STRICT SCHUR NUMBERS

Tanbir Ahmed
Department of Computer Science and Software Engineering Concordia University, Montréal, Canada
ta_ahmed@cs.concordia.ca

Michael G. Eldredge
University of Idaho, Moscow, Idaho
michael.eldredge@vandals.uidaho.edu
Jonathan J. Marler
University of Idaho, Moscow, Idaho
marler8997@vandals.uidaho.edu
Hunter S. Snevily
Department of Mathematics, University of Idaho, Moscow, Idaho
snevily.uidaho.edu

Received: 2/6/9, Revised: 9/11/12, Accepted: 4/18/13, Published: 4/25/13

Abstract

Let $S(h, k)$ be the least positive integer such that any 2-coloring of the interval [1, $S(h, k)]$ must admit either (i) a monochromatic solution to $x_{1}+\ldots+x_{h-1}=x_{h}$ with $x_{1}<x_{2}<\ldots<x_{h}$ or (ii) a monochromatic solution to $x_{1}+\ldots+x_{k-1}=x_{k}$ with $x_{1}<x_{2}<\ldots<x_{k}$.

We prove $S(3,3)=9, S(3,4)=16$, and for all $k \geqslant 5$,

$$
S(3, k)= \begin{cases}3 k^{2} / 2-7 k / 2+3 & \text { if } k \equiv 0,1 \quad(\bmod 4) \\ 3 k^{2} / 2-7 k / 2+4 & \text { if } k \equiv 2,3 \quad(\bmod 4)\end{cases}
$$

1. Introduction

Let \mathbb{N} denote the set of positive integers and $[a, b]=\{n \in \mathbb{N}: a \leqslant n \leqslant b\}$. A mapping $\chi:[a, b] \rightarrow[1, t]$ is called a t-coloring of $[a, b]$. Let L_{m} denote the system of inequalities given by

$$
x_{1}+x_{2}+\ldots, x_{m-1}=x_{m}, \quad x_{1}<x_{2}<\cdots<x_{m}
$$

A solution $n_{1}, n_{2}, \ldots, n_{m}$ to L_{m} is monochromatic if $\chi\left(n_{i}\right)=\chi\left(n_{j}\right)$ for $1 \leqslant i, j \leqslant m$. Henceforth, we assume a two-coloring $(t=2)$ of the interval and denote each color by red and blue. Furthermore, a monochromatic solution to L_{m} such that $\chi\left(n_{1}\right)=\chi\left(n_{2}\right)=\ldots=\chi\left(n_{m}\right)=$ red will be called a "red solution," and likewise for a "blue solution." Lastly, we define $S(h, k)$ to be the least positive integer such that every coloring of the interval $[1, S(h, k)]$ by the colors red and blue contains either a red solution to L_{k} or a blue solution to L_{h}.

In the following proofs, we show that $S(3,3)=9, S(3,4)=16$, and for all $k \geqslant 5$,

$$
S(3, k)=\left\{\begin{array}{lll}
3 k^{2} / 2-7 k / 2+3 & \text { if } k \equiv 0,1 & (\bmod 4) \\
3 k^{2} / 2-7 k / 2+4 & \text { if } k \equiv 2,3 & (\bmod 4)
\end{array}\right.
$$

2. The Lower Bound

Lemma 1. (Lower Bound) For $k \geqslant 3$,

$$
S(3, k) \geqslant N=\left\{\begin{array}{ll}
3 k^{2} / 2-7 k / 2+3 & \text { if } k \equiv 0,1 \quad(\bmod 4), \\
3 k^{2} / 2-7 k / 2+4 & \text { if } k \equiv 2,3
\end{array} \quad(\bmod 4) .\right.
$$

Proof. Consider a coloring of $\chi:[1, N-1] \rightarrow\{b l u e$, red $\}$ defined as follows. For $n \in[1, N-1]$, let

$$
\chi(n)= \begin{cases}\text { blue } & \text { if } n \equiv 1 \quad(\bmod 2) \text { and } n \leqslant k(k-1) / 2 \\ \text { blue } & \text { if } n \equiv 0 \quad(\bmod 2) \text { and } n \geqslant k(k-1) \\ \text { red } & \text { otherwise }\end{cases}
$$

We claim this coloring has no blue solution to L_{3} and no red solution to L_{k}.
Suppose $n_{1}+n_{2}=n_{3}$, where $n_{1}<n_{2}<n_{3}$, is a blue solution to L_{3} on the interval $[1, N-1]$. Suppose $n_{2} \equiv 1(\bmod 2)$. Then $n_{1}<n_{2} \leqslant k(k-1) / 2$, which implies $n_{1} \equiv 1(\bmod 2)$ and $n_{3}<k(k-1)$. Since $n_{3}=n_{1}+n_{2} \equiv(1+1)(\bmod 2) \equiv 0$ $(\bmod 2)$, we must have that $n_{3} \geqslant k(k-1)$, which is a contradiction. Therefore, $n_{2} \equiv 0(\bmod 2)$.

