxiliary sequence of variables Jj,
defined on the same probability space with the property that

LT, T ) = LI, I, .. |I; = 1). (5)

Our explicitly constructed coupling of the J;,’s is as follows: If I; = 1, set
Jj, = I for all i # j. If I; = 0, for all pairs z1,22 € A such that z; # 2 and
x1 + T9 = j, remove z1 from A with probability 2 ( pg), remove o from A with

probability ffp’;), and remove both z; and xo from A with probability M

If x € A and = + 2 = j, then we remove x from A with probability 1. Fmally,
define J;, = 1if i ¢ S after the above coupling is implemented. It is clear that (5)
is satisfied since we have “de-selected” offending integers based on the conditional
probability of one or both integers in a pair being absent, given that both are not
present. The total variation bounds derived in [2] are expressed in terms of the
probability that the coupled indicator variables are different after the coupling is
implemented; ie., I; = 1,J;, =0 or I; =0,J;, = 1. Now, P(f; =1,J;, =0) =0,
since if integer 7 is not present in S, it cannot magically appear after some integers

have been de-selected.
The formula we need thus reduces to

drv(X,Y) < 1_/\6_/\2<P2(I =) P =1)- > P(L =0, _1)) (6)

J i#j

There are two terms above. The first,

1
) < /\max]P’ ZIP’ —mlax]P(Iizl),

and thus is bounded above by P(Ifa, = 1) 2 (1 — p?)*"/2. This bound tends to
zero if 1/4/n = o(p), a condition that is satisfied for p satisfying (3).
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To bound the second term in (6), we begin by noting

1— —A
; S =) P(i=0,J;, =1)| < m]aXZ]P’(Ii =0,J;, = 1).

J i#j i#]

We further bound this second term by conditioning on the number of 2-sums of 4
that are present pre-coupling, denoting this number by B;. Denote the sumset of
A post-coupling by §*. We see that
44
P(I;=0,J;, =1)= P(i ¢ 8*|B; = k) -P(B; = k).
k=1

Note that if there exists x such that ¢ = 2z, then

ps =0 =(1F) T - )
P,{l; 1)p2k_2<1 _pz)r%%kn
otherwise (when i is odd and f(i) := [“51] to simplify the notation)

P(Bl _ k‘) — <f(i)>p2k<1 _p2)f(i)—k

k
_ (f(i)k— 1)p2k(1 _ )=k (flii>_1 1>p2k(1 )0k
< (f(Z)k_ 1)p2k(1 _p2)f(i)flc + (f](;)__ll)kaQ(l _p2)f(i)fkp
o (f(l)k 1>p2k(1 7p2)f(i)717k(1 7p) + <f](;)_1 1>p2k2(1 7p2)f(i)7kp.

Our next step is to bound P(i ¢ $*|B; = k) via
P(i ¢ 8*|B; = k) < (P(a given 2-sum of i removed|B; = k))" .

To bound the above term, we will assume all elements of the 2-sums of ¢ are part
of 2-sums of 7 and thus have positive probability of being removed by the coupling
process. Fix x,y x # y, such that x + y = 7. For ease of notation, define P, to
be the event that z is part of a pre-coupling 2-sum of j, and analogously define
P,. Further define R, to be the event x is removed from A by the coupling, and
analogously define R,. Consider the following simple calculations:

P(Py, P, Ry) =p(1—p) (1 - pfl__pf)) <p,
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since the only undesirable outcome is if only the “other” component of the 2-sum
of 0 is removed in lieu of x;

ey 2p(1—p) p(1 —p) 3.
]P(Pz, Py, Rxa Ry)fp 1_p2 (1_ 1_p2 Sp’

and

2
p(1—p)
P(P,, P,, R;, R,)=p" (1 — ﬁ) < p?.

In the case where x = y, the only case we would need to consider is

P(Py, Ry)=p (1 - pfl_‘p;”)) <p

From this, we see that
P(a given 2-sum of i removed | B; = k) < 2p + 2p> + p?.

