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Abstract
We adapt the construction of subsets of {1, 2, . . . , N} that contain no k-term arith-
metic progressions to give a relatively thick subset of an arbitrary set of N integers.
Particular examples include a thick subset of {1, 4, 9, . . . , N2} that does not contain
a 3-term AP, and a positive relative density subset of a random set (contained in
{1, 2, . . . , n} and having density cn−1/(k−1)) that is free of k-term APs.

1. Introduction

For a finite set N (whose cardinality we denote by N), set rk(N ) to be the largest
possible size of a subset of N that contains no k-term arithmetic progressions (k-
APs). A little-known result of Komlós, Sulyok, and Szemerédi [8] implies that

rk(N ) ≥ C rk([N ]), (1)

for an explicit positive constant C. Abbott [2] reports that their proof gives C =
2−15, and indicates some refinements that yield C = 1/34.

In this work, we focus on the situation when N itself has few solutions and we
can give bounds on rk(N ) that are much stronger than those implied by Eq. (1)
and the currently best bounds on rk([N ]). In particular, we adapt the Behrend-type
construction [9] of subsets of [N ] without k-APs to arbitrary finite sets N . We draw
particular attention to subsets of the squares and to subsets of random sets. As the
statement of our theorem requires some notation and terminology, we first give two
corollaries.

Our first corollary brings attention to the fact that while the squares contain
many 3-APs, they also contain unusually large subsets that do not. Here and
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throughout this paper, exp(x) = 2x and log x = log2(x). For comparison, r3([N ]) ≥
N exp(−2

√
2
√

log N + 1
4 log log N).

Corollary 1. There is an absolute constant C > 0 such that for every N there is
a subset of {1, 4, 9, . . . , N2} with cardinality at least

C · N · exp
�
−2
√

2
�

log log N +
1
4

log log log N
�

that does not contain any 3-term arithmetic progressions.

Our second corollary identifies sets that have subsets with no k-APs and with
positive relative density .

Corollary 2. For every real ψ and integer k ≥ 3, there is a real δ > 0 such that
every sufficiently large N ⊆ Z that has fewer than ψ|N | arithmetic progressions
of length k contains a subset that is free of k-term arithmetic progressions and
has relative density at least δ. In particular, for each δ > 0, if n is sufficiently
large and N ⊆ {1, 2, . . . , n} is formed by including each number independently with
probability cn−1/(k−1) > 0, then with high probability N contains a subset A with
relative density δ and no k-term arithmetic progressions.

The structure of the proof requires us to consider a generalization of arithmetic
progressions. A k-term D-progression is a nonconstant sequence a1, . . . , ak whose
(D + 1)-st differences are all zero:

D+1�

i=0

(−1)i

�
D + 1

i

�
ai+v = 0, (1 ≤ v ≤ k −D − 1).

Equivalently, a1, . . . , ak is a k-term D-progression if there is a nonconstant polyno-
mial Q(j) with degree at most D and Q(i) = ai for i ∈ [k]. Clarifying examples of 5-
term 2-progressions of integers are 1, 2, 3, 4, 5 (from Q(j) = j), and 4, 1, 0, 1, 4 (from
Q(j) = (j − 3)2), and 1, 3, 6, 10, 15 (from Q(j) = 1

2j + 1
2j2). Let Q(j) =

�D�

i=0 qiji

be a polynomial with degree D� ≥ 1, so that Q(1), Q(2), . . . , Q(k) is a k-term D-
progression for all D ≥ D�. The quantity D�!qD� , which is necessarily nonzero, is
called the difference of the sequence, and (D�, Q(1),D�!qD�) is the type of the se-
quence. Note that different progressions can have the same type: both 1, 4, 9, 16, 25
and 1, 5, 11, 19, 29 have type (2, 1, 2). For any set N , we let Typek,D(N ) be the
number of types of k-term D-progressions contained in N . The proof of [9]*Lemma 4
shows that Typek,D(N ) � |N |diam(N ). Since the type of a k-term D-progression
is determined by its first D + 1 elements, we also have Typek,D(N ) ≤ ND+1. We
define

rk,D(N ) := max
A⊆N

{|A| : A does not contain any k-term D-progressions}
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and recall the lower bound proved in [9]:

rk,D([N ])
N

≥ C exp
�
−n2(n−1)/2D(n−1)/n n

�
log N +

1
2n

log log N

�
. (2)

We can now state our main theorem.