Hence, $n_{3}>n_{2} \geqslant k(k-1)$, which implies $n_{3} \equiv 0(\bmod 2)$, which then implies $n_{1} \equiv 0(\bmod 2)$. Therefore, $n_{2}>n_{1} \geqslant k(k-1)$, which implies $n_{3}=n_{1}+n_{2} \geqslant$ $k(k-1)+(k(k-1)+2)>N-1$, another contradiction implying no such blue solution to L_{3} exists.

Next, suppose $n_{1}+n_{2}+\cdots+n_{k-1}=n_{k}$, where $n_{1}<n_{2}<\cdots<n_{k}$, is a red solution to L_{k} on the interval $[1, N-1]$. Let q denote the minimal sum of $k-2$ red numbers. Clearly, $q=\sum_{i=1}^{k-2} 2 i=k^{2}-3 k+2$.

If $n_{k-1} \leqslant k(k-1) / 2$, then $n_{i} \equiv 0(\bmod 2)$ for $i \in[1, k-1]$. This implies $n_{k} \equiv 0(\bmod 2)$, which implies $n_{k}<k(k-1)$, but this is a contradiction since $k(k-1)>n_{k} \geqslant q+2(k-1)=k(k-1)$. Therefore, $n_{k-1}>k(k-1) / 2$.

If $k \equiv 0,1(\bmod 4)$, then $n_{k}>q+k(k-1) / 2=3 k^{2} / 2-7 k / 2+2=N-1$, a contradiction that implies $k \equiv 2,3(\bmod 4)$.

If $n_{k-1}=k(k-1) / 2+1$, then $n_{i} \equiv 0(\bmod 2)$ for all $i \in[1, k-1]$, which implies $n_{k} \equiv 0(\bmod 2)$. Since n_{k} is red, $n_{k}<k(k-1)$, which is a contradiction since $n_{k} \geqslant q+k(k-1) / 2+1$. Therefore, $n_{k-1}>k(k-1) / 2+1$, which implies $n_{k} \geqslant q+k(k-1) / 2+2=3 k^{2} / 2-7 k / 2+4=N$.

3. The Upper Bound

Throughout this section, let p denote the sum of the first k red numbers and let r_{i} and b_{i} denote the $i^{t h}$ red and blue numbers, respectively. Then, $r_{i}<r_{j}$ and $b_{i}<b_{j}$, for all $i<j$.
Lemma 2. For $n \geqslant 3$, if at least $n+1$ numbers in the interval $[1,2 n]$ are colored blue, then the only coloring that avoids a blue solution to L_{3} is given by

$$
\chi(x)= \begin{cases}\text { red } & \text { if } x \in[1, n-1], \\ \text { blue } & \text { if } x \in[n, 2 n] .\end{cases}
$$

Proof. Since the case $n=3$ is trivial, assume $n>3$.
Case 1. $\chi(2 n)=$ red. We proceed via induction on n. For some $n>3$, assume the claim holds for $n-1$. To avoid a blue solution on the interval [1,2(n-1)], we must have $\chi(x)=b l u e$ for all $x \in[(n-1), 2(n-1)]$ and $\chi(x)=$ red for all $x \in[1, n-2]$. Since we need another blue in the interval [$1,2 n$], the number $(2 n-1)$ must be blue, but then $(n-1)+n=(2 n-1)$ is a blue solution to L_{3}.

Case 2. $\chi(2 n)=$ blue. By the pigeonhole principle, $\chi(n)=b l u e$, since otherwise one of the pairs $\{x, 2 n-x\}$ with $1 \leqslant x<n$ would be all blue giving us the blue solution $(x)+(2 n-x)=2 n$. Now suppose $\chi(1)=$ blue, which implies the pair $\{n-1, n+1\}$ is all red. Hence, some other pair $\{x, 2 n-x\}$ with $1 \leqslant x<n-1$, is all blue and we get a contradiction. Therefore, $\chi(1)=r e d$; hence $\chi(2 n-1)=b l u e$, otherwise some other pair $\{x, 2 n-x\}$ with $2 \leqslant x \leqslant n-2$ would be all blue, giving us a contradiction as before. But then we must have $\chi(n-1)=r e d$ since $(n-1)+n=(2 n-1)$; hence $\chi(n+1)=$ blue. But then we must have $\chi(n-2)=$ red since $(n-2)+(n+1)=(2 n-1)$; hence $\chi(n+2)=$ blue. Continuing in this manner, we get the desired coloring.

Corollary 1. To avoid a blue solution to $L_{3}, r_{i} \leqslant 2 i+1$ for all i.
Proof. The claim is easily proven for r_{1} and r_{2}. Suppose $r_{i}>2 i+1$ for some $i \geqslant 3$. This would imply at least $i+1$ numbers are colored blue in the interval $[1,2 i]$. Applying Lemma 2 gives us that $\chi(i)=\chi(i+1)=b l u e$. Since there are $2 i+1-(i-1)=i+2$ blue integers in $[1,2 i+1], \chi(2 i+1)=$ blue as well, but this yields the blue solution $i+(i+1)=2 i+1$.

