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Abstract

Let S(h, k) be the least positive integer such that any 2-coloring of the interval

[1, S(h, k)] must admit either

(i) a monochromatic solution to x1 + . . .+xh−1 = xh with x1 < x2 < . . . < xh or

(ii) a monochromatic solution to x1 + . . . + xk−1 = xk with x1 < x2 < . . . < xk.

We prove S(3, 3) = 9, S(3, 4) = 16, and for all k � 5,

S(3, k) =

�
3k2/2− 7k/2 + 3 if k ≡ 0, 1 (mod 4),
3k2/2− 7k/2 + 4 if k ≡ 2, 3 (mod 4).

1. Introduction

Let N denote the set of positive integers and [a, b] = {n ∈ N : a � n � b}. A

mapping χ : [a, b] → [1, t] is called a t-coloring of [a, b]. Let Lm denote the system

of inequalities given by

x1 + x2 + . . . , xm−1 = xm, x1 < x2 < · · · < xm.
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A solution n1, n2, . . . , nm to Lm is monochromatic if χ(ni) = χ(nj) for 1 � i, j � m.

Henceforth, we assume a two-coloring (t = 2) of the interval and denote each

color by red and blue. Furthermore, a monochromatic solution to Lm such that

χ(n1) = χ(n2) = . . . = χ(nm) = red will be called a “red solution,” and likewise

for a “blue solution.” Lastly, we define S(h, k) to be the least positive integer such

that every coloring of the interval [1, S(h, k)] by the colors red and blue contains

either a red solution to Lk or a blue solution to Lh.

In the following proofs, we show that S(3, 3) = 9, S(3, 4) = 16, and for all k � 5,

S(3, k) =

�
3k2/2− 7k/2 + 3 if k ≡ 0, 1 (mod 4),
3k2/2− 7k/2 + 4 if k ≡ 2, 3 (mod 4).

2. The Lower Bound

Lemma 1. (Lower Bound) For k � 3,

S(3, k) � N =

�
3k2/2− 7k/2 + 3 if k ≡ 0, 1 (mod 4),
3k2/2− 7k/2 + 4 if k ≡ 2, 3 (mod 4).

Proof. Consider a coloring of χ : [1, N − 1] → {blue, red} defined as follows. For

n ∈ [1, N − 1], let

χ(n) =






blue if n ≡ 1 (mod 2) and n � k(k − 1)/2,
blue if n ≡ 0 (mod 2) and n � k(k − 1),
red otherwise.

We claim this coloring has no blue solution to L3 and no red solution to Lk.

Suppose n1+n2 = n3, where n1 < n2 < n3, is a blue solution to L3 on the interval

[1, N − 1]. Suppose n2 ≡ 1 (mod 2). Then n1 < n2 � k(k − 1)/2, which implies

n1 ≡ 1 (mod 2) and n3 < k(k − 1). Since n3 = n1 + n2 ≡ (1 + 1) (mod 2) ≡ 0

(mod 2), we must have that n3 � k(k − 1), which is a contradiction. Therefore,

n2 ≡ 0 (mod 2).

Hence, n3 > n2 � k(k − 1), which implies n3 ≡ 0 (mod 2), which then implies

n1 ≡ 0 (mod 2). Therefore, n2 > n1 � k(k − 1), which implies n3 = n1 + n2 �
k(k − 1) + (k(k − 1) + 2) > N − 1, another contradiction implying no such blue
solution to L3 exists.

Next, suppose n1 + n2 + · · · + nk−1 = nk, where n1 < n2 < · · · < nk, is a red
solution to Lk on the interval [1, N − 1]. Let q denote the minimal sum of k− 2 red
numbers. Clearly, q =

�k−2
i=1 2i = k2 − 3k + 2.

If nk−1 � k(k − 1)/2, then ni ≡ 0 (mod 2) for i ∈ [1, k − 1]. This implies

nk ≡ 0 (mod 2), which implies nk < k(k − 1), but this is a contradiction since

k(k − 1) > nk � q + 2(k − 1) = k(k − 1). Therefore, nk−1 > k(k − 1)/2.
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If k ≡ 0, 1 (mod 4), then nk > q + k(k − 1)/2 = 3k2/2 − 7k/2 + 2 = N − 1, a

contradiction that implies k ≡ 2, 3 (mod 4).