Theorem 1. Let k ≥ 3, n ≥ 2,D ≥ 1 be integers satisfying k > 2n−1D. Let Ψ(N)
be any function that is at least 2. There is a constant C = C(k,D,Ψ) such that for
all N ⊆ Z with Typek,D(N ) ≤ NΨ(N) (where N := |N |)

rk,D(N )
N

≥ C exp
�
−n2(n−1)/2D(n−1)/n n

�
log Ψ(N) +

1
2n

log log Ψ(N)
�

.

Corollary 2 is now straightforward: set D = 1 and Ψ(N) = max{ψ, 2} and take

δ = exp
�
−n2(n−1)/2 n

�
log C +

1
2n

log log C

�
,

to arrive at the first sentence. Considering the random set N described in the second
sentence of Corollary 2, for each pair (a, a + d) of elements of N the likelihood of
the next k− 2 elements a + 2d, . . . , a + (k− 1)d of the arithmetic progression being
in N is (cn−1/(k−1))k−2. Consequently, the expected number of k-term arithmetic
progressions in N is

�
n

2

�
(n−1/(k−1))k−2 ≤ ck−2

2
nk/(k−1),

and the expected size of N is N = n · cn−1/(k−1) = cnk/(k−1). We can take Ψ(N)
to be a constant with high probability, and so Corollary 2 follows from Theorem 1.

Corollary 1 is only a bit more involved. It is known (perhaps since Fermat, see
[4, 5, 10, 3, 6, 7, 1] for a history and for the results we use here) that while the
squares do not contain any 4-term arithmetic progressions, the 3-term arithmetic
progressions a2, b2, c2 are parameterized by

a = u(2st− s2 + t2), b = u(s2 + t2), c = u(2st + s2 − t2),

with s, t, u ≥ 1 and gcd(s, t) = 1. Merely observing that s, t, u ≥ 1, b ≤ N yields
that there are fewer than 2πN log N triples (s, t, u) with a, b, c in [N ], i.e.,

Type3,1({1, 4, 9, . . . , N2}) ≤ 2πN log N.

Now, setting k = 1, n = 2,D = 1,Ψ(N) = 2π log N in Theorem 1 produces Corol-
lary 1.

Section 2 gives a short outline of the construction behind Theorem 1, which is
given in greater detail in Section 3. We conclude in Section 4 with some unresolved
questions.
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2. Overview of Construction Proving Theorem 1

Throughout this work we fix three integers, k ≥ 3, n ≥ 2, D ≥ 1, that satisfy
k > 2n−1D; in other words, one may take n = �log(k/D)�.

In this section, we outline the construction, suppressing as much technical detail
as possible. In the following sections, all definitions are made precisely and all
arguments are given full rigor.

Fix Ψ(N), and take N ⊆ Z with |N | = N , and so that N contains less than
NΨ(N) types of k-term D-progressions. The parameters N0, d, δ are chosen at the
end for optimal effect.

Let A0 = Rk,2D(N0) be a subset of [N0] without k-term 2D-progressions, and

|A0| = rk,2D(N0).

Consider ω,α in Td (we average over all choices of ω,α later in the argument), and
set

A := {a ∈ N : aω + α mod 1 = �x1, . . . , xd�, |xi| < 2−D−1,
�

x2
i ∈ Annuli},

where Annuli is a union of thin annuli in Rd with thickness δ whose radii are
affinely related to elements of A0. Set

T := {a ∈ A : there is a k-term D-progression in A starting at a }.

