BRUN MEETS SELMER

Fritz Schweiger
FB Mathematik, University of Salzburg, Salzburg, Austria
fritz.schweiger@sbg.ac.at

Received: 5/12/12, Revised: 1/24/12, Accepted: 3/24/13, Published: 3/29/13

Abstract

The most famous 2-dimensional continued fraction algorithm is the Jacobi algorithm. However, Brun and Selmer algorithms are also interesting 2-dimensional subtractive algorithms. Schratzberger shows that all these three algorithms are deeply related by a process similar to insertion and extension for continued fractions. In this note the basic ergodic properties of two mixtures of both maps are explored. Furthermore a digression to a quite different map is made which exhibits an "exotic" invariant measure.

1. Introduction

The most famous 2-dimensional continued fraction algorithm is the Jacobi algorithm. Last years saw an increasing interest in other 2-dimensional algorithms (see [9], chapters 6 and 7, and [2]). The Brun and the Selmer algorithms are remarkable examples of this type. In the first section we give a short description of both algorithms and look shortly on the flip-flop map built on both maps. It generalizes the 1-dimensional map

$$
\begin{aligned}
& x \mapsto \frac{x}{1-x}, 0 \leq x \leq \frac{1}{2} \\
& x \mapsto \frac{1-x}{x}, \frac{1}{2} \leq x \leq 1
\end{aligned}
$$

to the set

$$
B:=\left\{\left(x_{1}, x_{2}\right): \quad 0 \leq x_{2} \leq x_{1} \leq 1\right\} .
$$

The jump map (see [9], chapter 3) which avoids the critical point (0,0) leads to Garrity's triangle sequence (Assaf et al. [1]). The next section is devoted to the study of the composition of the Brun and the Selmer map. The set

$$
D^{-}:=\left\{\left(x_{1}, x_{2}\right) \in B: x_{1}+x_{2} \leq 1\right\}
$$

is transient for the Selmer map and therefore the study of its ergodic behaviour concentrates on the set

$$
D^{+}:=\left\{\left(x_{1}, x_{2}\right) \in B: x_{1}+x_{2} \geq 1\right\}
$$

The Brun map expands this set D^{+}onto the full set B. Therefore, the study of the interplay of these different dynamics may be of some interest.
In the last section a digression to a different map is made which exhibits an "exotic" invariant measure. "Exotic" means that it is possible to construct a fractal like set with positive Lebesgue measure and an invariant density.

2. The Brun, the Selmer Algorithm, and the Flip-flop Map

The Brun algorithm $T: B \rightarrow B$ is given by the matrices of its inverse branches

$$
M_{\alpha}=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), M_{\beta}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), M_{\gamma}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

which correspond to a partition of B into three cells $B(\alpha)=M_{\alpha} B, B(\beta)=M_{\beta} B$, and $B(\gamma)=M_{\gamma} B=D^{+}$(see Figure 1).

The Selmer algorithm $S: B \rightarrow B$ is defined by the matrices of its inverse branches

$$
M_{0}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), M_{1}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), M_{2}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

There is an important difference to be observed. $M_{0} B$ is the triangle $B(0)=D^{-}$ with vertices $[1,0,0],[1,1,0]$ and $[2,1,1]$ but M_{1} and M_{2} are restricted to the triangle D^{+}. Then $M_{1} D^{+}$is the triangle $B(1)$ with vertices $[1,1,0],[2,2,1]$ and $[2,1,1]$. $M_{2} D^{+}$is the triangle $B(2)$ with vertices $[1,1,1],[2,2,1]$ and $[2,1,1]$ (see Figure 2). The flip-flop map uses the matrices M_{0} and M_{γ}. It gives the (forward) map

$$
\begin{gathered}
F\left(x_{1}, x_{2}\right)=\left(\frac{x_{1}}{1-x_{2}}, \frac{x_{2}}{1-x_{2}}\right) ; x \in B(0) \\
F\left(x_{1}, x_{2}\right)=\left(\frac{x_{2}}{x_{1}}, \frac{1-x_{1}}{x_{1}}\right) ; x \in B(\gamma)
\end{gathered}
$$

Although Pipping used a kind of mixture of both algorithms [6] this kind of a flip-flop between both algorithms seems not to be investigated. We show that this algorithm admits a σ-finite invariant measure but is related to Garrity's triangle sequence.