If nk−1 = k(k − 1)/2 + 1, then ni ≡ 0 (mod 2) for all i ∈ [1, k − 1], which

implies nk ≡ 0 (mod 2). Since nk is red, nk < k(k − 1), which is a contradiction

since nk � q + k(k − 1)/2 + 1. Therefore, nk−1 > k(k − 1)/2 + 1, which implies

nk � q + k(k − 1)/2 + 2 = 3k2/2− 7k/2 + 4 = N .

3. The Upper Bound

Throughout this section, let p denote the sum of the first k red numbers and let ri

and bi denote the ith red and blue numbers, respectively. Then, ri < rj and bi < bj ,

for all i < j.

Lemma 2. For n � 3, if at least n + 1 numbers in the interval [1, 2n] are colored
blue, then the only coloring that avoids a blue solution to L3 is given by

χ(x) =

�
red if x ∈ [1, n− 1],
blue if x ∈ [n, 2n].

Proof. Since the case n = 3 is trivial, assume n > 3.

Case 1. χ(2n) = red. We proceed via induction on n. For some n > 3, assume the

claim holds for n− 1. To avoid a blue solution on the interval [1, 2(n− 1)], we must

have χ(x) = blue for all x ∈ [(n− 1), 2(n− 1)] and χ(x) = red for all x ∈ [1, n− 2].

Since we need another blue in the interval [1, 2n], the number (2n−1) must be blue,
but then (n− 1) + n = (2n− 1) is a blue solution to L3.

Case 2. χ(2n) = blue. By the pigeonhole principle, χ(n) = blue, since otherwise

one of the pairs {x, 2n − x} with 1 � x < n would be all blue giving us the blue
solution (x) + (2n − x) = 2n. Now suppose χ(1) = blue, which implies the pair

{n− 1, n + 1} is all red. Hence, some other pair {x, 2n− x} with 1 � x < n− 1, is

all blue and we get a contradiction. Therefore, χ(1) = red; hence χ(2n− 1) = blue,
otherwise some other pair {x, 2n − x} with 2 � x � n − 2 would be all blue,
giving us a contradiction as before. But then we must have χ(n − 1) = red since

(n−1)+n = (2n−1); hence χ(n+1) = blue. But then we must have χ(n−2) = red
since (n−2)+(n+1) = (2n−1); hence χ(n+2) = blue. Continuing in this manner,

we get the desired coloring.

Corollary 1. To avoid a blue solution to L3, ri � 2i + 1 for all i.

Proof. The claim is easily proven for r1 and r2. Suppose ri > 2i + 1 for some

i � 3. This would imply at least i + 1 numbers are colored blue in the interval

[1, 2i]. Applying Lemma 2 gives us that χ(i) = χ(i + 1) = blue. Since there are

2i + 1− (i− 1) = i + 2 blue integers in [1, 2i + 1], χ(2i + 1) = blue as well, but this

yields the blue solution i + (i + 1) = 2i + 1.
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Corollary 2. There exists at least k integers in the interval [1, N ] colored red, that
is, p exists.

Proof. If p does not exist, then by Corollary 1, rk−1 � 2k − 1, which implies

that all numbers in [2k,N ] are colored blue, while the Pigeonhole Principle ensures

that some number in [1, k] is also colored blue, say x ∈ {1, 2, . . . , k}. But then

x + 2k = x + 2k � N is a blue solution for k � 4, a contradiction. The case

k = 3 can be done separately by hand varying this argument and handling several

cases.

Corollary 3. Let i > b1 and i � 3. To avoid a blue solution to L3, ri � 2i.

Proof. Suppose ri > 2i. Then Corollary 1 implies ri = 2i + 1. Therefore, the

interval [1, 2i + 1] must contain exactly i + 1 blue numbers. Since i � 3, Lemma

2 implies that the interval [1, i − 1] is all red, but this contradicts the hypothesis

b1 < i.

Lemma 3. (P Lemma) The following hold:

(i) If b1 = 1, then p � k2
+ k − 12 + r1 + r2 + r3,

(ii) If 1 < b1 � k, then p � k2
+ k + 1− b1(b1 − 1)/2,

(iii) If b1 > k, then p = k(k + 1)/2.

