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Abstract
The most famous 2-dimensional continued fraction algorithm is the Jacobi algo-
rithm. However, Brun and Selmer algorithms are also interesting 2-dimensional
subtractive algorithms. Schratzberger shows that all these three algorithms are
deeply related by a process similar to insertion and extension for continued frac-
tions. In this note the basic ergodic properties of two mixtures of both maps are
explored. Furthermore a digression to a quite different map is made which exhibits
an “exotic” invariant measure.

1. Introduction

The most famous 2-dimensional continued fraction algorithm is the Jacobi algo-
rithm. Last years saw an increasing interest in other 2-dimensional algorithms (see
[9], chapters 6 and 7, and [2]). The Brun and the Selmer algorithms are remark-
able examples of this type. In the first section we give a short description of both
algorithms and look shortly on the flip-flop map built on both maps. It generalizes
the 1-dimensional map

x �→ x

1− x
, 0 ≤ x ≤ 1

2

x �→ 1− x

x
,

1
2
≤ x ≤ 1

to the set
B := {(x1, x2) : 0 ≤ x2 ≤ x1 ≤ 1}.

The jump map (see [9], chapter 3) which avoids the critical point (0, 0) leads to
Garrity’s triangle sequence (Assaf et al. [1]). The next section is devoted to the
study of the composition of the Brun and the Selmer map. The set

D− := {(x1, x2) ∈ B : x1 + x2 ≤ 1}
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is transient for the Selmer map and therefore the study of its ergodic behaviour
concentrates on the set

D+ := {(x1, x2) ∈ B : x1 + x2 ≥ 1}.

The Brun map expands this set D+ onto the full set B. Therefore, the study of the
interplay of these different dynamics may be of some interest.
In the last section a digression to a different map is made which exhibits an “exotic”
invariant measure. “Exotic” means that it is possible to construct a fractal like set
with positive Lebesgue measure and an invariant density.

2. The Brun, the Selmer Algorithm, and the Flip-flop Map

The Brun algorithm T : B → B is given by the matrices of its inverse branches

Mα =




1 1 0
0 1 0
0 0 1



 ,Mβ =




1 1 0
1 0 0
0 0 1



 ,Mγ =




1 0 1
1 0 0
0 1 0





which correspond to a partition of B into three cells B(α) = MαB,B(β) = MβB,
and B(γ) = MγB = D+ (see Figure 1).

The Selmer algorithm S : B → B is defined by the matrices of its inverse branches

M0 =




1 0 1
0 1 0
0 0 1



 ,M1 =




0 1 1
1 0 0
0 0 1



 ,M2 =




0 1 1
1 0 0
0 1 0



 .

There is an important difference to be observed. M0B is the triangle B(0) = D−

with vertices [1, 0, 0], [1, 1, 0] and [2, 1, 1] but M1 and M2 are restricted to the triangle
D+. Then M1D+ is the triangle B(1) with vertices [1, 1, 0], [2, 2, 1] and [2, 1, 1].
M2D+ is the triangle B(2) with vertices [1, 1, 1], [2, 2, 1] and [2, 1, 1] (see Figure 2).
The flip-flop map uses the matrices M0 and Mγ . It gives the (forward) map

F (x1, x2) =
�

x1

1− x2
,

x2

1− x2

�
; x ∈ B(0),

F (x1, x2) =
�

x2

x1
,
1− x1

x1

�
; x ∈ B(γ).

Although Pipping used a kind of mixture of both algorithms [6] this kind of a
flip-flop between both algorithms seems not to be investigated. We show that this
algorithm admits a σ-finite invariant measure but is related to Garrity’s triangle
sequence.
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A product of n matrices Mη, η ∈ {0, γ} gives a matrix ((B(n)
ij )), 0 ≤ i, j ≤ 2 and

the Jacobian of an inverse branch after n steps is given by

ω(η1, . . . , ηn;x) =
1

(B(n)
00 + B(n)

01 x1 + B(n)
02 x2)3

.

Therefore the measure of a cylinder of rank n is given by

λ(B(η1, ..., ηn)) =
1

2B(n)
00 (B(n)

00 + B(n)
01 )(B(n)

00 + B(n)
01 + B(n)

02 )
.

Theorem 1: The function

h(x1, x2) =
1

x1x2

is the density of a σ-finite invariant measure.
This assertion is easily verified.