A product of n matrices $M_{\eta}, \eta \in\{0, \gamma\}$ gives a matrix $\left(\left(B_{i j}^{(n)}\right)\right), 0 \leq i, j \leq 2$ and the Jacobian of an inverse branch after n steps is given by

$$
\omega\left(\eta_{1}, \ldots, \eta_{n} ; x\right)=\frac{1}{\left(B_{00}^{(n)}+B_{01}^{(n)} x_{1}+B_{02}^{(n)} x_{2}\right)^{3}}
$$

Therefore the measure of a cylinder of rank n is given by

$$
\lambda\left(B\left(\eta_{1}, \ldots, \eta_{n}\right)\right)=\frac{1}{2 B_{00}^{(n)}\left(B_{00}^{(n)}+B_{01}^{(n)}\right)\left(B_{00}^{(n)}+B_{01}^{(n)}+B_{02}^{(n)}\right)} .
$$

Theorem 1: The function

$$
h\left(x_{1}, x_{2}\right)=\frac{1}{x_{1} x_{2}}
$$

is the density of a σ-finite invariant measure.
This assertion is easily verified.

If we consider the jump map over the cylinder $B(0)$ we obtain a map with matrices

$$
\left(\begin{array}{ccc}
1 & 0 & k \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & k & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

This algorithm is Garrity's triangle sequence (see e. g. [1, 4, 10]). Therefore the $\operatorname{map} F$ is ergodic. Since the segment $\overline{(0,0)(1,0)}$ is pointwise invariant it is no surprise that this algorithm does not converge everywhere. If $p^{(s)}=p\left(k_{1}, \ldots, k_{s}\right)$ and $q^{(s)}=$ $q\left(k_{1}, \ldots, k_{s}\right)$ are the vertices of the cylinder $B\left(k_{1}, \ldots, k_{s}\right)$ such that $F^{s} p^{(s)}=(0,0)$ and $F^{s} q^{(s)}=(1,0)$ then the segments $\overline{p\left(k_{1}, \ldots, k_{s}, k_{s+1}\right), q\left(k_{1}, \ldots, k_{s}, k_{s+1}\right)}$ converge to the segment $\overline{p\left(k_{1}, \ldots, k_{s}\right), q\left(k_{1}, \ldots, k_{s}\right)}$ as $k_{s+1} \rightarrow \infty$. Then we choose a sequence $\left(k_{1}, k_{2}, k_{3}, \ldots\right)$ such that

$$
\frac{d\left(p\left(k_{1}, \ldots, k_{s}, k_{s+1}\right), q\left(k_{1}, \ldots, k_{s}, k_{s+1}\right)\right.}{d\left(p\left(k_{1}, \ldots, k_{s}\right), q\left(k_{1}, \ldots, k_{s}\right)\right)}>\frac{k_{s}}{1+k_{s}}
$$

and the infinite product $\prod_{s} \frac{k_{s}}{1+k_{s}}$ converges. More details can be found in Assaf et al. [1].

3. The Composition of Both Maps

We now consider the mixed map $(S \circ T) x=T(S x)$. Since $S B(1)=S B(2)=D^{+}=$ $B(\gamma)$ the map $S \circ T$ can be described by the five matrices

$$
M_{0 \alpha}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), M_{0 \beta}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), M_{0 \gamma}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

$$
M_{1 \gamma}=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), M_{2 \gamma}=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

These five matrices give a partition of B into five cylinders (see Figure 3).