Corollary 2. There exists at least k integers in the interval $[1, N]$ colored red, that is, p exists.

Proof. If p does not exist, then by Corollary $1, r_{k-1} \leqslant 2 k-1$, which implies that all numbers in $[2 k, N]$ are colored blue, while the Pigeonhole Principle ensures that some number in $[1, k]$ is also colored blue, say $x \in\{1,2, \ldots, k\}$. But then $x+2 k=x+2 k \leqslant N$ is a blue solution for $k \geqslant 4$, a contradiction. The case $k=3$ can be done separately by hand varying this argument and handling several cases.

Corollary 3. Let $i>b_{1}$ and $i \geqslant 3$. To avoid a blue solution to $L_{3}, r_{i} \leqslant 2 i$.
Proof. Suppose $r_{i}>2 i$. Then Corollary 1 implies $r_{i}=2 i+1$. Therefore, the interval $[1,2 i+1]$ must contain exactly $i+1$ blue numbers. Since $i \geqslant 3$, Lemma 2 implies that the interval $[1, i-1]$ is all red, but this contradicts the hypothesis $b_{1}<i$.

Lemma 3. (P Lemma) The following hold:
(i) If $b_{1}=1$, then $p \leqslant k^{2}+k-12+r_{1}+r_{2}+r_{3}$,
(ii) If $1<b_{1} \leqslant k$, then $p \leqslant k^{2}+k+1-b_{1}\left(b_{1}-1\right) / 2$,
(iii) If $b_{1}>k$, then $p=k(k+1) / 2$.

Proof. (i) If $b_{1}=1$, then by Corollary 3

$$
\begin{aligned}
p=r_{1}+r_{2}+r_{3}+\sum_{i=4}^{k} r_{i} & \leqslant r_{1}+r_{2}+r_{3}+\sum_{i=4}^{k} 2 i \\
& =k^{2}+k-12+r_{1}+r_{2}+r_{3}
\end{aligned}
$$

(ii) If $1<b_{1} \leqslant k$, then by Corollaries 1 and 3

$$
\begin{aligned}
p=\sum_{i=1}^{b_{1}-1} r_{i}+r_{b_{1}}+\sum_{i=b_{1}+1}^{k} r_{i} & \leqslant \sum_{i=1}^{b_{1}-1} i+\left(2 b_{1}+1\right)+\sum_{i=b_{1}+1}^{k} r_{i} \\
& \leqslant \sum_{i=1}^{b_{1}-1} i+\left(2 b_{1}+1\right)+\sum_{i=b_{1}+1}^{k} 2 i \\
& =k^{2}+k+1-b_{1}\left(b_{1}-1\right) / 2
\end{aligned}
$$

(iii) If $b_{1}>k$, then $p=\sum_{i=1}^{k} r_{i}=\sum_{i=1}^{k} i=k(k+1) / 2$.

Given a valid colouring, the upper bound for p can be improved by modifying Lemma 3. For example, for $k \geqslant 6$, if $r_{1}=1, b_{1}=2, r_{2}=3$, and $r_{3}=4$, then

$$
p \leqslant k^{2}+k+1-b_{1}\left(b_{1}-1\right) / 2-\left(5-r_{2}\right)-\left(6-r_{3}\right)=k^{2}+k-4
$$

Fact 1. If $k \geqslant 6$, then $k^{2}+k-5 \leqslant N$.
Corollary 4. If $p-r_{j} \leqslant N$ for some $j \in[1, k]$, then to avoid a red solution to L_{k}, $\chi\left(p-r_{i}\right)=$ blue for all $i \in[j, k]$.

Proof. If $\chi\left(p-r_{i}\right)=$ red for some $i \in[j, k]$, then we get the red solution to L_{k}

$$
r_{1}+r_{2}+\ldots+r_{i-1}+r_{i+1}+r_{i+2}+\ldots+r_{k}=p-r_{i}
$$

where $p-r_{i} \leqslant p-r_{j} \leqslant N$ (by hypothesis). Hence, $\chi\left(p-r_{i}\right)=$ blue for all $i \in[j, k]$.