If we consider the jump map over the cylinder B(0) we obtain a map with matrices



1 0 k
0 1 0
0 0 1








1 0 1
1 0 0
0 1 0



 =




1 k 1
1 0 0
0 1 0





This algorithm is Garrity’s triangle sequence (see e. g. [1, 4, 10]). Therefore the
map F is ergodic. Since the segment(0, 0)(1, 0) is pointwise invariant it is no surprise
that this algorithm does not converge everywhere. If p(s) = p(k1, ..., ks) and q(s) =
q(k1, ..., ks) are the vertices of the cylinder B(k1, ..., ks) such that F sp(s) = (0, 0)
and F sq(s) = (1, 0) then the segments p(k1, ..., ks, ks+1), q(k1, ..., ks, ks+1) converge
to the segment p(k1, ..., ks), q(k1, ..., ks) as ks+1 → ∞. Then we choose a sequence
(k1, k2, k3, ...) such that

d(p(k1, ..., ks, ks+1), q(k1, ..., ks, ks+1)
d(p(k1, ..., ks), q(k1, ..., ks))

>
ks

1 + ks

and the infinite product
�

s
ks

1+ks
converges. More details can be found in Assaf et

al. [1].

3. The Composition of Both Maps

We now consider the mixed map (S ◦T )x = T (Sx). Since SB(1) = SB(2) = D+ =
B(γ) the map S ◦ T can be described by the five matrices

M0α =




1 1 1
0 1 0
0 0 1



 ,M0β =




1 1 1
1 0 0
0 0 1



 ,M0γ =




1 1 1
1 0 0
0 1 0



 ,
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M1γ =




1 1 0
1 0 1
0 1 0



 ,M2γ =




1 1 0
1 0 1
1 0 0



 ,

These five matrices give a partition of B into five cylinders (see Figure 3).

Lemma 1: The set

E = {x : (S ◦ T )jx ∈ B(0α) ∪B(0β) for all j ≥ 0}

has measure λ(E) = 0.

Proof. The product of N matrices M0α and M0β has the form

M (N) =




B(N)

00 B(N)
01 B(N)

02

B(N)
10 B(N)

11 B(N)
12

0 0 1



 .

Therefore x = (x1, x2) is mapped onto

(x(N)
1 , x(N)

2 ) =

�
B(N)

10 + B(N)
11 x1 + B(N)

12 x2

B(N)
00 + B(N)

01 x1 + B(N)
02 x2

,
x2

B(N)
00 + B(N)

01 x1 + B(N)
02 x2

�
.

This implies lim
N→∞

x(N)
2 = 0.

Lemma 2: We have B(N)
02 ≤ B(N)

00 + B(N)
01 .

Proof. For N = 1 this is verified by inspection. Then we use induction. Let 0α or
0β be the N -th digit. Then

B(N+1)
02 = B(N)

00 + B(N)
02 ≤ B(N)

00 + B(N)
00 + B(N)

01 = B(N+1)
00 + B(N+1)

01 .

If εN ∈ {0γ, 1γ, 2γ} the assertion is immediate.
Now we consider the jump transformation R : B → B which leaves out the digits
0α and 0β. This means we define

Rx := (S ◦ T )nx

if x ∈ B(ε1, . . . , εn), ε1, . . . , εn−1 ∈ {0α, 0β} but εn ∈ {0γ, 1γ, 2γ}. Lemma 1
implies that R is defined almost everywhere.

Lemma 3: R satisfies a Rényi condition.
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Proof. Let

ω(ε1, . . . , εN ;x) =
1

(B(N)
00 + B(N)

01 x1 + B(N)
02 x2)3

be the Jacobian of an inverse branch of R. We have to compare B(N)
00 with B(N)

00 +
B(N)

01 + B(N)
02 . Since εN ∈ {0γ, 1γ, 2γ} we see that

B(N)
00 ≥ B(N−1)

00 + B(N−1)
01

but

B(N)
00 + B(N)

01 + B(N)
02 ≤ 3B(N−1)

00 + 2B(N−1)
01 + B(N−1)

02 ≤ 4B(N−1)
00 + 3B(N−1)

01

by Lemma 2.

Lemma 4: If the sequence (ε1, ε2, ε3, . . .) contains one of the digits 0γ, 1γ, or 2γ
infinitely often then lim

n→∞
diam B(ε1, . . . , εn) = 0.

Proof. We describe the vertices of the cylinders we consider as the pictures of points
in projective coordinates (see Figure 4) and suppress the upper index of the relevant
matrix

β = β(ε1, . . . , εn) =




B00 B01 B02

B10 B11 B12

B20 B21 B22



 .