Let C(p) := 2p + 2p® + p2. Our above calculations yield that

maXZP(L- =0,J;, =1) < X1 + g, (7)
[y
i#]
where
5] [ﬂ] -1 it1
) 30 Dl (i e e (RO
i#j k=1
and )
& - Ex
3 2k—2 2\ [k k
o 30 Sl (N e (RS )
i#j k=1
Now,
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and hence ¥ — 0 if p satisfies (3). For Xq, we have

%41 0
(ﬂ] =1\ 2k2 2\ [k k—1
s opmx Y Y (15T ) - )
i#j k=1
= C(p)pmaxy_(1—p* + C(p)p?) =17
j =
i#£]
o C —WﬂpQ
(p)pmgxze
i#]
—_ O(np2efom,p2/2)
_ 0<n2p36—anp2/2)' (9)

Applying (8) and (9) to (7), we see that the second term in (6) tends to 0 if p
satisfies (3), and hence dry (X,Y) — 0 if p satisfies (3). For p in this range

P(X =0)—e =0

which finishes the proof. Note that if we consider a p not in this range, the result
will hold by monotonicity. m|

Remark 7. We have so far dealt with random sets of fixed expected size, and
now indicate briefly how we can easily transition to the case of random sets of fixed

size. This can be done for all the results in this paper, but we indicate the method

in the context of Theorem 5: Choose one of (lell) families randomly, and suppose

Al = VKnlogn; K > % (this corresponds to the expected size of A with p =
v/ Klogn/n). Then we reconcile the two models as follows with p = /K logn/n:

P(A is not a basis||A| = v/ Knlogn)
< P(A is not a basis||A| < y/Knlogn)
< P(A is not a basis)/P(|A| < v/Knlogn)

=~ 2P(A is not a basis) — 0,

by Theorem 5 and the central limit theorem. A similar argument holds if K < %,

or even if |A| = \/%nlogn — 2pnloglogn + nA, , where |A,| — co. It follows that
we can easily go back and forth from the independent model to the fixed set size
model except possibly when we are at the threshold, i.e., when

b

B \/%logn— éloglong—An
n

with A, - A€ R.



INTEGERS: 13 (2013) 10

3. Truncated k-Bases

Following the same setup as before, we wish to represent each j € [an, (k — a)n] as
j=x1+ ...+ for 2; € A, where 21 < z9 < ... < 2. Again, for each j, let I;
equal 1 if j cannot be expressed as a k-sum of elements of A4 and 0 otherwise. We
set X = Z;’;ﬁ?" I;, and note that X = 0 < A is a truncated k-basis. Our main
theorem is as follows:

Theorem 8. With X defined as above, if we choose elements of {0} U [n] to be in
A with probability

o/ Klogn — Kloglogn + A,
p: nk_l )

where |A,| = o(loglogn) and K = K, i, = k’;’z:})!, then

0 if A, — —o0
P(A is a truncated k — basis) — ¢ 1 if A, — o0
exp{—,fTale_A/K} ifA, > AeR

BKlogn
P= " (10)

B> (k—1)/k, and Y ~ Po(E(X)),

Also for

dry(X,Y) — 0 as n — oo.

Before proving this theorem, we need some preliminary work. Let S; be the set
of all unordered k-tuples of nonnegative integers in {0} U [n] that sum to j.

Claim 9. For j € [an,n],
1851 = 3"~ /[(k = 1)K + O(*72).

Proof. The number of ordered k-tuples of nonnegative integers that sum to j is

(jH;.*l) = % All such tuples will be composed entirely of numbers in {0} U [4],

and at most (g) O (j‘H;_?’) = O(j*~2) of these contain a number repeated once
or more often. We can disregard these in the asymptotic analysis, and consider
the remaining unordered and ordered tuples. Each remaining unordered tuple ap-
pears k! times among the remaining ordered tuples, giving us the desired first order
asymptotics. O

Claim 10. If1 < j < kn/2, then |S;| = |Skn—j|-

Proof. There is a bijection between k-tuples in S; for 1 < j < kn/2 and those in
S; for j > kn/2 given by {x1,22,..., 25} < {n—x1,n—29,...,n — z1}. |
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Lastly, we have:

Claim 11. For j € [n+ 1, (k — 1)n],

nk—l

1>
1551 2 (k— D)Ik!

+ O(n*=2).