Proof. (i) If b1 = 1, then by Corollary 3

p = r1 + r2 + r3 +

k�

i=4

ri � r1 + r2 + r3 +

k�

i=4

2i

= k2
+ k − 12 + r1 + r2 + r3.

(ii) If 1 < b1 � k, then by Corollaries 1 and 3

p =

b1−1�

i=1

ri + rb1 +

k�

i=b1+1

ri �
b1−1�

i=1

i + (2b1 + 1) +

k�

i=b1+1

ri

�
b1−1�

i=1

i + (2b1 + 1) +

k�

i=b1+1

2i

= k2
+ k + 1− b1(b1 − 1)/2.

(iii) If b1 > k, then p =
�k

i=1 ri =
�k

i=1 i = k(k + 1)/2.
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Given a valid colouring, the upper bound for p can be improved by modifying

Lemma 3. For example, for k � 6, if r1 = 1, b1 = 2, r2 = 3, and r3 = 4, then

p � k2
+ k + 1− b1(b1 − 1)/2− (5− r2)− (6− r3) = k2

+ k − 4.

Fact 1. If k � 6, then k2
+ k − 5 � N .

Corollary 4. If p− rj � N for some j ∈ [1, k], then to avoid a red solution to Lk,
χ(p− ri) = blue for all i ∈ [j, k].

Proof. If χ(p− ri) = red for some i ∈ [j, k], then we get the red solution to Lk

r1 + r2 + . . . + ri−1 + ri+1 + ri+2 + . . . + rk = p− ri,

where p − ri � p − rj � N (by hypothesis). Hence, χ(p − ri) = blue for all

i ∈ [j, k].

Corollary 5. If k � 6 and b1 > 1, then p− ri � N for all ri.

Proof. We have p− ri � p− 1. In view of Fact 1, if p � k2
+ k− 4, then p− ri � N

for all ri. If b1 = 2, then modifying Lemma 3, we get the following cases:

# 1 2 3 4 5 6 7 8 9 10 11 12 n s.t. p � n
1. r1 b1 b2 b3 r2 r3 r4 b4 b5 r5 r6 r7 k2

+ k − 4

2. r1 b1 b2 b3 r2 r3 r4 b4 r5 r6 k2
+ k − 4

3. r1 b1 b2 b3 r2 r3 r4 r5 b4 b5 r6 k2
+ k − 4

4. r1 b1 b2 b3 r2 r3 r4 r5 b4 r6 k2
+ k − 5

5. r1 b1 b2 b3 r2 r3 r4 r5 r6 k2
+ k − 6

6. r1 b1 b2 r2 r3 b3 b4 r4 r5 r6 k2
+ k − 5

7. r1 b1 b2 r2 r3 b3 r4 r5 k2
+ k − 5

8. r1 b1 b2 r2 r3 r4 k2
+ k − 4

9. r1 b1 r2 b2 b3 r3 r4 b4 r5 k2
+ k − 4

10. r1 b1 r2 b2 b3 r3 r4 r5 k2
+ k − 5

11. r1 b1 r2 b2 r3 r4 k2
+ k − 5

12. r1 b1 r2 r3 k2
+ k − 4

Similarly, if b1 = 3 then modifying Lemma 3, we get the following cases:

# 1 2 3 4 5 6 7 8 9 10 n s.t. p � n
1. r1 r2 b1 b2 b3 b4 r3 r4 r5 r6 k2

+ k − 5

2. r1 r2 b1 b2 b3 r3 r4 k2
+ k − 4

3. r1 r2 b1 b2 r3 k2
+ k − 4

4. r1 r2 b1 r3 k2
+ k − 5

For 4 � b1 � k, by Lemma 3 we have p � k2
+ k− 5. For b1 > k, p = k(k + 1)/2

by part (iii) of Lemma 3. For k � 6 and b1 > 1, we have p � k2
+ k− 4, and hence,
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using Fact 1

p− ri � p− 1 � (k2
+ k − 4)− 1 = k2

+ k − 5 � N

for all ri with i ∈ [1, k].

Remark 1. Combining Corollaries 4 and 5, we see that, for k � 6 and b1 > 1,

χ(p− rj) = blue for all j ∈ [1, k].

Lemma 4. (Upper Bound) For k � 6,

S(3, k) � N =

�
3k2/2− 7k/2 + 3 if k ≡ 0, 1 (mod 4),
3k2/2− 7k/2 + 4 if k ≡ 2, 3 (mod 4).