We look for triangles which lie inside the triangle B(ε1, . . . , εn) and contain the
triangle B(ε1, . . . , εn, εn+1) or in some cases the triangle B(ε1, . . . , εn, εn+1, εn+2).
If the points [a, b, c], [a�, b�, c�], and [a��, b��, c��] are collinear such that

λ[a, b, c] + [a�, b�, c�] = [a��, b��, c��]

we will estimate the ratio

d(β[a, b, c],β[a�, b�, c�])
d(β[a, b, c],β[a��, b��, c��])

=
B00a�� + B01b�� + B02c��

B00a� + B01b� + B02c�
.

We further use that for α < δ the function f(t) = α+t
δ+t is increasing on 0 ≤ t.

εn+1 = 0α

d(β[1, 0, 0],β[2, 1, 0])
d(β[1, 0, 0],β[1, 1, 0])

=
B00 + B01

2B00 + B01
.

d(β[1, 0, 0],β[3, 1, 1])
d(β[1, 0, 0],β[1, 1, 1])

=
B00 + B01 + B02

3B00 + B01 + B02
≤ B00 + B01

2B00 + B01
.
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Since the periodic point 0α shrinks to the point (0, 0) we can additionally assume
that εn ∈ {0β, 0γ, 1γ, 2γ}. Then the recursion relations show B01 ≤ 2B00 and we
obtain

B00 + B01

2B00 + B01
≤ 3

4
.

εn+1 = 2γ

In a similar way as before we find the ratios

d(β[1, 1, 1],β[2, 2, 1])
d(β[1, 1, 1],β[1, 1, 0])

=
B00 + B01

2B00 + 2B01 + B02
≤ 1

2
.

d(β[1, 1, 1],β[2, 1, 1])
d(β[1, 1, 1],β[1, 0, 0])

=
B00

2B00 + B01 + B02
≤ 1

2
.

εn+1 = 0β

Here we use the additional points β[3, 2, 1] and β[2, 1, 1] which lie outside on the
line which joins β[1, 1, 0] andβ[2, 1, 1].

εn+2 = 0β, 0γ, 1γ

d(β[2, 1, 0],β[3, 2, 0])
d(β[2, 1, 0],β[1, 1, 0])

=
B00 + B01

3B00 + 2B01
≤ 1

2
.

d(β[2, 1, 0],β[5, 3, 1])
d(β[2, 1, 0],β[3, 2, 1])

=
3B00 + 2B01 + B02

5B00 + 3B01 + B02
≤ 3

4
.

d(β[2, 1, 0],β[4, 2, 1])
d(β[2, 1, 0],β[2, 1, 1])

=
2B00 + B01 + B02

4B00 + 2B01 + B02
≤ 2

3
.

d(β[2, 1, 0],β[5, 2, 1])
d(β[2, 1, 0],β[3, 1, 1])

=
3B00 + B01 + B02

5B00 + 2B01 + B02
≤ 2

3
.

εn+1 = 0γ

Here we use the additional points β[3, 2, 0], [2, 1, 0], and β[1, 0, 0].

εn+2 = 0γ, 1γ

d(β[2, 1, 1],β[5, 3, 1])
d(β[2, 1, 1],β[3, 2, 0])

=
3B00 + 2B01

5B00 + 3B01 + B02
≤ 2

3
.

d(β[2, 1, 1],β[4, 2, 1])
d(β[2, 1, 1],β[2, 1, 0])

=
2B00 + B01

4B00 + 2B01 + B02
≤ 1

2
.
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d(β[2, 1, 1],β[5, 2, 2])
d(β[2, 1, 1],β[1, 0, 0])

=
B00

5B00 + 2B01 + 2B02
≤ 1

5
.

εn+1 = 1γ

Only the case 1γ remains; however, the sequence of associated triangles shrinks
to the point (λ−1,λ2−λ−1), where λ > 1 is the greatest root of λ3 = λ2+2λ−1.

Lemmas 1-4 provide the necessary machinery to deduce the following:

Theorem 2: S ◦ T is ergodic and admits a σ-finite invariant measure µ ∼ λ.

Remark: The map (T ◦S)(x) = S(Tx) divides B into nine cells. Since S◦(T ◦S) =
(S ◦ T ) ◦ S their ergodic behaviors are equivalent.

4. A Split Algorithm

The next algorithm is not directly related to the Brun or the Selmer algorithm but
shows that the “exotic” behaviour which was first detected with the Parry-Daniels
map is quite common (see [5]).
The starting point are the three matrices

β(1) =




1 0 0
1 1 0
1 0 1



 ,β(2) =




1 0 1
1 1 0
1 0 0



 ,β(3) =




1 1 0
1 0 0
1 0 1



 .