Corollary 5. If $k \geqslant 6$ and $b_{1}>1$, then $p-r_{i} \leqslant N$ for all r_{i}.
Proof. We have $p-r_{i} \leqslant p-1$. In view of Fact 1 , if $p \leqslant k^{2}+k-4$, then $p-r_{i} \leqslant N$ for all r_{i}. If $b_{1}=2$, then modifying Lemma 3, we get the following cases:

$\#$	1	2	3	4	5	6	7	8	9	10	11	12	n s.t. $p \leqslant n$
1.	r_{1}	b_{1}	b_{2}	b_{3}	r_{2}	r_{3}	r_{4}	b_{4}	b_{5}	r_{5}	r_{6}	r_{7}	$k^{2}+k-4$
2.	r_{1}	b_{1}	b_{2}	b_{3}	r_{2}	r_{3}	r_{4}	b_{4}	r_{5}	r_{6}			$k^{2}+k-4$
3.	r_{1}	b_{1}	b_{2}	b_{3}	r_{2}	r_{3}	r_{4}	r_{5}	b_{4}	b_{5}	r_{6}		$k^{2}+k-4$
4.	r_{1}	b_{1}	b_{2}	b_{3}	r_{2}	r_{3}	r_{4}	r_{5}	b_{4}	r_{6}			$k^{2}+k-5$
5.	r_{1}	b_{1}	b_{2}	b_{3}	r_{2}	r_{3}	r_{4}	r_{5}	r_{6}				$k^{2}+k-6$
6.	r_{1}	b_{1}	b_{2}	r_{2}	r_{3}	b_{3}	b_{4}	r_{4}	r_{5}	r_{6}			$k^{2}+k-5$
7.	r_{1}	b_{1}	b_{2}	r_{2}	r_{3}	b_{3}	r_{4}	r_{5}					$k^{2}+k-5$
8.	r_{1}	b_{1}	b_{2}	r_{2}	r_{3}	r_{4}						$k^{2}+k-4$	
9.	r_{1}	b_{1}	r_{2}	b_{2}	b_{3}	r_{3}	r_{4}	b_{4}	r_{5}				$k^{2}+k-4$
10.	r_{1}	b_{1}	r_{2}	b_{2}	b_{3}	r_{3}	r_{4}	r_{5}					$k^{2}+k-5$
11.	r_{1}	b_{1}	r_{2}	b_{2}	r_{3}	r_{4}						$k^{2}+k-5$	
12.	r_{1}	b_{1}	r_{2}	r_{3}									$k^{2}+k-4$

Similarly, if $b_{1}=3$ then modifying Lemma 3, we get the following cases:

$\#$	1	2	3	4	5	6	7	8	9	10	n s.t. $p \leqslant n$
1.	r_{1}	r_{2}	b_{1}	b_{2}	b_{3}	b_{4}	r_{3}	r_{4}	r_{5}	r_{6}	$k^{2}+k-5$
2.	r_{1}	r_{2}	b_{1}	b_{2}	b_{3}	r_{3}	r_{4}				$k^{2}+k-4$
3.	r_{1}	r_{2}	b_{1}	b_{2}	r_{3}						$k^{2}+k-4$
4.	r_{1}	r_{2}	b_{1}	r_{3}							$k^{2}+k-5$

For $4 \leqslant b_{1} \leqslant k$, by Lemma 3 we have $p \leqslant k^{2}+k-5$. For $b_{1}>k, p=k(k+1) / 2$ by part (iii) of Lemma 3 . For $k \geqslant 6$ and $b_{1}>1$, we have $p \leqslant k^{2}+k-4$, and hence,
using Fact 1

$$
p-r_{i} \leqslant p-1 \leqslant\left(k^{2}+k-4\right)-1=k^{2}+k-5 \leqslant N
$$

for all r_{i} with $i \in[1, k]$.
Remark 1. Combining Corollaries 4 and 5, we see that, for $k \geqslant 6$ and $b_{1}>1$, $\chi\left(p-r_{j}\right)=$ blue for all $j \in[1, k]$.

Lemma 4. (Upper Bound) For $k \geqslant 6$,

$$
S(3, k) \leqslant N= \begin{cases}3 k^{2} / 2-7 k / 2+3 & \text { if } k \equiv 0,1 \quad(\bmod 4) \\ 3 k^{2} / 2-7 k / 2+4 & \text { if } k \equiv 2,3 \quad(\bmod 4)\end{cases}
$$

Proof. Suppose to the contrary that N is not an upper bound for $k \geqslant 6$. This occurs if and only if there exists a coloring of $[1, N]$ without a blue solution to L_{3} and a red solution to L_{k}. Consider the following two cases:
(1) $\chi(1)=$ blue (with $k \geqslant 6$). Suppose $\chi(2)=$ blue. Then $r_{1}=3$ and $r_{2} \leqslant 5$ (by Corollary 1) to avoid blue solutions $1+2=3$ and $1+4=5$, respectively. Therefore, by Lemma 3 and Corollary 3, we have

$$
p \leqslant k^{2}+k-4+r_{3} \leqslant k^{2}+k+2,
$$

which implies (by Fact 1) that $p-r_{i} \leqslant k^{2}+k-5 \leqslant N$ for $r_{i} \geqslant 7$.
If $\chi(x)=$ blue for some $x \in[6,7]$, then this implies $\chi(x+1)=\chi(x+2)=$ red to avoid the blue solutions $1+x=x+1$ and $2+x=x+2$. Corollary 4 implies $\chi(p-x-1)=\chi(p-x-2)=$ blue, and then $1+(p-x-2)=p-x-1$ is a blue solution since $p-x-2 \geqslant k(k+1) / 2-9 \geqslant 12>1$. Therefore, $\chi(6)=\chi(7)=$ red. Considering the present information, it can be shown that $p-r_{i} \leqslant N$ for $r_{i} \geqslant 6$. If $r_{2}=4$, then $p \leqslant k^{2}+k+1$, otherwise 7 being red means that the estimate for r_{4} can be improved by one. Now, Corollary 4 gives $\chi(p-6)=\chi(p-7)=$ blue. Thus $1+(p-7)=p-6$ is a blue solution in view of $p-8 \geqslant k(k+1) / 2-8 \geqslant 13>1$. So we conclude that $\chi(2)=$ red.

