

INTEGERS 13 (2013)

ON q-ANALOG OF WOLSTENHOLME TYPE CONGRUENCES FOR MULTIPLE HARMONIC SUMS

Jianqiang Zhao Department of Mathematics, Eckerd College, St. Petersburg, Florida zhaoj8888@gmail.com

Received: 9/25/12, Accepted: 4/20/13, Published: 4/25/13

Abstract

Multiple harmonic sums are iterated generalizations of harmonic sums. Recently Dilcher has considered congruences involving q-analogs of these sums in depth one. In this paper we shall study the homogeneous case for arbitrary depth by using generating functions and shuffle relations of the q-analog of multiple harmonic sums. At the end, we also consider some non-homogeneous cases.

1. Introduction

In [8] Shi and Pan extended Andrews' result [1] on the q-analog of Wolstenholme Theorem to the following two cases: for all prime $p \ge 5$

$$\sum_{j=1}^{p-1} \frac{1}{[j]_q} \equiv \frac{p-1}{2} (1-q) + \frac{p^2 - 1}{24} (1-q)^2 [p]_q \pmod{[p]_q^2},\tag{1}$$

$$\sum_{j=1}^{p-1} \frac{1}{[j]_q^2} \equiv -\frac{(p-1)(p-5)}{12} (1-q)^2 \pmod{[p]_q},\tag{2}$$

where $[n]_q = (1 - q^n)/(1 - q)$ for any $n \in \mathbb{N}$ and $q \neq 1$. This type of congruences is considered in the polynomial ring $\mathbb{Z}[q]$ throughout this paper. Notice that the modulus $[p]_q$ is an irreducible polynomial in q when p is a prime. In [3] Dilcher generalized the above two congruences further to sums of the form $\sum_{j=1}^{p-1} \frac{1}{[j]_q^n}$ and $\sum_{j=1}^{p-1} \frac{q^n}{[j]_q^n}$ for all positive integers n in terms of certain determinants of binomial coefficients. However, his modulus is always $[p]_q$. He also expressed these congruences using Bernoulli numbers, Bernoulli numbers of the second kind, and Stirling numbers of the first kind, which we briefly recall now.

The well-known Bernoulli numbers are defined by the following generating series:

$$\frac{x}{e^x - 1} = \sum_{n=0}^{\infty} B_n \frac{x^n}{n!} = 1 - \frac{1}{2} \frac{x}{1!} + \frac{1}{6} \frac{x^2}{2!} - \frac{1}{30} \frac{x^4}{4!} + \cdots$$

#A23

INTEGERS: 13 (2013)

On the other hand, the Bernoulli numbers of the second kind are defined by the power series (cf. [7, p. 114]).

$$\frac{x}{\log(1+x)} = \sum_{n=0}^{\infty} b_n \frac{x^n}{n!} = 1 + \frac{1}{2} \frac{x}{1!} - \frac{1}{6} \frac{x^2}{2!} + \frac{1}{4} \frac{x^3}{3!} - \frac{19}{24} \frac{x^4}{4!} + \cdots$$

This is a little different from the definition of \tilde{b}_n in [3], which is changed to b_n later in the same paper. Finally, the Stirling numbers of the first kind s(n, j) are defined by

$$x(x-1)(x-2)\cdots(x-n+1) = \sum_{j=0}^{n} s(n,j)x^{j}.$$

Define

$$K_n(p) := (-1)^{n-1} \frac{b_n}{n!} - \frac{(-1)^n}{(n-1)!} \sum_{j=1}^{[n/2]} \frac{B_{2j}}{2j} s(n-1, 2j-1) p^{2j}.$$
 (3)

By [3, Thm. 1, (6.5) and Thm. 4] and [4, Thm. 3.1] one gets:

Theorem 1.1. If p > 3 is a prime, then for all integers n > 1 we have

$$\sum_{j=1}^{p-1} \frac{q^j}{[j]_q^n} \equiv K_n(p)(1-q)^n \pmod{[p]_q}.$$

We will need the following easy generalization of this theorem.

