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Abstract

The most famous 2-dimensional continued fraction algorithm is the Jacobi algo-
rithm. However, Brun and Selmer algorithms are also interesting 2-dimensional
subtractive algorithms. Schratzberger shows that all these three algorithms are
deeply related by a process similar to insertion and extension for continued frac-
tions. In this note the basic ergodic properties of two mixtures of both maps are
explored. Furthermore a digression to a quite different map is made which exhibits
an “exotic” invariant measure.

1. Introduction

The most famous 2-dimensional continued fraction algorithm is the Jacobi algo-
rithm. Last years saw an increasing interest in other 2-dimensional algorithms (see
[9], chapters 6 and 7, and [2]). The Brun and the Selmer algorithms are remark-
able examples of this type. In the first section we give a short description of both
algorithms and look shortly on the flip-flop map built on both maps. It generalizes
the 1-dimensional map

to the set
B:={(z1,22): 0<ay<1 <1}

The jump map (see [9], chapter 3) which avoids the critical point (0,0) leads to
Garrity’s triangle sequence (Assaf et al. [1]). The next section is devoted to the
study of the composition of the Brun and the Selmer map. The set

D™ :={(x1,22) € B:x1 + 1z <1}
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is transient for the Selmer map and therefore the study of its ergodic behaviour
concentrates on the set

Dt = {(x1,22) € B: a1 + 29 > 1}.

The Brun map expands this set DT onto the full set B. Therefore, the study of the
interplay of these different dynamics may be of some interest.

In the last section a digression to a different map is made which exhibits an “exotic”
invariant measure. “Exotic” means that it is possible to construct a fractal like set
with positive Lebesgue measure and an invariant density.

2. The Brun, the Selmer Algorithm, and the Flip-flop Map

The Brun algorithm 7" : B — B is given by the matrices of its inverse branches

110 1 10 1 01
My=|o0 10 |, Ms=|100 ), M=]100
0 0 1 0 01 0 10
which correspond to a partition of B into three cells B(«a) = M, B, B(3) = MgB,

and B(y) = M,B = D™ (see Figure 1).
The Selmer algorithm S : B — B is defined by the matrices of its inverse branches

My =

S O =
o = O

1
0 aMlz
1

o = O
O O =

1
0 aMQZ
1

o~ O
= o =
S O =

There is an important difference to be observed. MyB is the triangle B(0) = D~
with vertices [1,0, 0], [1,1,0] and [2, 1, 1] but M; and My are restricted to the triangle
DT. Then M;D7% is the triangle B(1) with vertices [1,1,0],[2,2,1] and [2,1,1].
M5D™ is the triangle B(2) with vertices [1,1,1],[2,2,1] and [2,1, 1] (see Figure 2).
The flip-flop map uses the matrices My and M,,. It gives the (forward) map

1 Z2

1—1‘271—.%2

F(z1,22) = ( ) Lz € B(0),

Fla1,25) = <9 - xl) .2 € B().

T z1
Although Pipping used a kind of mixture of both algorithms [6] this kind of a
flip-flop between both algorithms seems not to be investigated. We show that this
algorithm admits a o-finite invariant measure but is related to Garrity’s triangle
sequence.
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A product of n matrices M, n € {0,7} gives a matrix ((Bz(]n))), 0<14,7<2and
the Jacobian of an inverse branch after n steps is given by
1

(ng” + Béﬁ‘)m + B(()Z)xz)‘?.

wiye oy p;x) =

Therefore the measure of a cylinder of rank n is given by
_ 1
284y (Bgy + By )(Bgy + By + Bgy))

ABM1;s -y 1n))

Theorem 1: The function
1

h(l’l, ZL'Q) = T

18 the density of a o-finite invariant measure.
This assertion is easily verified.

If we consider the jump map over the cylinder B(0) we obtain a map with matrices

k k1
0 0 0
1 1 0

O = =
—_ o O

1
0 =
0

O ==

1
0
0

O = O

This algorithm is Garrity’s triangle sequence (see e. g. [1, 4, 10]). Therefore the
map F is ergodic. Since the segment(0, 0)(1, 0) is pointwise invariant it is no surprise
that this algorithm does not converge everywhere. If p(*) = p(ky, ..., ks) and ¢®) =
q(k1, ..., ks) are the vertices of the cylinder B(ki,..., k) such that F*p(*) = (0,0)
and F*q(®) = (1,0) then the segments p(ki, ..., ks, kss1), ¢(E1, ..., ks, ks41) converge
to the segment p(kq, ..., ks),q(k1, ..., ks) as ks11 — 0o. Then we choose a sequence
(K1, k2, ks, ...) such that

d(p(k‘l,...,]CS,]CSJrl),q(kl,...,k‘s,k‘3+1) kJS
>
d(p(k17"'7k8)7q(k17"'7k5)) 1+k9

and the infinite product [, 1+k_k converges. More details can be found in Assaf et
al. [1].