If $b_{2} \geqslant 5$, then $r_{2}=3, r_{3}=4$, and, by Lemma 3 and Fact 1 ,

$$
p-r_{1} \leqslant k^{2}+k-12+r_{2}+r_{3}=k^{2}+k-5 \leqslant N
$$

which leads to a contradiction since Corollary 4 gives us the blue solution $1+(p-4)=p-3$.

If $b_{2}=4$, then $r_{2}=3$ and $r_{3}=5$, and by Lemma 3 and Fact 1

$$
p-r_{2} \leqslant k^{2}+k-12+r_{1}+r_{3}=k^{2}+k-5 \leqslant N
$$

By Corollary $4, \chi(p-3)=\chi(p-5)=$ blue. To avoid a blue solution $1+(p-6)=$ $p-5$, we need $\chi(p-6)=r e d$, but by Corollary 4 , this implies $\chi(6)=$ blue.

In that case, to avoid the blue solution $1+6=7$, we need $\chi(7)=$ red, but that yields the blue solution $4+(p-7)=p-3$.

Now, suppose $b_{3}>r_{3}$. If $b_{2}=3$, then $r_{2}=4, r_{3}=5$ (since $b_{3}>r_{3}$), and by Lemma 3 and Fact $1, p-r_{2} \leqslant k^{2}+k-5 \leqslant N$, but that yields the blue solution $1+(p-5)=p-4$ (by Corollary 4).

Therefore, $b_{3}<r_{3}$, which implies the interval $[3,5]$ has two blue numbers. Since these blue numbers cannot be adjacent, the only valid coloring is $\chi(3)=$ $\chi(5)=$ blue and $\chi(4)=\chi(6)=$ red. With this coloring, Corollary 1, Lemma 3, Corollary 4, and Fact 1 imply that $\chi\left(p-r_{i}\right)=b l u e$, for $i \in[3, k]$.

To avoid the blue solution $1+\left(p-r_{i+1}\right)=p-r_{i}$, we must have $r_{i+1}>r_{i}+1$, that is, $\chi\left(r_{i}+1\right)=$ blue, for all $i \in[3, k-1]$. Thus $\chi(7)=$ blue. Also, to avoid the blue solution $1+b_{i}=b_{i+1}$, we must have $\chi\left(b_{i}+1\right)=$ red, for all $i>1$. Thus $\chi(8)=$ red, which implies $\chi(9)=$ blue, which implies $\chi(10)=$ red, and continuing in this manner, we get that, for all $x \in[1,2 k]$,

$$
\chi(x)=\left\{\begin{array}{lll}
\text { red } & \text { if } x \equiv 0 & (\bmod 2), \\
\text { blue } & \text { if } x \equiv 1 & (\bmod 2)
\end{array}\right.
$$

Furthermore, for all $x \in[1,2 k-3]$ with $\chi(x)=$ blue, we must have $\chi(x+$ $(2 k-1))=r e d$, otherwise we get the blue solution $x+(2 k-1)=x+2 k-1$. This implies $\chi(y)=$ red for all $y \in[2 k, 4 k-4]$ with $y \equiv 0(\bmod 2)$.

Using the block of even red numbers, we can extend the blue interval. Clearly, the sum of any $k-1$ red numbers which is less than N must be blue. The maximal sum of $k-1$ red numbers from the block is $\sum_{i=0}^{k-2}((4 k-4)-2 i)=$ $3 k^{2}-5 k+2$, which is clearly greater than N. Furthermore, the minimal sum of $k-1$ red numbers from the block is $\sum_{i=1}^{k-1} 2 i=k^{2}-k$. Since we can always replace a red number in the minimal sum by an adjacent even number which is also red, and the maximal sum is greater than N, we get that all even numbers greater than or equal to $k^{2}-k$ must be blue. This yields the extended coloring

$$
\chi(x)=\left\{\begin{array}{lll}
\text { red } & \text { if } x \equiv 0 & (\bmod 2) \text { and } x \in[2,4 k-4] \\
\text { blue } & \text { if } x \equiv 1 & (\bmod 2) \text { and } x \in[1,2 k-1] \\
\text { blue } & \text { if } x \equiv 0 & (\bmod 2) \text { and } x \in\left[k^{2}-k, N\right]
\end{array}\right.
$$