Lemma 1: The set

$$
E=\left\{x:(S \circ T)^{j} x \in B(0 \alpha) \cup B(0 \beta) \text { for all } j \geq 0\right\}
$$

has measure $\lambda(E)=0$.
Proof. The product of N matrices $M_{0 \alpha}$ and $M_{0 \beta}$ has the form

$$
M^{(N)}=\left(\begin{array}{ccc}
B_{00}^{(N)} & B_{01}^{(N)} & B_{02}^{(N)} \\
B_{10}^{(N)} & B_{11}^{(N)} & B_{12}^{(N)} \\
0 & 0 & 1
\end{array}\right)
$$

Therefore $x=\left(x_{1}, x_{2}\right)$ is mapped onto

$$
\left(x_{1}^{(N)}, x_{2}^{(N)}\right)=\left(\frac{B_{10}^{(N)}+B_{11}^{(N)} x_{1}+B_{12}^{(N)} x_{2}}{B_{00}^{(N)}+B_{01}^{(N)} x_{1}+B_{02}^{(N)} x_{2}}, \frac{x_{2}}{B_{00}^{(N)}+B_{01}^{(N)} x_{1}+B_{02}^{(N)} x_{2}}\right)
$$

This implies $\lim _{N \rightarrow \infty} x_{2}^{(N)}=0$.
Lemma 2: We have $B_{02}^{(N)} \leq B_{00}^{(N)}+B_{01}^{(N)}$.
Proof. For $N=1$ this is verified by inspection. Then we use induction. Let 0α or 0β be the N-th digit. Then

$$
B_{02}^{(N+1)}=B_{00}^{(N)}+B_{02}^{(N)} \leq B_{00}^{(N)}+B_{00}^{(N)}+B_{01}^{(N)}=B_{00}^{(N+1)}+B_{01}^{(N+1)}
$$

If $\varepsilon_{N} \in\{0 \gamma, 1 \gamma, 2 \gamma\}$ the assertion is immediate.
Now we consider the jump transformation $R: B \rightarrow B$ which leaves out the digits 0α and 0β. This means we define

$$
R x:=(S \circ T)^{n} x
$$

if $x \in B\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right), \varepsilon_{1}, \ldots, \varepsilon_{n-1} \in\{0 \alpha, 0 \beta\}$ but $\varepsilon_{n} \in\{0 \gamma, 1 \gamma, 2 \gamma\}$. Lemma 1 implies that R is defined almost everywhere.

Lemma 3: R satisfies a Rényi condition.

Proof. Let

$$
\omega\left(\varepsilon_{1}, \ldots, \varepsilon_{N} ; x\right)=\frac{1}{\left(B_{00}^{(N)}+B_{01}^{(N)} x_{1}+B_{02}^{(N)} x_{2}\right)^{3}}
$$

be the Jacobian of an inverse branch of R. We have to compare $B_{00}^{(N)}$ with $B_{00}^{(N)}+$ $B_{01}^{(N)}+B_{02}^{(N)}$. Since $\varepsilon_{N} \in\{0 \gamma, 1 \gamma, 2 \gamma\}$ we see that

$$
B_{00}^{(N)} \geq B_{00}^{(N-1)}+B_{01}^{(N-1)}
$$

but

$$
B_{00}^{(N)}+B_{01}^{(N)}+B_{02}^{(N)} \leq 3 B_{00}^{(N-1)}+2 B_{01}^{(N-1)}+B_{02}^{(N-1)} \leq 4 B_{00}^{(N-1)}+3 B_{01}^{(N-1)}
$$

by Lemma 2 .
Lemma 4: If the sequence $\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \ldots\right)$ contains one of the digits $0 \gamma, 1 \gamma$, or 2γ infinitely often then $\lim _{n \rightarrow \infty} \operatorname{diam} B\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)=0$.