3. The Composition of Both Maps
We now consider the mixed map (SoT)z = T(Sz). Since SB(1) = SB(2) = Dt =
B(~y) the map S oT can be described by the five matrices

Moo = 7M0’y =

SO =
O~

1 1
0 |, M= 1
1 0

O O =
_ o
O~
_ o
O O =
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11
M= 10 My, =
0 1

O = O

These five matrices give a partition of B into five cylinders (see Figure 3).
Lemma 1: The set

E={z:(SoT)zc B(0a)UB(0B) for all j >0}
has measure A\(E) = 0.

Proof. The product of N matrices My, and Mg has the form

N N N
By By By

(N) — N N N
M - B£0) B§1 ) B£2)
0 0 1

Therefore x = (x1, z3) is mapped onto

N N N
@M, 2y = Bl + Biy w1 + Biy T2
ngV>+B(N>x1+Bg;V> zy BSY) + BV xy + B$Y

This implies lim 2N = 0. O

Lemma 2: We have B(()]QV) < B(N) + B(N).

Proof. For N =1 this is verified by inspection. Then we use induction. Let Oa or
03 be the N-th digit. Then

B(()12v+1) B(N) +B(N) < B(N) +B(N) +B(N) Béév—H) +B(()11V+1)'

If en € {07, 17,2~} the assertion is immediate.
Now we consider the jump transformation R : B — B which leaves out the digits
Oc and 08. This means we define

=(SoT)"x

if z € Bley,...,en), €1,.--,6n—1 € {0a,08} but &, € {0v,17,2y}. Lemma 1
implies that R is defined almost everywhere. O

Lemma 3: R satisfies a Rényi condition.
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Proof. Let
1

(Béév) + B(N)a: + B(gév)xg):3

w(er,...,en; ) =

be the Jacobian of an inverse branch of B. We have to compare B, () with Béév) +
(N) + 302 M) Since ey € {04, 17,2y} we see that
By > By + By Y
but
B + BN + B < 3B 12BNV 4 BNV < 4B 4 3p(N
by Lemma 2. O

Lemma 4: If the sequence (€1,€2,€3,...) contains one of the digits 0, 17y, or 2y
infinitely often then lim diam B(eq,...,e,) =0.
n—oo

Proof. We describe the vertices of the cylinders we consider as the pictures of points
in projective coordinates (see Figure 4) and suppress the upper index of the relevant

matrix
Boo  Bo1  Boz
B =pB(1,...,en) = | Biwo Bi1 B2
By Ba1 B
We look for triangles which lie inside the triangle B(ey,...,&,) and contain the
triangle B(e1,...,&n,En+1) OF in some cases the triangle B(e1,...,en,Ent1,Ent2)-

If the points [a, b, ], [@’, b, '], and [a”,b”, "] are collinear such that
Aa, b, c] + [a', b, ] = [a",b", "
we will estimate the ratio

d(Bla,b,c],Bla’,b',c'])  Booa" 4+ Bo1b" + Boac”
d(ﬁ[av b7 CL ﬁ[a”7 b/lv CH]) B BOOO/ + BOlb, + BOZC, .

We further use that for a < the function f(t) = 2EL is increasing on 0 < t¢.

o+t

d(ﬂ[lao 0}7ﬁ[271a0]) — BOO +BOI

d(ﬁ[lao 0}76[17130]) 2BOO+301.
d(B[1,0,0], 3[3,1,1]) _ Boo + Boi + Boz Boo + Bo1
d(B[1,0,0],8[1,1,1])  3Boo + Bo1 + Boz ~ 2Boo + Bo1
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Since the periodic point Oa shrinks to the point (0,0) we can additionally assume
that €, € {08,0v,1v,2v}. Then the recursion relations show By; < 2By and we

obtain
Boo + Bo: <

3
2Boo + Bo1 — 4

In a similar way as before we find the ratios

d(le 1],82,2,1]) _ Boo + Boi <L
d(B[1,1,1], 8[1,1,0])  2Bgo + 2Bo1 + Boz ~ 2°
d(B[1,1,1], 52,1,1]) _ Byo 1
d(ﬁ[17 ) ]7ﬁ[ ]) 2BOO+BOI +BOQ o 2

Here we use the additional points 3[3,2,1] and £[2,1, 1] which lie outside on the
line which joins §[1,1,0] andg[2, 1, 1].

‘5n+2 = 08,07, 17‘

d(5[23130]7ﬂ[37270]) _ BOO+B01 < 1

d(ﬁ[Q,l,O],ﬁ[l,l,O]) 3BOO+2301 o
d(6[27 17 O]a ﬂ[57 3a 1]) 3BOO + 2BOl + BOQ §
d(ﬂ[271,0]a/8[3727 1]) 5BOO +3B01 +BOZ - 4
d(8[2,1,0], 84,2,1]) _ 2Boo + Bo1 + Bo2 _ 2
d(B[2,1,0], 6[2,1,1]) ~ 4Boo +2Bo1 + Boz ~ 3’
d(5[27170]5ﬁ[572a 1]) _ 3BOO +301 +B02 2
d(5[27170]5/6[37171]) 5B00+2Bol+302 o 3

Here we use the additional points ([3,2,0], [2,1,0], and 8[1,0,0].