It can easily be shown that $N \equiv 1(\bmod 2)$, implying $\chi(N-1)=$ blue. Since $\chi(1)=\chi(3)=$ blue, we must have $\chi(N)=\chi(N-2)=\chi(N-4)=$ red. Let q be the sum of first $k-2$ red numbers. Then $q=k^{2}-3 k+2$. To avoid a red solution to L_{k}, we must have

$$
\chi(N-q)=\chi(N-2-q)=\chi(N-4-q)=b l u e
$$

since $N-4-q>r_{k-2}=2(k-2)$.
If $k \equiv 0,1(\bmod 4)$, then we get the blue solution
$(N-q)+(N-2-q)=2\left(3 k^{2} / 2-7 k / 2+3\right)-2\left(k^{2}-3 k+2\right)-2=k^{2}-k$.
Likewise, if $k \equiv 2,3(\bmod 4)$, then we get the blue solution

$$
(N-q)+(N-4-q)=2\left(3 k^{2} / 2-7 k / 2+4\right)-2\left(k^{2}-3 k+2\right)-4=k^{2}-k
$$

Therefore, $\chi(1) \neq$ blue.
(2) $\chi(1)=$ red (with $k \geqslant 6$). Since $k \geqslant 6$ and $b_{1}>1$, by Remark 1 , we have $\chi\left(p-r_{i}\right)=$ blue for all $i \in[1, k]$. Let a be the minimum red number such that $\chi(a-1)=b l u e$. It can be shown that a exists. Suppose a does not exist, that is, x (say) red numbers are followed by $N-x$ blue numbers. If $x \geqslant k(k-1) / 2$, then we have a red solution $1+2+\cdots+(k-1)=k(k-1) / 2$, or else we have a blue solution $k(k-1) / 2+(k(k-1) / 2+1)=k^{2}-k+1 \leqslant N$.

If $a<r_{k}$, then $\chi(p-a)=b l u e$, which gives us a potential blue solution $(a-1)+(p-a)=p-1$. In order for it to be a valid solution, we must have that $a-1 \neq p-a$. However, since $a=r_{i}$ for some $i \in[1, k]$, this has already been proven in Corollary $4\left(p-r_{i}>r_{k}\right.$ for all $\left.i \in[1, k]\right)$.

The argument of the previous paragraph yields a contradiction unless $p-$ $r_{k}=p-a=a-1$, in which case $k+(k+1)=2 k+1 \leqslant \sum_{i=1}^{k-1} i=p-r_{k}=$ $p-a=a-1$, from which it is clear in view of the definition of a that $k+(k+1)=2 k+1$ is a blue solution.

Suppose $b_{1} \leqslant 3 k / 2$. To avoid the blue solution, $b_{1}+\left(b_{1}+1\right)=2 b_{1}+1$, either $b_{1}+1$ or $2 b_{1}+1$ must be red, which implies $a \leqslant 2 b_{1}+1 \leqslant 3 k+1$. Now consider,

$$
\begin{aligned}
\left(p-r_{k}\right)-1+a & =\sum_{i=1}^{k-1} i+(a-1)=k(k-1) / 2+(a-1) \\
& \leqslant k(k-1) / 2+(3 k+1)-1=\left(k^{2}+5 k\right) / 2 \leqslant N
\end{aligned}
$$

Since $\chi(a)=r e d$, to avoid the red solution $a+\sum_{i=2}^{k-1} i=\left(p-r_{k}\right)-1+a$, we have $\chi\left(p-r_{k}+a-1\right)=$ blue, which yields the potential blue solution

$$
\left(p-r_{k}\right)+(a-1)=\left(p-r_{k}\right)-1+a .
$$

To be a valid solution, we must have $a-1 \neq p-r_{k}$. If $a-1=p-r_{k}$, then $p-r_{k}+1=a$, which implies $\chi\left(p-r_{k}+1\right)=r e d$. However, this is a contradiction since $\chi\left(p-r_{k-1}\right)=$ blue and $r_{k-1}=r_{k}-1$.

Therefore, $b_{1}>3 k / 2$, which implies $\chi(x)=$ red for all $x \in[1,3 k / 2]$. Using this red interval, we can create another blue interval. The minimum sum of
$k-1$ red numbers in this interval is $k(k-1) / 2$. If k is even, then the maximal sum is $k^{2}-1$, and if k is odd, then since only integers are colored, we only know that the interval $[1,(3 k-1) / 2]$ is colored all red, in which case, the maximal sum of $k-1$ red integers is $k^{2}-k / 2-1 / 2$.

Since every integer in this new interval can be represented by a sum of $k-1$ red numbers, the interval $\left[k(k-1) / 2, k^{2}-k / 2-1 / 2\right]$ must be colored blue to avoid a red solution. Since $k^{2}-k+1$ is in the blue interval, we have the blue solution $k(k-1) / 2+(k(k-1) / 2+1)=k^{2}-k+1$.