Then A \ T is free of k-term D-progressions, and so rk,D(N ) ≥ |A \ T | = |A|− |T |,
and more usefully

rk,D(N ) ≥ Eω,α [|A|]− Eω,α [|T |] ,

with the expectation referring to choosing ω,α uniformly from the torus Td. We
have

Eω,α [|A|] = Eω [Eα [|A|]] = Eω [N vol(Annuli)] = N vol(Annuli).

We also have

Eω,α [|T |] ≤ Eω,α

��
E(D�, a, b)

�
=

�
Eω,α [E(D�, a, b)]

where E(D�, a, b) is 1 if A contains a progression of type (D�, a, b), and is 0 otherwise,
and the summation has Typek,D(N ) summands. Using the assumption that A0 is
free of k-term 2D-progressions, we are able to bound

Eω,α [E(D�, a, b)]

efficiently in terms of the volume of Annuli and the volume of a small sphere. We
arrive at

Eω,α [|T |] ≤ Typek,D(N )vol(Annuli)vol(Ball),
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which gives us a lower bound on rk,D(N ) in terms of Ψ, N0, d, δ and A0. The
work [9] gives a lower bound on the size of A0, and optimization of the remaining
parameters yields the result.

3. Proof of Theorem 1

The open interval (a − b, a + b) of real numbers is denoted a ± b. The interval
[1, N ] ∩ Z of natural numbers is denoted [N ]. The box (±2−D−1)d, which has
Lebesgue measure 2−dD, is denoted BoxD. We define Box0 = [−1/2, 1/2)d.

Although we make no use of this until the very end of the argument, we set

d :=

�
2n/2

�
log Ψ(N)

D

�1/(n+1)
�

.

Given x ∈ Rd, we denote the unique element y of Box0 with x − y ∈ Zd as
x mod 1.

A point x = �X1, . . . ,Xd� chosen uniformly from BoxD has components Xi

independent and uniformly distributed in (−2−D−1, 2−D−1). Therefore, �x�22 =�d
i=1 X2

i is the sum of d iidrvs, and is consequently normally distributed as d →∞.
Further, �x�22 has mean µ := 2−2Dd/12 and variance σ2 := 2−4Dd/180.

Let A0 be a subset of [N0] with cardinality rk,2D([N0]) that does not contain
any k-term 2D-progression, and assume 2δN0 ≤ 2−2D. We define Annuli in the
following manner:

Annuli :=

�
x ∈ BoxD :

�x�22 − µ

σ
∈

�

a∈A0

�
z − a− 1

N0
± δ

��
,

where z ∈ µ ± σ is chosen to maximize the volume of Annuli. Geometrically,
Annuli is the union of |A| spherical shells, intersected with BoxD. From [9]*Lemma
3, the Barry-Esseen central limit theorem and the pigeonhole principle yield:

Lemma 1 (Annuli has large volume). If d is sufficiently large, A0 ⊆ [N0], and

2δ ≤ 1/n, then the volume of Annuli is at least
2
5

2−dD|A0|δ.

Set
A := A(ω,α) = {n ∈ N : nω + α mod 1 ∈ Annuli},

which we will show is typically (with respect to ω,α being chosen uniformly from
Box0) a set with many elements and few types of D-progressions. After removing
one element from A for each type of progression it contains, we will be left with a
set that has large size and no k-term D-progressions.
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Define T := T (ω,α) to be the set
�

a ∈ N : ∃b ∈ R,D� ∈ [D] such that A(ω,α) contains
a k-term progression of type (D�, a, b)

�
,

which is contained in A(ω,α). Observe that A \T is a subset of N and contains no
k-term D-progressions, and consequently rk,D(N ) ≥ |A \ T | = |A| − |T | for every
ω,α. In particular,

rk,D(N ) ≥ Eω,α [|A \ T |] = Eω,α [|A|− |T |] = Eω,α [|A|]− Eω,α [|T |] . (3)

First, we note that

Eω,α [|A|] =
�

n∈N
Pω,α [n ∈ A] =

�

n∈N
Pα [n ∈ A] = N vol(Annuli). (4)

Let E(D�, a, b) be 1 if A contains a k-term progression of type (D�, a, b), and
E(D�, a, b) = 0 otherwise. We have

|T | ≤
�

(D�,a,b)

E(D�, a, b),

where the sum extends over all types (D�, a, b) for which D� ∈ [D] and there is a k-
term D�-progression of that type contained in N ; by definition there are APk,D(N )
such types.