Theorem 1.2. If p > 3 is a prime, then for every integer $n > t \ge 1$ we have

$$\sum_{j=1}^{p-1} \frac{q^{tj}}{[j]_q^n} \equiv (1-q)^n \sum_{i=0}^{t-1} \binom{t-1}{i} (-1)^i K_{n-i}(p) \pmod{[p]_q}.$$
 (4)

Moreover,

$$\sum_{j=1}^{p-1} \frac{1}{[j]_q^n} \equiv (1-q)^n \left(\frac{p-1}{2} + \sum_{j=2}^n K_j(p)\right) \pmod{[p]_q}.$$
 (5)

Proof. If t > 1 it is clear that

$$q^{tj} = q^j \left(1 - (1 - q^j)\right)^{t-1} = q^j \sum_{i=0}^{t-1} \binom{t-1}{i} (-1)^i (1 - q^j)^i.$$

So (4) follows from Theorem 1.1 immediately. Congruence (5) is a variation of [3, (5.11)].

•

All the sums in Theorem 1.1 and 1.2 are special cases of the q-analog of multiple harmonic sums. The congruence properties of the classical multiple harmonic sums (MHS for short) are systematically investigated in [10]. In this paper we shall study their q-analogs which are natural generalizations of the congruences obtained by Shi and Pan [8] and Dilcher [3].

Similar to its classical case (cf. [10]) a q-analog of multiple harmonic sum (q-MHS for short) is defined as follows. For $\mathbf{s} := (s_1, \ldots, s_\ell) \in \mathbb{N}^\ell$, $\mathbf{t} := (t_1, \ldots, t_\ell) \in \mathbb{N}^\ell$ and $n \in \mathbb{Z}_{>0}$ set

$$H_{q}^{(\mathbf{t})}(\mathbf{s};n) := \sum_{1 \le k_{1} < \dots < k_{\ell} \le n} \frac{q^{k_{1}t_{1} + \dots + k_{\ell}t_{\ell}}}{[k_{1}]_{q}^{s_{1}} \cdots [k_{\ell}]_{q}^{s_{\ell}}}, \quad H_{q}^{*(\mathbf{t})}(\mathbf{s};n) = H_{q}^{(\mathbf{t})}(\mathbf{s};n)/(1-q)^{w(\mathbf{s})},$$
(6)

where $w(\mathbf{s}) := s_1 + \cdots + s_\ell$ is the *weight*, $\ell(\mathbf{s}) := \ell$ the *depth* and **t** the *modifier*. For trivial modifier we set

$$H_q(\mathbf{s};n) := H_q^{(0,\dots,0)}(\mathbf{s};n), \qquad H_q^*(\mathbf{s};n) = H_q(\mathbf{s};n)/(1-q)^{w(\mathbf{s})}.$$

Note that in [3] $\tilde{H}_q(s; p-1) := H_q^{(1)}(s; p-1)$ are studied in some detail and are related to $H_q(s; p-1)$. Also note that $H_q^{(s_1-1,\ldots,s_\ell-1)}(\mathbf{s}; n)$ are the partial sums of the most convenient form of q-multiple zeta functions (see [9]).

In this paper we mainly consider q-MHS with the trivial modifier. By convention we set $H_q^{(\mathbf{t})}(\mathbf{s};r) = 0$ for $r = 0, \ldots, \ell(\mathbf{s}) - 1$, and $H_q^{(\mathbf{t})}(\emptyset;n) = 1$. To save space, for an ordered set (e_1, \ldots, e_t) we denote by $\{e_1, \ldots, e_t\}^d$ the ordered set formed by repeating $(e_1, \ldots, e_t) d$ times. For example, $H_q(\{s\}^{\ell}; n)$ will be called a *homogeneous* sum.

Throughout the paper, we use short-hand $H_q(\mathbf{s})$ to denote $H_q(\mathbf{s}; p-1)$ for some fixed prime p.

2. Homogeneous q-MHS

It is extremely beneficial to study the so-called stuffle (or quasi-shuffle) relations among MHS (see, for e.g., [10]). The same mechanism works equally well for q-MHS.