Proof. Suppose to the contrary that N is not an upper bound for k � 6. This

occurs if and only if there exists a coloring of [1, N ] without a blue solution to L3

and a red solution to Lk. Consider the following two cases:

(1) χ(1) = blue (with k � 6). Suppose χ(2) = blue. Then r1 = 3 and r2 � 5

(by Corollary 1) to avoid blue solutions 1 + 2 = 3 and 1 + 4 = 5, respectively.

Therefore, by Lemma 3 and Corollary 3, we have

p � k2
+ k − 4 + r3 � k2

+ k + 2,

which implies (by Fact 1) that p− ri � k2
+ k − 5 � N for ri � 7.

If χ(x) = blue for some x ∈ [6, 7], then this implies χ(x+1) = χ(x+2) = red
to avoid the blue solutions 1+x = x+1 and 2+x = x+2. Corollary 4 implies

χ(p − x − 1) = χ(p − x − 2) = blue, and then 1 + (p − x − 2) = p − x − 1

is a blue solution since p − x − 2 � k(k + 1)/2 − 9 � 12 > 1. Therefore,

χ(6) = χ(7) = red. Considering the present information, it can be shown

that p− ri � N for ri � 6. If r2 = 4, then p � k2
+ k + 1, otherwise 7 being

red means that the estimate for r4 can be improved by one. Now, Corollary

4 gives χ(p− 6) = χ(p− 7) = blue. Thus 1 + (p− 7) = p− 6 is a blue solution

in view of p− 8 � k(k + 1)/2− 8 � 13 > 1. So we conclude that χ(2) = red.

If b2 � 5, then r2 = 3, r3 = 4, and, by Lemma 3 and Fact 1,

p− r1 � k2
+ k − 12 + r2 + r3 = k2

+ k − 5 � N,

which leads to a contradiction since Corollary 4 gives us the blue solution

1 + (p− 4) = p− 3.

If b2 = 4, then r2 = 3 and r3 = 5, and by Lemma 3 and Fact 1

p− r2 � k2
+ k − 12 + r1 + r3 = k2

+ k − 5 � N.

By Corollary 4, χ(p−3) = χ(p−5) = blue. To avoid a blue solution 1+(p−6) =

p − 5, we need χ(p − 6) = red, but by Corollary 4, this implies χ(6) = blue.
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In that case, to avoid the blue solution 1 + 6 = 7, we need χ(7) = red, but

that yields the blue solution 4 + (p− 7) = p− 3.

Now, suppose b3 > r3. If b2 = 3, then r2 = 4, r3 = 5 (since b3 > r3), and

by Lemma 3 and Fact 1, p − r2 � k2
+ k − 5 � N, but that yields the blue

solution 1 + (p− 5) = p− 4 (by Corollary 4).

Therefore, b3 < r3, which implies the interval [3, 5] has two blue numbers.

Since these blue numbers cannot be adjacent, the only valid coloring is χ(3) =

χ(5) = blue and χ(4) = χ(6) = red. With this coloring, Corollary 1, Lemma

3, Corollary 4, and Fact 1 imply that χ(p− ri) = blue, for i ∈ [3, k].

To avoid the blue solution 1+(p−ri+1) = p−ri, we must have ri+1 > ri+1,

that is, χ(ri +1) = blue, for all i ∈ [3, k−1]. Thus χ(7) = blue. Also, to avoid

the blue solution 1 + bi = bi+1, we must have χ(bi + 1) = red, for all i > 1.

Thus χ(8) = red, which implies χ(9) = blue, which implies χ(10) = red, and

continuing in this manner, we get that, for all x ∈ [1, 2k],

χ(x) =

�
red if x ≡ 0 (mod 2),
blue if x ≡ 1 (mod 2).

Furthermore, for all x ∈ [1, 2k − 3] with χ(x) = blue, we must have χ(x +

(2k− 1)) = red, otherwise we get the blue solution x + (2k− 1) = x + 2k− 1.

This implies χ(y) = red for all y ∈ [2k, 4k − 4] with y ≡ 0 (mod 2).

Using the block of even red numbers, we can extend the blue interval.