Suppose that A has a k-term progression of type (D�, a, b), with D� ∈ [D]. Let
p be a degree D� polynomial with lead term pD� = b/D�! �= 0, and p(1), . . . , p(k) a
D�-progression contained in A. Then

xi := p(i)ω + α mod 1 ∈ Annuli ⊆ BoxD .

We now pull a lemma from [9]*Lemma 2.

Lemma 2. Suppose that p(j) is a polynomial with degree D�, with D�-th coefficient
p�D, and set xj := ω p(j) + α mod 1. If x1, x2, . . . , xk are in BoxD and k ≥ D + 2,
then there is a vector polynomial P (j) =

�D�

i=0 P iji with P (j) = xj for j ∈ [k], and
D�!PD� = ω D�!pD� mod 1.

Thus, the xi are a D�-progression in Rd, say P (j) =
�D�

i=0 P iji has P (j) = xj

and D�!PD� = D�!pD� ω mod 1 = bω mod 1. Recalling that z was chosen in the
definition of Annuli, by elementary algebra

Q(j) :=
�P (j)�22 − µ

σ
− z

is a degree 2D� polynomial in j (with real coefficients), and since P (j) = xj ∈
Annuli for j ∈ [k], we know that

Q(j) ∈
�

a∈A0

�
−a− 1

N0
± δ

�
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for all j ∈ [k], and also Q(1), . . . , Q(k) is a 2D�-progression. Define the real numbers
aj ∈ A0, �j ∈ ±δ by

Q(j) = −aj − 1
N0

+ �j .

For a finite sequence (ai)k
i=1, we define the forward difference ∆(ai) to be the

slightly shorter finite sequence (av+1−av)k−1
v=1. The formula for repeated differencing

is

∆m(ai) =

�
m�

i=0

�
m

i

�
(−1)iai+v

�k−m

v=1

.

We note that a nonconstant sequence (ai) with at least 2D + 1 terms is a 2D-
progression if and only if ∆2D+1(ai) is a sequence of zeros. If ai = p(i), with p a
polynomial with degree 2D and lead term p2D �= 0, then ∆2D(ai) = ((2D)!p2D), a
nonzero-constant sequence. Note also that ∆ is a linear operator. Finally, we make
use of the fact, provable by induction for 1 ≤ m ≤ k, that

|∆m(ai)| ≤ 2m−1
�
max

i
ai −min

i
ai

�
.

We need to handle two cases separately: either the sequence (ai) is constant or
it is not. Suppose first that it is not constant. Since ai ∈ A0, a set without k-term
2D-progressions, we know that ∆2D+1(ai) �= (0), and since (ai) is a sequence of
integers, for some v

|∆2D+1(ai)(v)| ≥ 1.

Consider:
(0) = ∆2D+1(Q(i)) =

1
N0

∆2D+1(ai) + ∆2D+1(�i),

whence
|∆2D+1(�i)(v)| =

1
N0

|∆2D+1(ai)(v)| ≥ 1
N0

.

Since |�i| < δ, we find that

|∆2D+1(�i)(v)| =

�����

2D+1�

i=0

�
2D + 1

i

�
(−1)i�i+v

����� < 22D+1δ,

and since we assumed that 2δN0 ≤ 2−2D, we arrive at the impossibility

1
N0

≤ |∆2D+1(�i)(v)| < 22D+1δ ≤ 22D · 2−2D

N0
=

1
N0

.

Now assume that (ai) is a constant sequence, say a := ai, so that

Q(j) ∈ −a− 1
N0

± δ
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for all j ∈ [k]. This translates to

�P (j)�22 ∈ µ− (z − a− 1
N0

)σ ± δσ.