Recall that for any two ordered sets (r_1, \ldots, r_t) and (r_{t+1}, \ldots, r_n) the shuffle operation is defined by

Shfl
$$((r_1, \dots, r_t), (r_{t+1}, \dots, r_n)) := \bigcup_{\substack{\sigma \text{ permutes } \{1, \dots, n\}, \\ \sigma^{-1}(1) < \dots < \sigma^{-1}(t), \\ \sigma^{-1}(t+1) < \dots < \sigma^{-1}(n)}} (r_{\sigma(1)}, \dots, r_{\sigma(n)}).$$

Fix a positive integer s. For any $k = 1, \ldots, \ell - 1$, by stuffle relation we have

$$H_{q}^{*}((\ell-k)s) \cdot H_{q}^{*}(\{s\}^{k}) = \sum_{\mathbf{s}\in \text{Shfl}} \left(\{(\ell-k)s\}, \{s\}^{k} \right) H_{q}^{*}(\mathbf{s}) + \sum_{\mathbf{s}\in \text{Shfl}} \left(\{(\ell-k+1)s\}, \{s\}^{k-1} \right) H_{q}^{*}(\mathbf{s}).$$

INTEGERS: 13 (2013)

Applying $\sum_{k=1}^{\ell-1} (-1)^{\ell-k-1}$ on both sides we get

$$H_{q}^{*}(\{s\}^{\ell}) = \frac{1}{\ell} \sum_{k=0}^{\ell-1} (-1)^{\ell-k-1} H_{q}^{*}((\ell-k)s) \cdot H_{q}^{*}(\{s\}^{k}).$$
(7)

Theorem 2.1. Let s be a positive integer and let $\eta_s = \exp(2\pi\sqrt{-1}/s)$ be the sth primitive root of unity. Then

$$\sum_{\ell=0}^{\infty} H_q^* \left(\{s\}^\ell \right) x^\ell \equiv \frac{(-1)^s}{p^s x} \prod_{n=0}^{s-1} \left(1 - (1 - \eta_s^n (-x)^{1/s})^p \right) \pmod{[p]_q}.$$

Proof. Let $\zeta = \exp(2\pi\sqrt{-1}/p)$ be the primitive *p*th root of unity and set

$$P_n = \sum_{j=1}^{p-1} \frac{1}{(1-\zeta^j)^n}.$$
(8)

It is easy to see that $H_q^*(n) \equiv P_n \pmod{[p]_q}$. By using partial fractions Dilcher [4, (4.2)] obtained essentially the following generating function of P_n :

$$g(x) := \sum_{n=0}^{\infty} P_n x^n = -\frac{px(x-1)^{p-1}}{1-(1-x)^p}.$$
(9)

Let $a_{\ell} = H_q^*(\{s\}^{\ell})$ for all $\ell \ge 0$. Let $w(x) = \sum_{\ell=0}^{\infty} a_{\ell} x^{\ell}$ be its the generating function. By (7) we get

$$w(x) = \sum_{\ell=0}^{\infty} a_{\ell} x^{\ell} \equiv 1 + \sum_{\ell=1}^{\infty} \frac{1}{\ell} \sum_{k=0}^{\ell-1} (-1)^{\ell-k-1} P_{(\ell-k)s} a_k x^{\ell} \pmod{[p]_q}.$$

Differentiating both sides and changing index $\ell \to \ell + 1$ we get, modulo $[p]_q$,

$$w'(x) \equiv \sum_{\ell=0}^{\infty} \sum_{k=0}^{\ell} (-1)^{\ell-k} P_{(\ell-k+1)s} a_k x^{\ell} \equiv \sum_{k=0}^{\infty} \sum_{\ell=k}^{\infty} (-1)^{\ell-k} P_{(\ell-k+1)s} a_k x^{\ell}.$$