These matrices form a 2-dimensional continued fraction on the basic set (R+)2 with
the three inverse branches

V (1)(u, v) = (1 + u, 1 + v)

V (2)(u, v) =
�

1 + u

1 + v
,

1
1 + v

�

V (3)(u, v) =
�

1
1 + u

,
1 + v

1 + u

�

and the basic partition is

B(1) = {(u, v) : 1 ≤ u, 1 ≤ v}

B(2) = {(u, v) : 0 ≤ v ≤ u, v ≤ 1}

B(3) = {(u, v) : 0 ≤ u ≤ v, u ≤ 1}.

The dual map is given given as

V #(1)(x, y) = (
x

1 + x + y
,

y

1 + x + y
)
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V #(2)(x, y) = (
x

1 + x + y
,

1
1 + x + y

)

V #(3)(x, y) = (
1

1 + x + y
,

y

1 + x + y
)

which may be compared with the 2-dimensional Farey-Brocot algorithm which was
considered in Schweiger [10]. This algorithm sits on a set E with λ(E) = 0 but the
function

g(x1, x2) =
1

x1x2

behaves formally as an invariant density. It would be nice to explore if in some
limiting sense the integral �

E

dx1dx2

x1x2

is finite.

Let
E12 = {(u, v) : T s(u, v) ∈ B(1) ∪B(2), s ≥ 0}

and
E13 = {(u, v) : T s(u, v) ∈ B(1) ∪B(3), s ≥ 0}.

We will show that λ(E12) = λ(E13) > 0 and calculate an invariant density for the
map T restricted to E12.
We consider the first return map on the set on the set B(2) of the restriction of T to
E12. This map is given as R(u, v) = T k(u, v) if (u, v) ∈ B(2), T j(u, v) ∈ B(1), 1 ≤
j ≤ k − 1, T k(u, v) ∈ B(2). The associated matrices are given as

β(2)β(1)k =: γ(a) =




a 0 1
a 1 0
1 0 0





where a = k + 1. These matrices are related to continued fractions! If

γ(a1)...γ(as) =




qs 0 qs−1

rs 1 rs−1

ps 0 ps−1





then as usual qs = asqs−1 + qs−2, ps = asps−1 + ps−2 but rs = asrs−1 + rs−2 + as.
The last recursion can be written as rs + 1 = as(rs−1 + 1) + rs−2 + 1 which shows
that qs ≤ rs ≤ 2qs.

Theorem 3: λ(E12) > 0.

Proof. We transport the map T into the triangle with vertices (0, 0), (1, 0), and
(0, 1) by using the map ψ(u, v) = ( u

1+u+v , v
1+u+v ). The quotient of the measure of

the cylinder B(a1, ..., as) and the length of the associated continued fraction interval
I(a1, ...as) is bounded from below. Therefore we find λ(E12) > 0.
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Theorem 4:Let θ = [a1, a2, ...] be a regular continued fraction and define Γ(θ) =�∞
n=0(

�n
j=0 T jθ)an+1. Then the function

h(u, v) =
1

(1 + v)(u− Γ(v))

is an invariant density for the map T restricted to the set E12.

Proof. We first remark

Γ(θ) = Γ(
1

a + θ
)(a + θ)− a.

Then we calculate
∞�

a=1

h(
a + u

a + v
,

1
a + v

)
1

(a + v)3
=

∞�

a=1

1
(a + 1 + v)(a + v)(a + u− Γ((a + v)−1)(a + v))

=
1

u− Γ(v)

∞�

a=1

1
(a + v)(a + 1 + v)

=
1

(1 + v)(u− Γ(v))
.

Remark: The dual map defined by

γ#(a) =




a a 1
0 1 0
1 0 0





formally has the invariant density

f(x1, x2) =
1
x1

� 1

0

dv

(1 + x1Γ(v) + x2v)2
.

We verify this by direct calculation:
∞�

a=1

f(
x1

a + ax1 + x2
,

1
a + ax1 + x2

)
1

(a + ax1 + x2)3

=
1
x1

∞�

a=1

� 1

0

dv

(a + (a + Γ(v))x1 + x2 + v)2

=
1
x1

∞�

a=1

� 1
a

1
a+1

dw

(1 + Γ(w))x1 + x2w)2
= F (x1, x2).

This follows from w = 1
a+v and the equation Γ(v) + a = Γ(w)(a + v).

Acknowledgement The author wants to express his sincere thanks to the referee
whose critical remarks helped to improve the present paper.
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