Proof. We describe the vertices of the cylinders we consider as the pictures of points in projective coordinates (see Figure 4) and suppress the upper index of the relevant matrix

$$
\beta=\beta\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)=\left(\begin{array}{lll}
B_{00} & B_{01} & B_{02} \\
B_{10} & B_{11} & B_{12} \\
B_{20} & B_{21} & B_{22}
\end{array}\right) .
$$

We look for triangles which lie inside the triangle $B\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ and contain the triangle $B\left(\varepsilon_{1}, \ldots, \varepsilon_{n}, \varepsilon_{n+1}\right)$ or in some cases the triangle $B\left(\varepsilon_{1}, \ldots, \varepsilon_{n}, \varepsilon_{n+1}, \varepsilon_{n+2}\right)$. If the points $[a, b, c],\left[a^{\prime}, b^{\prime}, c^{\prime}\right]$, and $\left[a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right]$ are collinear such that

$$
\lambda[a, b, c]+\left[a^{\prime}, b^{\prime}, c^{\prime}\right]=\left[a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right]
$$

we will estimate the ratio

$$
\frac{d\left(\beta[a, b, c], \beta\left[a^{\prime}, b^{\prime}, c^{\prime}\right]\right)}{d\left(\beta[a, b, c], \beta\left[a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right]\right)}=\frac{B_{00} a^{\prime \prime}+B_{01} b^{\prime \prime}+B_{02} c^{\prime \prime}}{B_{00} a^{\prime}+B_{01} b^{\prime}+B_{02} c^{\prime}} .
$$

We further use that for $\alpha<\delta$ the function $f(t)=\frac{\alpha+t}{\delta+t}$ is increasing on $0 \leq t$.
$\varepsilon_{n+1}=0 \alpha$

$$
\begin{gathered}
\frac{d(\beta[1,0,0], \beta[2,1,0])}{d(\beta[1,0,0], \beta[1,1,0])}=\frac{B_{00}+B_{01}}{2 B_{00}+B_{01}} \\
\frac{d(\beta[1,0,0], \beta[3,1,1])}{d(\beta[1,0,0], \beta[1,1,1])}=\frac{B_{00}+B_{01}+B_{02}}{3 B_{00}+B_{01}+B_{02}} \leq \frac{B_{00}+B_{01}}{2 B_{00}+B_{01}} .
\end{gathered}
$$

Since the periodic point $\overline{0 \alpha}$ shrinks to the point $(0,0)$ we can additionally assume that $\varepsilon_{n} \in\{0 \beta, 0 \gamma, 1 \gamma, 2 \gamma\}$. Then the recursion relations show $B_{01} \leq 2 B_{00}$ and we obtain

$$
\frac{B_{00}+B_{01}}{2 B_{00}+B_{01}} \leq \frac{3}{4}
$$

$$
\varepsilon_{n+1}=2 \gamma
$$

In a similar way as before we find the ratios

$$
\begin{aligned}
& \frac{d(\beta[1,1,1], \beta[2,2,1])}{d(\beta[1,1,1], \beta[1,1,0])}=\frac{B_{00}+B_{01}}{2 B_{00}+2 B_{01}+B_{02}} \leq \frac{1}{2} \\
& \frac{d(\beta[1,1,1], \beta[2,1,1])}{d(\beta[1,1,1], \beta[1,0,0])}=\frac{B_{00}}{2 B_{00}+B_{01}+B_{02}} \leq \frac{1}{2}
\end{aligned}
$$

$\varepsilon_{n+1}=0 \beta$

Here we use the additional points $\beta[3,2,1]$ and $\beta[2,1,1]$ which lie outside on the line which joins $\beta[1,1,0]$ and $\beta[2,1,1]$.