Clearly, the sum of any k− 1 red numbers which is less than N must be blue.
The maximal sum of k−1 red numbers from the block is

�k−2
i=0 ((4k−4)−2i) =

3k2− 5k + 2, which is clearly greater than N . Furthermore, the minimal sum

of k − 1 red numbers from the block is
�k−1

i=1 2i = k2 − k. Since we can

always replace a red number in the minimal sum by an adjacent even number

which is also red, and the maximal sum is greater than N , we get that all

even numbers greater than or equal to k2 − k must be blue. This yields the

extended coloring

χ(x) =






red if x ≡ 0 (mod 2) and x ∈ [2, 4k − 4],

blue if x ≡ 1 (mod 2) and x ∈ [1, 2k − 1],

blue if x ≡ 0 (mod 2) and x ∈ [k2 − k,N ].

It can easily be shown that N ≡ 1 (mod 2), implying χ(N − 1) = blue.
Since χ(1) = χ(3) = blue, we must have χ(N) = χ(N − 2) = χ(N − 4) = red.

Let q be the sum of first k − 2 red numbers. Then q = k2 − 3k + 2. To avoid

a red solution to Lk, we must have

χ(N − q) = χ(N − 2− q) = χ(N − 4− q) = blue,
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since N − 4− q > rk−2 = 2(k − 2).

If k ≡ 0, 1 (mod 4), then we get the blue solution

(N − q) + (N − 2− q) = 2(3k2/2− 7k/2 + 3)− 2(k2 − 3k + 2)− 2 = k2 − k.

Likewise, if k ≡ 2, 3 (mod 4), then we get the blue solution

(N − q) + (N − 4− q) = 2(3k2/2− 7k/2 + 4)− 2(k2 − 3k + 2)− 4 = k2 − k.

Therefore, χ(1) �= blue.

(2) χ(1) = red (with k � 6). Since k � 6 and b1 > 1, by Remark 1, we have

χ(p−ri) = blue for all i ∈ [1, k]. Let a be the minimum red number such that

χ(a−1) = blue. It can be shown that a exists. Suppose a does not exist, that

is, x (say) red numbers are followed by N−x blue numbers. If x � k(k−1)/2,

then we have a red solution 1+2+ · · ·+(k− 1) = k(k− 1)/2, or else we have

a blue solution k(k − 1)/2 + (k(k − 1)/2 + 1) = k2 − k + 1 � N .

If a < rk, then χ(p − a) = blue, which gives us a potential blue solution

(a− 1) + (p− a) = p− 1. In order for it to be a valid solution, we must have

that a− 1 �= p− a. However, since a = ri for some i ∈ [1, k], this has already

been proven in Corollary 4 (p− ri > rk for all i ∈ [1, k]).

The argument of the previous paragraph yields a contradiction unless p−
rk = p− a = a− 1, in which case k + (k + 1) = 2k + 1 � �k−1

i=1 i = p− rk =

p − a = a − 1, from which it is clear in view of the definition of a that

k + (k + 1) = 2k + 1 is a blue solution.

Suppose b1 � 3k/2. To avoid the blue solution, b1 + (b1 + 1) = 2b1 + 1,

either b1 +1 or 2b1 +1 must be red, which implies a � 2b1 +1 � 3k +1. Now

consider,

(p− rk)− 1 + a =

k−1�

i=1

i + (a− 1) = k(k − 1)/2 + (a− 1)

� k(k − 1)/2 + (3k + 1)− 1 = (k2
+ 5k)/2 � N.

Since χ(a) = red, to avoid the red solution a +
�k−1

i=2 i = (p− rk)− 1 + a, we

have χ(p− rk + a− 1) = blue, which yields the potential blue solution

(p− rk) + (a− 1) = (p− rk)− 1 + a.

To be a valid solution, we must have a − 1 �= p − rk. If a − 1 = p − rk,

then p − rk + 1 = a, which implies χ(p − rk + 1) = red. However, this is a

contradiction since χ(p− rk−1) = blue and rk−1 = rk − 1.

Therefore, b1 > 3k/2, which implies χ(x) = red for all x ∈ [1, 3k/2]. Using

this red interval, we can create another blue interval. The minimum sum of
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k−1 red numbers in this interval is k(k−1)/2. If k is even, then the maximal

sum is k2 − 1, and if k is odd, then since only integers are colored, we only

know that the interval [1, (3k − 1)/2] is colored all red, in which case, the

maximal sum of k − 1 red integers is k2 − k/2− 1/2.