Changing index $\ell \to \ell + k$ and then exchanging the order of summation we get

$$w'(x) \equiv w(x) \sum_{\ell=0}^{\infty} P_{(\ell+1)s}(-x)^{\ell} \equiv \frac{w(x)}{-x} \left(\sum_{\ell=0}^{\infty} P_{\ell s}(-x)^{\ell} + 1 \right)$$
$$\equiv \frac{w(x)}{-sx} \left(s + \sum_{n=0}^{s-1} \sum_{\ell=0}^{\infty} P_{\ell}(\eta_s^n(-x)^{1/s})^{\ell} \right)$$
$$\equiv \frac{w(x)}{-sx} \left(s + \sum_{n=0}^{s-1} g(\eta_s^n(-x)^{1/s}) \right)$$
$$\equiv \frac{w(x)}{-sx} \left(s - \sum_{n=0}^{s-1} \frac{p\eta^n(-x)^{1/s}(\eta^n(-x)^{1/s} - 1)^{p-1}}{1 - (1 - \eta_s^n(-x)^{1/s})^p} \right).$$

Here $\eta_s = \exp(2\pi\sqrt{-1}/s)$ is the *s*th primitive root of unity. Thus

$$(\ln w(x))' = \left(-(\ln x)' + \sum_{n=0}^{s-1} \frac{(1 - (1 - \eta^n (-x)^{1/s})^p)'}{1 - (1 - \eta^n (-x)^{1/s})^p} \right).$$

Therefore by comparing the constant term we get

$$w(x) \equiv \frac{(-1)^s}{p^s x} \prod_{n=0}^{s-1} \left(1 - (1 - \eta_s^n (-x)^{1/s})^p \right) \pmod{[p]_q}$$

as desired.

Corollary 2.2. For every positive integer l < p we have

$$H_q(\{1\}^\ell) \equiv \frac{1}{\ell+1} \binom{p-1}{\ell} \cdot (1-q)^\ell \pmod{[p]_q}.$$

Proof. By the theorem we get

$$\begin{split} \sum_{\ell=0}^{\infty} H_q^* (\{1\}^\ell) x^\ell &\equiv \frac{(1+x)^p - 1}{px} \\ &\equiv \frac{1}{px} \sum_{\ell=0}^{\infty} \binom{p}{\ell+1} x^{\ell+1} \equiv \sum_{\ell=0}^{\infty} \frac{1}{\ell+1} \binom{p-1}{\ell} x^\ell \pmod{[p]_q}. \end{split}$$

The corollary follows immediately.

Corollary 2.3. For every positive integer l < p we have

$$H_q(\{2\}^\ell) \equiv (-1)^\ell \frac{2 \cdot \ell!}{(2\ell+2)!} \binom{p-1}{\ell} \cdot F_{2,\ell}(p) \cdot (1-q)^{2\ell} \pmod{[p]_q},$$

where $F_{2,\ell}(p)$ is a monic polynomial in p of degree ℓ .

Proof. By Theorem 2.1 we have modulo $[p]_q$

$$\begin{split} \sum_{\ell=0}^{\infty} H_q^* \left(\{2\}^\ell\right) x^\ell &\equiv \frac{1}{p^2 x} \left(1 - (1 - \sqrt{-1}\sqrt{x})^p\right) \left(1 - (1 + \sqrt{-1}\sqrt{x})^p\right) \\ &\equiv \frac{1}{p^2 x} \left| \sum_{j=1}^{(p-1)/2} \binom{p}{2j} (-1)^j x^j + \sqrt{-1}\sqrt{x} \sum_{j=0}^{(p-1)/2} \binom{p}{2j+1} (-1)^j x^j \right|^2, \end{split}$$

which easily yields

$$H_q^*(\{2\}^\ell) \equiv \frac{(-1)^\ell}{p^2} \left\{ \sum_{\substack{j+k=\ell\\ 0 \le j, k < p/2}} \binom{p}{2j+1} \binom{p}{2k+1} - \sum_{\substack{j+k=\ell+1\\ 1 \le j, k < p/2}} \binom{p}{2j} \binom{p}{2k} \right\}.$$

In the first sum above if $j + k = \ell + 1$ and $1 \le j, k < p/2$ then we may assume $j > \ell/2$. Then $(\ell + 1)! \binom{p}{\ell+1}$ is a factor of $(2j + 1)! \binom{p}{2j+1}$ as a polynomial of p, and so is $\ell! \binom{p-1}{\ell}$. Similarly we can see that $\ell! \binom{p-1}{\ell}$ is a factor of the second sum.