$$
\varepsilon_{n+2}=0 \beta, 0 \gamma, 1 \gamma
$$

$$
\begin{gathered}
\frac{d(\beta[2,1,0], \beta[3,2,0])}{d(\beta[2,1,0], \beta[1,1,0])}=\frac{B_{00}+B_{01}}{3 B_{00}+2 B_{01}} \leq \frac{1}{2} \\
\frac{d(\beta[2,1,0], \beta[5,3,1])}{d(\beta[2,1,0], \beta[3,2,1])}=\frac{3 B_{00}+2 B_{01}+B_{02}}{5 B_{00}+3 B_{01}+B_{02}} \leq \frac{3}{4} . \\
\frac{d(\beta[2,1,0], \beta[4,2,1])}{d(\beta[2,1,0], \beta[2,1,1])}=\frac{2 B_{00}+B_{01}+B_{02}}{4 B_{00}+2 B_{01}+B_{02}} \leq \frac{2}{3} . \\
\frac{d(\beta[2,1,0], \beta[5,2,1])}{d(\beta[2,1,0], \beta[3,1,1])}=\frac{3 B_{00}+B_{01}+B_{02}}{5 B_{00}+2 B_{01}+B_{02}} \leq \frac{2}{3} .
\end{gathered}
$$

$\varepsilon_{n+1}=0 \gamma$

Here we use the additional points $\beta[3,2,0],[2,1,0]$, and $\beta[1,0,0]$.
$\varepsilon_{n+2}=0 \gamma, 1 \gamma$

$$
\begin{aligned}
& \frac{d(\beta[2,1,1], \beta[5,3,1])}{d(\beta[2,1,1], \beta[3,2,0])}=\frac{3 B_{00}+2 B_{01}}{5 B_{00}+3 B_{01}+B_{02}} \leq \frac{2}{3} \\
& \frac{d(\beta[2,1,1], \beta[4,2,1])}{d(\beta[2,1,1], \beta[2,1,0])}=\frac{2 B_{00}+B_{01}}{4 B_{00}+2 B_{01}+B_{02}} \leq \frac{1}{2}
\end{aligned}
$$

$$
\frac{d(\beta[2,1,1], \beta[5,2,2])}{d(\beta[2,1,1], \beta[1,0,0])}=\frac{B_{00}}{5 B_{00}+2 B_{01}+2 B_{02}} \leq \frac{1}{5}
$$

$$
\varepsilon_{n+1}=1 \gamma
$$

Only the case $\overline{1 \gamma}$ remains; however, the sequence of associated triangles shrinks to the point $\left(\lambda-1, \lambda^{2}-\lambda-1\right)$, where $\lambda>1$ is the greatest root of $\lambda^{3}=\lambda^{2}+2 \lambda-1$.

Lemmas 1-4 provide the necessary machinery to deduce the following:
Theorem 2: $S \circ T$ is ergodic and admits a σ-finite invariant measure $\mu \sim \lambda$.
Remark: The map $(T \circ S)(x)=S(T x)$ divides B into nine cells. Since $S \circ(T \circ S)=$ $(S \circ T) \circ S$ their ergodic behaviors are equivalent.

4. A Split Algorithm

The next algorithm is not directly related to the Brun or the Selmer algorithm but shows that the "exotic" behaviour which was first detected with the Parry-Daniels map is quite common (see [5]).
The starting point are the three matrices

$$
\beta(1)=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right), \beta(2)=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \beta(3)=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

These matrices form a 2-dimensional continued fraction on the basic set $\left(\mathbb{R}^{+}\right)^{2}$ with the three inverse branches

$$
\begin{aligned}
V(1)(u, v) & =(1+u, 1+v) \\
V(2)(u, v) & =\left(\frac{1+u}{1+v}, \frac{1}{1+v}\right) \\
V(3)(u, v) & =\left(\frac{1}{1+u}, \frac{1+v}{1+u}\right)
\end{aligned}
$$

and the basic partition is

$$
\begin{gathered}
B(1)=\{(u, v): 1 \leq u, 1 \leq v\} \\
B(2)=\{(u, v): 0 \leq v \leq u, v \leq 1\} \\
B(3)=\{(u, v): 0 \leq u \leq v, u \leq 1\}
\end{gathered}
$$