Hence, for $k \geqslant 6$, every coloring of $[1, N]$ has a blue solution to L_{3} or a red solution to L_{k}.

4. The Cases $3 \leqslant k \leqslant 5$

In this section, we formally prove the exact values of $S(3,3)$ and $S(3,4)$, and provide the computer proof for the exact value of $S(3,5)$.

Lemma 5. $S(3,3)=9$.
Proof. Let $\chi(1)=\chi(2)=\chi(4)=\chi(8)=$ red and $\chi(3)=\chi(5)=\chi(6)=\chi(7)=$ blue. This coloring has no red or blue solution to L_{3}. Therefore, $S(3,3)>8$.

Suppose to the contrary that $S(3,3)>9$. Without loss of generality, let blue be the color used 5 or more times from 1 to 9 . If $\chi(9)=$ red, then Lemma 2 gives us the red solution $1+2=3$. Therefore, $\chi(9)=b l u e$. We are left with two cases.
Case 1. $\chi(8)=$ blue. To avoid the blue solution $1+8=9$, we have $\chi(1)=$ red. If $\chi(5)=$ blue, then we must have $\chi(3)=$ red (to avoid the blue solution $3+5=8$) and $\chi(4)=$ red (to avoid the blue solution $4+5=9$). But then we have the red solution $1+3=4$. Therefore, $\chi(5)=r e d$. To avoid the red solutions $1+4=5$ and $1+5=6$, we must have $\chi(4)=\chi(6)=$ blue. Then $\chi(2)=$ red (to avoid the blue solution $2+4=6$), which implies $\chi(3)=$ blue (to avoid the red solution $1+2=3$), which gives the blue solution $3+6=9$.

Case 2. $\chi(8)=$ red. If $\chi(7)=$ red, then Lemma 2 gives us the red solution $1+7=8$. Therefore, $\chi(7)=$ blue, which leads to a contradiction after a chain of implications:
$\chi(2)=$ red (to avoid the blue solution $2+7=9$),
$\chi(6)=$ blue (to avoid the red solution $2+6=8$),
$\chi(1)=$ red (to avoid the blue solution $1+6=7$),
$\chi(3)=$ blue (to avoid the red solution $1+2=3$),
and hence the blue solution $3+6=9$.
Lemma 6. $S(3,4)=16$.

Proof. For all $x \in[1,15]$, let $x \in[6,12]$ be blue and x be red otherwise. This coloring has no blue solution to L_{3} and no red solution to L_{4}. Therefore, $S(3,4)>15$.

Suppose to the contrary that $S(3,4)>16$. Then suppose $\chi(1)=$ blue. Corollary 3 implies $r_{i} \leqslant 2 i$, for all $i \geqslant 3$.

Since $r_{1}+r_{2}+r_{4} \leqslant 3+5+8=16$, we have $\chi\left(r_{1}+r_{2}+r_{3}\right)=\chi\left(r_{1}+r_{2}+r_{4}\right)=$ blue. If $r_{4}>r_{3}+2$, we get the blue solution $1+\left(r_{3}+1\right)=r_{3}+2$, and if $r_{4}=r_{3}+1$, we get the blue solution $1+\left(r_{1}+r_{2}+r_{3}\right)=r_{1}+r_{2}+r_{4}$. Hence, $r_{4}=r_{3}+2$. To avoid the blue solution $2+\left(r_{1}+r_{2}+r_{3}\right)=r_{1}+r_{2}+r_{4}$, we must have $\chi(2)=r e d$, that is, $r_{1}=2$, which implies $r_{1}+r_{3}+r_{4} \leqslant 2+6+8=16$. Thus $\chi\left(r_{1}+r_{3}+r_{4}\right)=$ blue.

Applying the same reasoning to r_{3} as we did to r_{4}, we get that $r_{3}=r_{2}+2$. Then to avoid the blue solution $4+\left(r_{1}+r_{2}+r_{3}\right)=r_{1}+r_{3}+r_{4}$, we must have $\chi(4)=$ red. If $\chi(3)=$ red, then $r_{2}=3$, and so $r_{3}=4$. But $r_{3} \neq r_{2}+1$. Therefore, $\chi(3)=$ blue, which implies $r_{2}=4$, and so $r_{3}=6$ and $r_{4}=8$. Then we must have $\chi(5)=\chi(7)=\chi(12)=$ blue, but then we get the blue solution $5+7=12$. Therefore, $\chi(1)=$ red.

Corollary 1 gives us that $r_{2}=2,3,4$, or 5 . We handle these four cases separately.
Case 1. $r_{2}=5$. This implies $\chi(2)=\chi(3)=\chi(4)=$ blue. Therefore, $\chi(6)=$ red and $\chi(7)=$ red to avoid the blue solutions $2+4=6$ and $3+4=7$, respectively. Hence, $\chi(12)=$ blue and $\chi(14)=$ blue to avoid the red solutions $1+5+6=12$ and $1+6+7=14$, respectively. But, then we get the blue solution $2+12=14$.