In order to determine the leading coefficient we set

$$C_1(x) = \sum_{j=0}^{\ell} \frac{(2\ell+2)! x^{2j+1}}{(2j+1)!(2l-2j+1)!} = \frac{(x+1)^{2\ell+2} - (x-1)^{2\ell+2}}{2}$$
$$C_2(x) = \sum_{j=0}^{\ell+1} \frac{(2\ell+2)! x^{2j}}{(2j)!(2l-2j+2)!} = \frac{(x+1)^{2\ell+2} + (x-1)^{2\ell+2}}{2}.$$

Hence

$$\sum_{\substack{j+k=\ell\\0\leq j,k< p/2}} \frac{1}{(2j+1)!(2k+1)!} - \sum_{\substack{j+k=\ell+1\\1\leq j,k< p/2}} \frac{1}{(2j)!(2k)!}$$
$$= \frac{C_1(1) - (C_2(1) - 2)}{(2\ell+2)!} = \frac{2}{(2\ell+2)!}.$$

This finishes the proof of the corollary.

Corollary 2.4. Let ℓ be a positive integer. Set $\delta_{\ell} = (1 + (-1)^{\ell})$ and $L = 3\ell + 3$. Then for every prime $p \geq L$ we have modulo $[p]_q$

$$H_{q}(\{3\}^{\ell}) \equiv \begin{cases} \frac{-3 \cdot \ell!}{(3\ell+1)!} {p-1 \choose \ell} \cdot F_{3,\ell}(p) \cdot (1-q)^{3\ell} & , \text{ if } \ell \text{ is odd,} \\ \frac{6 \cdot \ell!}{(3\ell+3)!} {p-1 \choose \ell} \cdot F_{3,\ell}(p) \cdot (1-q)^{3\ell} & , \text{ if } \ell \text{ is even,} \end{cases}$$
(10)

where $F_{3,\ell}(p)$ is a monic polynomial in p of degree $2\ell - 1$ if ℓ is odd and of degree 2ℓ if ℓ is even.

Proof. Let $\eta = \exp(2\pi i/3)$. Then $\eta^2 + \eta + 1 = 0$. By Theorem 2.1 we have

$$\sum_{\ell=0}^{\infty} H_q^* \left(\{3\}^\ell \right) x^\ell \equiv \frac{-1}{p^3 x} \prod_{a=0}^2 \left(1 - (1 - \eta^a \sqrt[3]{-x})^p \right). \tag{11}$$

We now use two ways to expand this. Set $y = \sqrt[3]{-x}$. First, the product on the right

hand side of (11) can be expressed as

$$\begin{split} &1 - \sum_{a=0}^{2} (1 - \eta^{a} y)^{p} + \sum_{a=0}^{2} (1 - \eta^{a} y)^{p} (1 - \eta^{a+1} y)^{p} - \prod_{a=0}^{2} (1 - \eta^{a} y)^{p} \\ &= 1 - \sum_{j=0}^{p} \binom{p}{j} \sum_{a=0}^{2} \eta^{aj} y^{j} + \sum_{a=0}^{2} (1 + \eta^{a} y + \eta^{a+1} y^{2})^{p} - (1 + x)^{p} \\ &= 1 - 3 \sum_{j=0}^{[p/3]} \binom{p}{3j} x^{j} + 3 \sum_{\substack{j,k \ge 0, j+k$$

Thus for $\ell > 0$ we get

$$H_q^*\left(\{3\}^\ell\right) \equiv \frac{1}{p^3} \left\{ 3\delta_\ell \binom{p}{L} + (-1)^\ell \cdot 3\sum_{k\geq 1} \binom{p}{L-k} \binom{L-k}{k} + \binom{p}{\ell+1} \right\}$$

Note that if ℓ is odd then the degree of the polynomial is reduced to $3\ell - 1$ with leading coefficient given by

$$(-1)^{\ell} \cdot 3\frac{1}{(L-1)!} \binom{L-1}{1} = \frac{-3}{(L-2)!} = \frac{-3}{(3\ell+1)!}$$

as we wanted.