The dual map is given given as

$$
V^{\#}(1)(x, y)=\left(\frac{x}{1+x+y}, \frac{y}{1+x+y}\right)
$$

$$
\begin{aligned}
V^{\#}(2)(x, y) & =\left(\frac{x}{1+x+y}, \frac{1}{1+x+y}\right) \\
V^{\#}(3)(x, y) & =\left(\frac{1}{1+x+y}, \frac{y}{1+x+y}\right)
\end{aligned}
$$

which may be compared with the 2-dimensional Farey-Brocot algorithm which was considered in Schweiger [10]. This algorithm sits on a set E with $\lambda(E)=0$ but the function

$$
g\left(x_{1}, x_{2}\right)=\frac{1}{x_{1} x_{2}}
$$

behaves formally as an invariant density. It would be nice to explore if in some limiting sense the integral

$$
\int_{E} \frac{d x_{1} d x_{2}}{x_{1} x_{2}}
$$

is finite.

Let

$$
E_{12}=\left\{(u, v): T^{s}(u, v) \in B(1) \cup B(2), s \geq 0\right\}
$$

and

$$
E_{13}=\left\{(u, v): T^{s}(u, v) \in B(1) \cup B(3), s \geq 0\right\}
$$

We will show that $\lambda\left(E_{12}\right)=\lambda\left(E_{13}\right)>0$ and calculate an invariant density for the map T restricted to E_{12}.
We consider the first return map on the set on the set $B(2)$ of the restriction of T to E_{12}. This map is given as $R(u, v)=T^{k}(u, v)$ if $(u, v) \in B(2), T^{j}(u, v) \in B(1), 1 \leq$ $j \leq k-1, T^{k}(u, v) \in B(2)$. The associated matrices are given as

$$
\beta(2) \beta(1)^{k}=: \gamma(a)=\left(\begin{array}{ccc}
a & 0 & 1 \\
a & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

where $a=k+1$. These matrices are related to continued fractions! If

$$
\gamma\left(a_{1}\right) \ldots \gamma\left(a_{s}\right)=\left(\begin{array}{ccc}
q_{s} & 0 & q_{s-1} \\
r_{s} & 1 & r_{s-1} \\
p_{s} & 0 & p_{s-1}
\end{array}\right)
$$

then as usual $q_{s}=a_{s} q_{s-1}+q_{s-2}, p_{s}=a_{s} p_{s-1}+p_{s-2}$ but $r_{s}=a_{s} r_{s-1}+r_{s-2}+a_{s}$. The last recursion can be written as $r_{s}+1=a_{s}\left(r_{s-1}+1\right)+r_{s-2}+1$ which shows that $q_{s} \leq r_{s} \leq 2 q_{s}$.

Theorem 3: $\lambda\left(E_{12}\right)>0$.
Proof. We transport the map T into the triangle with vertices $(0,0),(1,0)$, and $(0,1)$ by using the map $\psi(u, v)=\left(\frac{u}{1+u+v}, \frac{v}{1+u+v}\right)$. The quotient of the measure of the cylinder $B\left(a_{1}, \ldots, a_{s}\right)$ and the length of the associated continued fraction interval $I\left(a_{1}, \ldots a_{s}\right)$ is bounded from below. Therefore we find $\lambda\left(E_{12}\right)>0$.