Ent+2 = 0y, 1y

d(6[2,1,1],5[5,3,1]) _ 3Bgo + 2Bo 2
d(8[2,1,1],[3,2,0]) ~ 5Boo + 3Bo1 + Boz ~ 3’
d(ﬂp?l,l]aﬁ[ )y ]) 2BOO""-BOI 1
d(6[27171]5ﬁ[271a0]) 4BOO+ZBOI +BOQ o 2
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d(ﬂ[2alal]a6[5a272]) _ BOO
d(8[2,1,1], 8[1,0,0]) ~ 5Boo + 2Bo1 + 2Bo2

1
< -.
-5

Only the case 1 remains; however, the sequence of associated triangles shrinks
to the point (A—1,A\2—~A—1), where A > 1 is the greatest root of \> = \24+2\—1. [

Lemmas 1-4 provide the necessary machinery to deduce the following:
Theorem 2: SoT is ergodic and admits a o-finite invariant measure p ~ .

Remark: The map (T0S)(z) = S(T'z) divides B into nine cells. Since So(T0S) =
(SoT)o S their ergodic behaviors are equivalent.

4. A Split Algorithm

The next algorithm is not directly related to the Brun or the Selmer algorithm but
shows that the “exotic” behaviour which was first detected with the Parry-Daniels
map is quite common (see [5]).

The starting point are the three matrices

1 0 0 1 01 110
=111 0 |,p2=1 1 0 |,68=[100
1 01 1 0 0 1 01
These matrices form a 2-dimensional continued fraction on the basic set (R*)? with
the three inverse branches

<
—
w
~—
—
£
<
~
Il

and the basic partition is
B(1) ={(u,v) : 1 <u,1 <wv}
B(2)={(u,v): 0<v <w,v<1}
B3) ={(u,v): 0 <u<w,u<l1}
The dual map is given given as

V#1)(z,y) = r _ Y
(D (=.y) (1—|—x+y 1+m+y)
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1
V#Q ) = = ;
(2)(z,y) (1+x+y 1+x+y)

1 ]
V#(3)(x, = ;
(3)(z.9) (1+:E—|—y 1+:c+y)

which may be compared with the 2-dimensional Farey-Brocot algorithm which was
considered in Schweiger [10]. This algorithm sits on a set E with A(E) = 0 but the
function

1
T1T2
behaves formally as an invariant density. It would be nice to explore if in some
limiting sense the integral
/ df,U]de'Q
E T1X2

g(w1,72) =

is finite.

Let

Eis = {(u,v) : T%(u,v) € B(1) U B(2),s > 0}
and

B3 = {(u,v) : T%(u,v) € B(1) U B(3),s > 0}.
We will show that A\(E12) = A(E13) > 0 and calculate an invariant density for the
map T restricted to Fis.
We consider the first return map on the set on the set B(2) of the restriction of T" to
Ej5. This map is given as R(u,v) = T*(u,v) if (u,v) € B(2),TI(u,v) € B(1),1 <
j <k—1,T*(u,v) € B(2). The associated matrices are given as

a 0 1
BR)BA) =ya)=| a 1 0
1 00
where a = k + 1. These matrices are related to continued fractions! If
gs 0 qs—1
Y(ar)..y(as) = | rs 1 751
Ds 0 Ps—1

then as usual Qs = Asqs—1 + gs—2, Ps = AsPs—1 + Ps—2 but ry = asrs_1 + 752 + as.
The last recursion can be written as rs + 1 = as(rs—1 + 1) + rs—2 + 1 which shows
that gs < rs < 2¢s.

Theorem 3: A\(E;2) > 0.

Proof. We transport the map T into the triangle with vertices (0,0), (1,0), and
(0,1) by using the map ¥ (u,v) = (157> 7705y )- Lhe quotient of the measure of
the cylinder B(ayq, ..., as) and the length of the associated continued fraction interval
I(ay,...as) is bounded from below. Therefore we find A(E12) > 0. O
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Theorem 4:Let § = [ay,az,...] be a reqular continued fraction and define T'() =
Someo([Tj—gT760)any 1. Then the function

1
(I+v)(u—T(v))

s an tnvariant density for the map T restricted to the set Eis.

h(u,v) =

Proof. We first remark

I =T -

6)=T(5)a+0) o
Then we calculate

ih(a—l—u 1 i 1

Pt a+v’a+v (a+v)?  “—(a+1l+v)(a+v)latu-T((a+v)")(a+v))

1 > 1 1
:u—F(U)Z(a+v)(a+1+v) T 1+ v)(u—T@)

a=1

Remark: The dual map defined by

v#(a) =

_ o
S = Q
O O =

formally has the invariant density

1 dv
fxr,22) = 37_1/0 (1+210(v) + 290)2”

We verify this by direct calculation:

= ) 1 1
> £( ; 3
a+axy +x2 a+ary+ 2y’ (a+axy + x2)

a=1
_ii/l dv
o —Jo (a+(a+T(v))z1 + a2 +v)?

1« « dw
T Z/L (14 T(w))x1 + w2w)? = F(z1, 22).

and the equation I'(v) + a = T'(w) (a + v). O

This follows from w = — +v
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