Now to prove $\ell!\binom{p}{\ell}$ is a factor we use the following expansion of (11):

$$\sum_{\ell=0}^{\infty} \frac{1}{p^3 x} \sum_{j,k,n \ge 1} (-1)^{j+k+n} \binom{p}{j} \binom{p}{k} \binom{p}{n} x^{(j+k+n)/3} \eta^{k+2n}$$

Thus

$$H_{q}^{*}(\{3\}^{\ell}) \equiv \frac{1}{p^{3}} \sum_{\substack{1 \le j, k, n \le p \\ j+k+n = 3\ell+3}} (-1)^{j+k+n} \binom{p}{j} \binom{p}{k} \binom{p}{n} \eta^{k+2n} \pmod{[p]_{q}}.$$

Notice that $j + k + n = 3\ell + 3$ implies one of the indices, say j, is at least $\ell + 1$. Then clearly $\binom{p}{j}$ contains $\ell!\binom{p}{\ell}$ as a factor, therefore so does $H_q^*(\{3\}^\ell) \pmod{[p]_q}$. This completes the proof of the corollary.

3. Some Non-Homogeneous q-MHS Congruences

In this section we consider some non-homogeneous q-MHS of depth two with modifiers of special type. **Theorem 3.1.** Let m, n be two positive integers. For every prime p we have

$$H_q^{(m,n)}(2m,2n) \equiv \frac{1}{2} \left\{ f(m;p)f(n;p) - f(m+n;p) \right\} \pmod{[p]_q}.$$

where

$$f(N;p) = (1-q)^{2N} \sum_{i=0}^{N-1} {\binom{N-1}{i}} (-1)^i K_{2N-i}(p)$$

Proof. By definition and substitution $i \to p - i$ and $j \to p - j$ we have

$$H_q^{*(m,n)}(2m,2n) = \sum_{1 \le i < j < p} \frac{q^{mi+nj}}{(1-q^i)^{2m}(1-q^j)^{2n}}$$

$$= \sum_{1 \le j < i < p} \frac{q^{pm+pn-mi-nj}}{(1-q^{p-i})^{2m}(1-q^{p-j})^{2n}}$$

$$\equiv \sum_{1 \le j < i < p} \frac{q^{mi+nj}}{(q^i-q^p)^{2m}(q^j-q^p)^{2n}} \qquad (\text{mod } [p]_q)$$

$$\equiv \sum_{1 \le j < i < p} \frac{q^{mi+nj}}{(1-p^i)^{2m}(1-p^j)^{2n}} \qquad (\text{mod } [p]_q)$$

$$\equiv H_q^{*(n,m)}(2n,2m) \qquad (\text{mod } [p]_q) \qquad (12)$$

By shuffle relation we have

$$H_q^{*(m)}(2m)H_q^{*(n)}(2n) = H_q^{*(m,n)}(2m,2n) + H_q^{*(n,m)}(2n,2m) + H_q^{*(m+n)}(2m+2n).$$

Together with (12) this yields

$$2H_q^{*(m,n)}(2m,2n) \equiv H_q^{*(m)}(2m)H_q^{*(n)}(2n) - H_q^{*(m+n)}(2m+2n) \pmod{[p]_q}.$$

ur theorem follows from (4) quickly.

Our theorem follows from (4) quickly.

In the study of q-multiple zeta functions the following function appears naturally (see [9, (47)] or [2, Theorem 1]):

$$\varphi_q(n) = \sum_{k=1}^{\infty} (k-1) \frac{q^{(n-1)k}}{[k]_q^n} = \sum_{k=1}^{\infty} \frac{kq^{(n-1)k}}{[k]_q^n} - \zeta_q(n),$$

where $\zeta_q(n) = \sum_{k=1}^{\infty} \frac{q^{(n-1)k}}{[k]_q^n}$ is the q-Riemann zeta value defined by Kaneko et al. in [5]. Using the results we have obtained so far in this paper we discover a congruence related to the partial sums of $\varphi_q(2)$.