Theorem 4: Let $\theta=\left[a_{1}, a_{2}, \ldots\right]$ be a regular continued fraction and define $\Gamma(\theta)=$ $\sum_{n=0}^{\infty}\left(\prod_{j=0}^{n} T^{j} \theta\right) a_{n+1}$. Then the function

$$
h(u, v)=\frac{1}{(1+v)(u-\Gamma(v))}
$$

is an invariant density for the map T restricted to the set E_{12}.
Proof. We first remark

$$
\Gamma(\theta)=\Gamma\left(\frac{1}{a+\theta}\right)(a+\theta)-a
$$

Then we calculate

$$
\begin{aligned}
\sum_{a=1}^{\infty} h\left(\frac{a+u}{a+v},\right. & \left.\frac{1}{a+v}\right) \frac{1}{(a+v)^{3}}=\sum_{a=1}^{\infty} \frac{1}{(a+1+v)(a+v)\left(a+u-\Gamma\left((a+v)^{-1}\right)(a+v)\right)} \\
& =\frac{1}{u-\Gamma(v)} \sum_{a=1}^{\infty} \frac{1}{(a+v)(a+1+v)}=\frac{1}{(1+v)(u-\Gamma(v))}
\end{aligned}
$$

Remark: The dual map defined by

$$
\gamma^{\#}(a)=\left(\begin{array}{lll}
a & a & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

formally has the invariant density

$$
f\left(x_{1}, x_{2}\right)=\frac{1}{x_{1}} \int_{0}^{1} \frac{d v}{\left(1+x_{1} \Gamma(v)+x_{2} v\right)^{2}} .
$$

We verify this by direct calculation:

$$
\begin{aligned}
& \sum_{a=1}^{\infty} f\left(\frac{x_{1}}{a+a x_{1}+x_{2}}, \frac{1}{a+a x_{1}+x_{2}}\right) \frac{1}{\left(a+a x_{1}+x_{2}\right)^{3}} \\
& \quad=\frac{1}{x_{1}} \sum_{a=1}^{\infty} \int_{0}^{1} \frac{d v}{\left(a+(a+\Gamma(v)) x_{1}+x_{2}+v\right)^{2}} \\
& =\frac{1}{x_{1}} \sum_{a=1}^{\infty} \int_{\frac{1}{a+1}}^{\frac{1}{a}} \frac{d w}{\left(1+\Gamma(w) x_{1}+x_{2} w\right)^{2}}=F\left(x_{1}, x_{2}\right)
\end{aligned}
$$

This follows from $w=\frac{1}{a+v}$ and the equation $\Gamma(v)+a=\Gamma(w)(a+v)$.

Acknowledgement The author wants to express his sincere thanks to the referee whose critical remarks helped to improve the present paper.

References

[1] Assaf, S.; Li-Chung Chen; Cheslack-Postava, T.; Diesl, A.; Garrity, T.; Lepinsky, M.; Schuyler, A.: A dual approach to triangle sequences: a multidimensional continued fraction algorithm. Integers 5 (2005).
[2] Bryuno, A.D. ; Parusnikov, A. D.: Comparison of various generalizations of continued fractions Math. Notes 61 (1997), 278-286.
[3] Iosifescu, M. and Kraaikamp, C.: Metrical Theory of Continued Fractions. Dordrecht Boston - London: Kluwer Academic Publishers, 2002.
[4] Messaoudi, A. \& Nogueira, A. \& Schweiger, F.: Ergodic properties of triangle partitions. Monatsh. Math. 157 (2009), 253-299.
[5] Nogueira, A.: The three-dimensional Poincaré continued fraction algorithm. Israel J. Math. 90 (1995), 373-401.
[6] Pipping, N.: Über eine Verallgemeinerung des Euklidischen Algorithmus. Acta Acad. Åbo ser B 1:7 (1922), 1-14.
[7] Schratzberger, B.: S-expansions in dimension two. J. Theor. Nombres Bordeaux, 16 no. 3 (2004), p. 705-732.
[8] Schratzberger, B.: On the singularisation of the two-dimensional Jacobi-Perron algorithm. J. Experiment. Math. 16, Issue 4 (2007), 441-454.
[9] Schweiger, F.: Multidimensional Continued Fractions, Oxford: Oxford University Press, 2000.
[10] Schweiger, F.: A 2-dimensional algorithm related to the Farey-Brocot sequence. Int. J. Number Theory 8 (2012), 149-160.

Figure 2

Figure 4