Since every integer in this new interval can be represented by a sum of k−1

red numbers, the interval [k(k− 1)/2, k2− k/2− 1/2] must be colored blue to

avoid a red solution. Since k2− k + 1 is in the blue interval, we have the blue
solution k(k − 1)/2 + (k(k − 1)/2 + 1) = k2 − k + 1.

Hence, for k � 6, every coloring of [1, N ] has a blue solution to L3 or a red solution

to Lk.

4. The Cases 3 � k � 5

In this section, we formally prove the exact values of S(3, 3) and S(3, 4), and provide

the computer proof for the exact value of S(3, 5).

Lemma 5. S(3, 3) = 9.

Proof. Let χ(1) = χ(2) = χ(4) = χ(8) = red and χ(3) = χ(5) = χ(6) = χ(7) =

blue. This coloring has no red or blue solution to L3. Therefore, S(3, 3) > 8.

Suppose to the contrary that S(3, 3) > 9. Without loss of generality, let blue be

the color used 5 or more times from 1 to 9. If χ(9) = red, then Lemma 2 gives us

the red solution 1 + 2 = 3. Therefore, χ(9) = blue. We are left with two cases.

Case 1. χ(8) = blue. To avoid the blue solution 1 + 8 = 9, we have χ(1) = red. If

χ(5) = blue, then we must have χ(3) = red (to avoid the blue solution 3 + 5 = 8)

and χ(4) = red (to avoid the blue solution 4 + 5 = 9). But then we have the red
solution 1+3 = 4. Therefore, χ(5) = red. To avoid the red solutions 1+4 = 5 and

1 + 5 = 6, we must have χ(4) = χ(6) = blue. Then χ(2) = red (to avoid the blue
solution 2+4 = 6), which implies χ(3) = blue (to avoid the red solution 1+2 = 3),

which gives the blue solution 3 + 6 = 9.

Case 2. χ(8) = red. If χ(7) = red, then Lemma 2 gives us the red solution

1 + 7 = 8. Therefore, χ(7) = blue, which leads to a contradiction after a chain of

implications:

χ(2) = red (to avoid the blue solution 2 + 7 = 9),

χ(6) = blue (to avoid the red solution 2 + 6 = 8),

χ(1) = red (to avoid the blue solution 1 + 6 = 7),

χ(3) = blue (to avoid the red solution 1 + 2 = 3),

and hence the blue solution 3 + 6 = 9.

Lemma 6. S(3, 4) = 16.
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Proof. For all x ∈ [1, 15], let x ∈ [6, 12] be blue and x be red otherwise. This coloring

has no blue solution to L3 and no red solution to L4. Therefore, S(3, 4) > 15.

Suppose to the contrary that S(3, 4) > 16. Then suppose χ(1) = blue. Corollary

3 implies ri � 2i, for all i � 3.

Since r1+r2+r4 � 3+5+8 = 16, we have χ(r1+r2+r3) = χ(r1+r2+r4) = blue.
If r4 > r3 + 2, we get the blue solution 1 + (r3 + 1) = r3 + 2, and if r4 = r3 + 1, we

get the blue solution 1 + (r1 + r2 + r3) = r1 + r2 + r4. Hence, r4 = r3 + 2. To avoid

the blue solution 2 + (r1 + r2 + r3) = r1 + r2 + r4, we must have χ(2) = red, that

is, r1 = 2, which implies r1 + r3 + r4 � 2 + 6 + 8 = 16. Thus χ(r1 + r3 + r4) = blue.

Applying the same reasoning to r3 as we did to r4, we get that r3 = r2 + 2.

Then to avoid the blue solution 4 + (r1 + r2 + r3) = r1 + r3 + r4, we must have

χ(4) = red. If χ(3) = red, then r2 = 3, and so r3 = 4. But r3 �= r2 + 1. Therefore,

χ(3) = blue, which implies r2 = 4, and so r3 = 6 and r4 = 8. Then we must

have χ(5) = χ(7) = χ(12) = blue, but then we get the blue solution 5 + 7 = 12.

Therefore, χ(1) = red.

Corollary 1 gives us that r2 = 2, 3, 4, or 5. We handle these four cases separately.