Proof. We will use the fact that |S;|, i.e., the number of partitions of j of size at
most k each part of which is less than or equal to n, is the coefficient of ¢/ in the
g-binomial coefficient

<n+k‘) _ 1-g)(1-¢*)--(1-¢""™")
. 1=a)

k 1—g?)- - (1=g")1-q)(1—¢?) - (1—¢*)
Tt is well known, see for example [11], that (”zk)q = Y a;q" is a polynomial in ¢
and that the coefficients are unimodal, namely a;_; < a; for j < nk/2. Claim 9
yields that

k-1 o
and the proof now follows directly from Claim 10. O

We next begin our analysis of E(X) with a preliminary claim.
Claim 12. With S; defined as above,

(k—a)n
E(X)= Y exp(=|Tp"(1+0(1)),

j=an

where T}, the set of k-tuples of distinct elements that add to j, satisfies

= jk=1/(k — 1)k, if j € lan,n].
11,14 > b=/ — 1)k i3 € [, (k = 1),
= (kn —5)*Y/(k—1D)k! ifje[(k—1n,(k—a)n].
1S5

Proof. Fix j, and let {B(;;};~, be the event that the ith unordered k-tuple of
elements of {0} U [n] that add to j is in \A. Then by Janson’s inequality, we have
P(I; = 1) = P(N; B(j ;)
. .2 k—2 .
> (1—p)°W (1 =p*)°0 (1= p*)OUD (1= ph 1)U (1 — ph)lTil
Xp(_O(l)p oG ITj\p’“)
1-p 1-—p%2 ~1—pk
1 0(*?) o) ) )
k
=exp| —[T}|p ( + o
( Tl (7= (1 —=p*H)IT;lp (1= p)|T;lp*
= exp{~|T[p"(1 + o(1))}

Y
o
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as for x € (0,1), 1 — 2 > e~*/(1=%) and with our choice of p, np — oo and for all
Jj, we have j = O(n).
For an upper bound, Janson’s inequality yields

P(I; = 1) <exp (—|Tj|p" (1 + 0(1)) + A,/2) .

Now A; = O(n?*~3p?k~1) since the maximal contribution to A; is when the two
tuples have distinct elements and intersect in a single element; as for all values of p
in our window, np — oco. Thus

P(I; = 1) < exp (=[Ty[p" " + O 2p** 1))
= exp (=|Ty[p" (1 + O(n*~*p*71))) .

With p = o(n~(*=2/(*=1)) "4 condition satisfied by all of the p’s in our theorem,

n*=2pk=1 — 0, finishing the proof. 0O

We are now ready to begin the proof of Theorem 8.

Proof. We now have that (with (1 + o(1)) terms suppressed

n (E—1)n
E(X) =2 Z exp{—p"j* " /(k — 1)k!} + Z exp{—p"|T}]}. (11)

The first summation, which we will call ¥; (correspondingly calling the second
sum Y5) can be bounded above as follows, recalling the definition of K from the
statement of the theorem, and setting B = o*~2/k!(k — 2)!:

D1 <2 exp{—pFiFTt/(k - 1)k}
j=an
< 2exp{—nt 1/} [ 3 (expl—(k — 1)(ma)*~ 2k /(k — 1)1k}’
=0
2exp{—n*~1p*/K}
1 — exp{—Bnk—2pk}
2exp{—n*""p*/K}
< k—2,k
Bnk—2p
2exp{—n*~1pF/K}

- I (1+0(1)) (12)

(1+ Bn*=2p)

where we used the facts that ILH < 1—¢e7% in the fourth line and, in the final

line of the display, that for all choices of p considered in the theorem, n*~2pF — 0.
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Finally, the geometric bound in the second line follows from the fact that the ratio
of consecutive terms in the sum satisfies

k k

exp{— gyl + DF ! = 2 expl =y k= Dien)* 2,

For ¥ we have

(k—1)n

Sy o= Y exp{—p"T}}

Jj=n

(k — 2)nexp{—p*n*~1/(k — 1)!k!} — 0, (13)

IN

if p satisfies
Dlogn Lk

A lower bound on ¥; (and thus on E(X)) is obtained by using elementary inte-
gration by parts to derive a tight estimate for the integral

o0
k-1
/ e dt; x — oo,
T

in much the same way that Gaussian tails are analyzed (which is the k = 3 case.)
We have

23 exp{—pti Gk — 1)1k}

2/" exp{—p"z*1/(k — 1)k!}dx

n

E(X)

v

1%

(oo}

= 2/ exp{—pFz*1/(k — 1)k} dx

n

-2 /00 exp{—p*z*~1/(k — 1)k} dz. (14)

Setting, for t > 0, (¢, k) = [~

. exp{—Cx*1}dx, we see that

1 oo
Ut k) < tk—_g/ 2% 2exp{—Cz" '}dx
t

S
B Ck — 1)tF=2 Joyn coo
1 _
= Wexp{—ctk 1}, (15)
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and, for another two constants E, E’ > 0,
o ak? k—1
Ut k) = /t Fexp{—Cx tdx

N oy _E /Oo L — Okt

= 1)tk_Qexp{ Ct" '} c ). JUk_lexp{ Cz " }dx
ke B k—1

exp{—Ct" "} ——exp{-Ct"" "} (16)

1
> - 2 ==
= Ok —1)th2 C? 123

using (15). Thus, since in our context C?t?*=3 > Ct*~2, (12) and (16) combine to
give

2k — 1)1k!
(k — 1)ak—2pk=2pk exp{—c

¥ = FIph=1pR /(k — 1)!K!}.