Clearly a degree 2D� polynomial, such as �P (j)�22, cannot have the same value at
2D� + 1 different arguments; we pull now another lemma from [9]*Lemma 1 that
quantifies this.

Lemma 3. Let δ, r be real numbers with 0 ≤ δ ≤ r, and let k,D be integers with
D ≥ 1, k ≥ 2D+1. If P (j) is a polynomial with degree D, and r−δ ≤ �P (j)�22 ≤ r+δ
for j ∈ [k], then the lead coefficient of P has norm at most 2D (2D)!−1/2 √δ.

Using Lemma 3, the lead coefficient PD� of P (j) satisfies

�D�!PD��2 ≤ D�! 2D�
(2D�)!−1/2√

δσ ≤
√

Fσδ,

where F is an explicit constant. We have deduced that E(D�, a, b) = 1 only if

aω + α mod 1 ∈ Annuli and �bω mod 1�2 ≤
√

Fσδ.

Since α is chosen uniformly from Box0, we notice that

Pα [aω + α mod 1 ∈ Annuli] = volAnnuli,

independent of ω. Also, we notice that the event {�bω mod 1�2 ≤
√

Fσδ} is inde-
pendent of α, and that since b is an integer, ω mod 1 and bω mod 1 are identically
distributed. Therefore, the event {�bω mod 1�2 ≤

√
Fσδ} has probability at most

volBall(
√

Fσδ) =
2πd/2(

√
Fσδ)d

Γ(d/2)d
,

where Ball(x) is the d-dimensional ball in Rd with radius x. It follows that

Pω,α [E(D�, a, b) = 1] ≤ volAnnuli ·volBall(
√

Fσδ),

and so
Eω,α [|T |] ≤ Typek,D(N )volAnnuli ·volBall(

√
Fσδ). (5)

Equations (3), (4), and (5) now give us

rk,D(N)
N

≥ vol(Annuli)
�

1− Typek,D(N )
N

volBall(
√

Fσδ)
�

.

Setting

δ =
2ed
πFσ

�
d

d + 2

�2/d Γ(d/2)2/d

2ed

�
Typek,D(N )

N

�−2/d

∼ C
d1/2

Ψ(N)2/d
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we observe that

1− Typek,D(N )
N

volBall(
√

Fσδ) =
d

d + 2
∼ 1.

Now,

rk,D(N )
N

≥ volAnnuli
d

d + 2
� 2−dD δ|A0|
� 2−dDd1/2Ψ(N)−2/d|A0|

= C exp
�
−dD − 2

d
log Ψ(N) +

1
2

log d + log |A0|
�

.

Recall that we set

d :=

�
2n/2

�
log Ψ(N)

D

�1/(n+1)
�

.

If 2D < k ≤ 4D, we take N0 = 1 and A0 = {1} to complete the proof. If k > 4D,
we set

N0 := C
Ψ(N)2/d

d1/2
,

and use the bound

|A0| = rk,2D(N0) ≥ CN0 exp
�
−n2(n−1)/2(2D)(n−1)/n(log N0)1/n +

1
2n

log log N0

�
,

proved in [9], to complete the proof.

4. Unanswered Questions

Kolountzakis (personal communication) asks whether

r3,1([N ]) = min{r3,1(N ) : N ⊆ Z, |N | = N}.

More generally, which set N (for fixed k,D,N) minimizes rk,D(N )? It is not even
clear to this author which set maximizes Typek,D(N ), nor even what that maxi-
mum is, although the interval [N ] is the natural suspect and has Typek,D([N ]) ≤
2D+1N2.

We doubt that there is a subset of the squares with positive relative density
that does not contain any 3-term arithmetic progressions, but have not been able
to prove such. We note that there are 4-term 2-progressions of positive cubes:
33, 163, 223, 273 is the image of 0, 1, 2, 3 under Q(x) = 2483

2 x2 + 5655
2 x + 27. For

which k,D, p are there k-term D-progressions of perfect p-th powers, and when
they exist how many types are there?
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