Case 1. r2 = 5. This implies χ(2) = χ(3) = χ(4) = blue. Therefore, χ(6) = red
and χ(7) = red to avoid the blue solutions 2 + 4 = 6 and 3 + 4 = 7, respectively.

Hence, χ(12) = blue and χ(14) = blue to avoid the red solutions 1+5+6 = 12 and

1 + 6 + 7 = 14, respectively. But, then we get the blue solution 2 + 12 = 14.

Case 2. r2 = 4. This implies χ(2) = χ(3) = blue. Therefore, χ(5) = red (to

avoid the blue solution 2 + 3 = 5), which implies χ(10) = blue (to avoid the red
solution 1 + 4 + 5 = 10). Therefore, χ(7) = red and χ(12) = red to avoid the blue
solutions 3+7 = 10 and 2+10 = 12, respectively. But then we get the red solution

1 + 4 + 7 = 12.

Case 3. r2 = 3. This implies χ(2) = blue. If r4 = 9, then Lemma 2 implies

χ(2) = red. Thus r4 � 8.

If r3 � 6, then χ(4) = χ(5) = blue, which implies r3 = 6 (to avoid the blue
solution 2 + 4 = 6). Therefore, χ(7) = red (to avoid the blue solution 2 + 5 = 7),

which implies χ(14) = blue (to avoid the red solution 1+6+7 = 14) and χ(16) = blue
(to avoid the red solution 3 + 6 + 7 = 16). But then we get the blue solution

2 + 14 = 16. Therefore, r3 � 5.

This implies 3+r3+r4 � 16, which gives us that χ(1+r3+r4) = χ(3+r3+r4) =

blue, but then we get the blue solution 2 + (1 + r3 + r4) = 3 + r3 + r4.

Case 4. r2 = 2. Suppose χ(7) = red. Then χ(4) = blue (to avoid the red solution

1 + 2 + 4 = 7) and χ(10) = blue (to avoid the red solution 1 + 2 + 7 = 10).

This implies χ(6) = red and χ(14) = red to avoid the blue solutions 4 + 6 = 10

and 4 + 10 = 14, respectively. But then we get the red solution 1 + 6 + 7 = 14.

Therefore, χ(7) = blue.
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Suppose χ(3) = blue. Then χ(4) = red and χ(10) = red to avoid the blue
solutions 3 + 4 = 7 and 3 + 7 = 10, respectively. This implies χ(13) = blue and

χ(16) = blue to avoid the red solutions 1 + 2 + 10 = 13 and 2 + 4 + 10 = 16,

respectively. Therefore, χ(3) = red, which leads to a contradiction after a chain of

implications:

χ(6) = blue (to avoid the red solution 1 + 2 + 3 = 6),

χ(13) = red (to avoid the blue solution 6 + 7 = 13),

χ(9) = blue (to avoid the red solution 1 + 3 + 9 = 13),

χ(16) = red (to avoid the blue solution 7 + 9 = 16),

and hence the red solution 1 + 2 + 13 = 16.

4.1. Computer Assisted Proof for S(3, 5)

Let us write a coloring of [1, n] as a bit-string of length n where the i-th bit is zero

if χ(i) = blue, and one if χ(i) = red.

4.1.1. S(3,5)=23

By Lemma 1, the lower bound is S(3, 5) > 22. We consider all of the ten colorings

of [1, 22] (obtained by computer search) without a blue solution to L3 and a red
solution to L5.

1. For each of the following four colorings

0010110111111111111110,

0010110111111011111110,

0010110111111011011110, and

0010110111101111011110,

if χ(23) = blue, then we have a blue solution 1 + 22 = 23 to L3; and

if χ(23) = red, then we have a red solution 3 + 5 + 6 + 9 = 23 to L5.

2. For each of the following four colorings

0010111011111111111101,

0010111011111110111101,

0010111011111101111101, and

0010111011111011111101,

if χ(23) = blue, then we have a blue solution 2 + 21 = 23 to L3; and

if χ(23) = red, then we have a red solution 3 + 5 + 6 + 9 = 23 to L5.
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3. For each of the following two colorings

0101010101111111101010, and

0101010101111111111010,

if χ(23) = blue, then we have a blue solution 1 + 22 = 23 to L3; and

if χ(23) = red, then we have a red solution 2 + 4 + 6 + 11 = 23 to L5.

Therefore, S(3, 5) = 23.
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