It is easy to verify from (13) that 35 = 0(1)%;, and thus

2(k - 2)%!

Let A=E(X) and let Y ~ Po(A). First we note that E(X) tends to zero, infinity,

—A/K if pis as stated as in the theorem with A,, — 0o, A,, — —cc or 4, — A

or e
res;e(lztlvely. To complete the proof of Theorem 8, we use Poisson approximation
to show that the total variation distance between X and Y converges to 0, so that,
in particular, P(X = 0) — e,

Following [2], we first need to determine, for each j separately, an auxiliary
sequence of variables J;, defined on the same probability space with the property
that

L(Jj, Ti, ) = LI, I, ... |I; = 1). (17)

Such a coupling can probably be described explicitly as we did for k = 2 but there is
no need to do so: It is clear that the more integers in A, the higher the probability
that I; is 0, as integer j is more likely to be representable as a k-sum. Therefore if

we let
Y, — 1 if ie¢ A
0 else

then the I;’s are decreasing functions of the baseline i.i.d. random variables {Y;}
that have distribution P(Y; = 1) = p; P(Y; = 0) = 1 — p, and a monotone coupling
satisfying (17) exists. We can then apply Theorem 2.C of [2] with T =T = 0,

ZPQ( +ZZ (1ile) — E(I;)E(Ly) | . (18)

dry (X,Y) < ©
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Note that the above is just a variation of the bound used in the proof of Theorem
5. Now the first term in (18) is bound by

1*6

Znﬂ (I; =1) < max,;P(I; = 1)

< maxjexp{—|Ty[p" (1 + o(1))}
< e On TP (1o(1))

where § is a constant not depending on p or mn, and this term converges to 0 if

p=1/= Glogn for any constant G > 0. For the double sum in (18), we start by using

the estlmates

P(I; = 1) > exp{~|Si|[p" (1 + O(1/np))}
for i = j,¢. For the cross product term E(I;I,), for fixed j,¢, note that P([;I, =
1) =P(S = 0), where

k
S = Z Z Z Jr,s,aa

r=j,0 s=1 a:={az,..., as}:y a;=r

and where J, := J; 5.2 equals one if the s integers in a that sum to r (with possible
repetition) are all selected to be in A. We use Janson’s inequality to get the bound

E(L; 1)) < e B+, (19)
where

A=) > E(Jadb),

{r,l,a} {s,m,b}~{rl,a}
and {r,l,a} ~ {s,m,b} if anb # 0;{r,l,a} # {s,m,b}. Using a worst case
scenario estimate for A, we see
A = O( 2k— 3 2k— l)
As in the proofs of Claims 9-11, we see
E(S) > (IS;] +Se)p" + p* 1 O(n* %) = (951 + [Se)p* (1 + O(1/np)).

Equation (19) now yields

E(I;1Ie) < exp{—(|S;] + [Se))p" (1 + O(1/np)) + O(n* ~*p**~1)},
and we then conclude that

> (B(I; 1) - B(I)E(Iy))

J t#d

< 30 S exp{= (18,1 + SD (1 + 001 /mp))} (007D 1)
702 2€Z£]3 2k— 1)\2)
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so that
225 20z (B 1) — E(1;)E(1e))
A
if A < 1/n?F=3p2k=1 e if

— O(n2E=3p2=1)) 0

D) — Nk! k—1,k—1
(k= 2)ktn"" p exp{—a* 0¥ /(k — 1)K} — 0,

k-2
ie., if
_ [[BKTlogn
- nk—1_
for # > (k —1)/k. Applying this to (18) yields that drv(X,Y) — 0 as n — oo for
all p satisfying (10). O

Open Problems. In both the modular and truncated cases, the representation
function question has yet to be addressed. We have preliminary results in this
direction and will be publishing them in a future paper.
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