Case 2. $\quad r_{2}=4$. This implies $\chi(2)=\chi(3)=$ blue. Therefore, $\chi(5)=$ red (to avoid the blue solution $2+3=5$), which implies $\chi(10)=$ blue (to avoid the red solution $1+4+5=10$). Therefore, $\chi(7)=$ red and $\chi(12)=$ red to avoid the blue solutions $3+7=10$ and $2+10=12$, respectively. But then we get the red solution $1+4+7=12$.

Case 3. $r_{2}=3$. This implies $\chi(2)=b l u e$. If $r_{4}=9$, then Lemma 2 implies $\chi(2)=$ red. Thus $r_{4} \leqslant 8$.

If $r_{3} \geqslant 6$, then $\chi(4)=\chi(5)=$ blue, which implies $r_{3}=6$ (to avoid the blue solution $2+4=6$). Therefore, $\chi(7)=$ red (to avoid the blue solution $2+5=7$), which implies $\chi(14)=$ blue (to avoid the red solution $1+6+7=14$) and $\chi(16)=$ blue (to avoid the red solution $3+6+7=16$). But then we get the blue solution $2+14=16$. Therefore, $r_{3} \leqslant 5$.

This implies $3+r_{3}+r_{4} \leqslant 16$, which gives us that $\chi\left(1+r_{3}+r_{4}\right)=\chi\left(3+r_{3}+r_{4}\right)=$ blue, but then we get the blue solution $2+\left(1+r_{3}+r_{4}\right)=3+r_{3}+r_{4}$.

Case 4. $r_{2}=2$. Suppose $\chi(7)=$ red. Then $\chi(4)=$ blue (to avoid the red solution $1+2+4=7$) and $\chi(10)=$ blue (to avoid the red solution $1+2+7=10$). This implies $\chi(6)=$ red and $\chi(14)=$ red to avoid the blue solutions $4+6=10$ and $4+10=14$, respectively. But then we get the red solution $1+6+7=14$. Therefore, $\chi(7)=$ blue.

Suppose $\chi(3)=$ blue. Then $\chi(4)=$ red and $\chi(10)=$ red to avoid the blue solutions $3+4=7$ and $3+7=10$, respectively. This implies $\chi(13)=$ blue and $\chi(16)=$ blue to avoid the red solutions $1+2+10=13$ and $2+4+10=16$, respectively. Therefore, $\chi(3)=r e d$, which leads to a contradiction after a chain of implications:
$\chi(6)=$ blue (to avoid the red solution $1+2+3=6$),
$\chi(13)=$ red (to avoid the blue solution $6+7=13$),
$\chi(9)=$ blue (to avoid the red solution $1+3+9=13$),
$\chi(16)=$ red (to avoid the blue solution $7+9=16$),
and hence the red solution $1+2+13=16$.

4.1. Computer Assisted Proof for $S(3,5)$

Let us write a coloring of $[1, n]$ as a bit-string of length n where the i-th bit is zero if $\chi(i)=$ blue, and one if $\chi(i)=$ red.

4.1.1. $\mathrm{S}(3,5)=23$

By Lemma 1, the lower bound is $S(3,5)>22$. We consider all of the ten colorings of $[1,22]$ (obtained by computer search) without a blue solution to L_{3} and a red solution to L_{5}.

1. For each of the following four colorings

0010110111111111111110, 0010110111111011111110,

0010110111111011011110 , and
0010110111101111011110,
if $\chi(23)=$ blue, then we have a blue solution $1+22=23$ to L_{3}; and
if $\chi(23)=$ red, then we have a red solution $3+5+6+9=23$ to L_{5}.
2. For each of the following four colorings

0010111011111111111101,
0010111011111110111101,
0010111011111101111101 , and
0010111011111011111101,
if $\chi(23)=$ blue, then we have a blue solution $2+21=23$ to L_{3}; and
if $\chi(23)=r e d$, then we have a red solution $3+5+6+9=23$ to L_{5}.
3. For each of the following two colorings

0101010101111111101010 , and
0101010101111111111010,
if $\chi(23)=$ blue, then we have a blue solution $1+22=23$ to L_{3}; and
if $\chi(23)=$ red, then we have a red solution $2+4+6+11=23$ to L_{5}.
Therefore, $S(3,5)=23$.

Acknowledgements We sincerely would like to thank the anonymous referee for the helpful comments and detailed list of suggestions on how to improve this paper. We would also like to thank the Managing Editor Bruce Landman for his patience as the paper went several rounds during the review process.

References

[1] Bialostocki, A. and Schaal, D. On a variation of Schur numbers, Graphs Combin., 16(2) (2000), 139-147.
[2] Landman, B. and Robertson, A. Ramsey Theory on the Integers, Student mathematical library, American Mathematical Society, Providence, RI, 2004.
[3] Martinelli, B. and Schaal, D. On generalized Schur numbers for $x_{1}+x_{2}+c=k x_{3}$, Ars Combin. 85 (2007), 33-42.