Proposition 3.2. For every prime p we have

$$\sum_{k=1}^{p-1} \frac{kq^k}{[k]_q^2} \equiv -\frac{p(p-1)(p+1)}{24} (1-q)^2 \pmod{[p]_q}.$$
 (13)

Proof. To save space, all congruences are modulo $[p]_q$ throughout this proof. We can check the congruence (13) for p = 2 and p = 3 easily by hand. Now we assume $p \ge 5$. By definition we have

$$H_q^*(2,1) = \sum_{1 \le i < j < p} \frac{1}{(1-q^i)^2(1-q^j)}.$$

With the substitutions $i \rightarrow p-i$ and $j \rightarrow p-j$ we get

$$\begin{split} -H_q^*(2,1) &= -\sum_{1 \le j < i < p} \frac{q^{2i} \cdot q^j}{(q^i - q^p)^2 (q^j - q^p)} \\ &\equiv -\sum_{1 \le j < i < p} \frac{q^{2i} \cdot q^j}{(q^i - 1)^2 (q^j - 1)} \\ &\equiv -\sum_{1 \le j < i < p} \frac{(q^i - 1)^2 + 2(q^i - 1) + 1}{(q^i - 1)^2} \cdot \frac{1 - q^j - 1}{1 - q^j} \\ &\equiv H_q^*(1,2) - 2H_q^*(1,1) + \sum_{k=1}^{p-1} \frac{p - 3 + k}{1 - q^k} - \sum_{k=1}^{p-1} \frac{k - 1}{(1 - q^k)^2} - \binom{p - 1}{2} \\ &\equiv H_q^*(1,2) - 2H_q^*(1,1) + (p - 3)H_q^*(1) + H_q^*(2) \\ &\qquad - \binom{p - 1}{2} - \sum_{k=1}^{p-1} \frac{kq^k}{(1 - q^k)^2}. \end{split}$$

Notice that we have the stuffle relations

$$\begin{aligned} H_q^*(2,1) + H_q^*(1,2) &= H_q^*(1)H_q^*(2) - H_q^*(3), \\ 2H_q^*(1,1) &= H_q^*(1)^2 - H_q^*(2). \end{aligned}$$

Hence

$$\sum_{k=1}^{p-1} \frac{kq^k}{(1-q^k)^2} \equiv (H_q^*(1)+2)H_q^*(2) - H_q^*(3) - H_q^*(1)^2 + (p-3)H_q^*(1) - \binom{p-1}{2}.$$

Notice that by [3, Theorem 2]

$$H_q^*(3) \equiv -\frac{(p-1)(p-3)}{8}.$$
(14)

The proposition now follows from (1) and (2) immediately.

4. A Congruence of Lehmer Type

Instead of the harmonic sums up to (p-1)-st term Lehmer also studied the following type of congruence (see [6]): for every odd prime p

$$\sum_{j=1}^{(p-1)/2} \frac{1}{j} \equiv -2q_p(2) + q_p(2)^2 p \pmod{p^2},$$

where $q_p(2) = (2^{p-1} - 1)/p$ is the Fermat quotient. It is also easy to see that for every positive integer n and prime p > 2n + 1

$$\sum_{j=1}^{(p-1)/2} \frac{1}{j^{2n}} \equiv 0 \pmod{p}.$$

As a q-analog of the above we have

Theorem 4.1. Let n be a positive integer. For every odd prime p we have

$$H_q^{(n)}(2n;(p-1)/2) \equiv \frac{1}{2}(1-q)^{2n} \sum_{j=0}^{n-1} \binom{n-1}{j} (-1)^j K_{2n-j}(p) \pmod{[p]_q}.$$

Proof. By definition and substitution $i \rightarrow p - i$ we have

$$H_q^{*(n)}(2n) = H_q^{*(n)}(2n; (p-1)/2) + \sum_{1 \le i \le (p-1)/2} \frac{q^{n(p-i)}}{(1-q^{p-i})^{2n}}$$
$$\equiv 2H_q^{*(n)}(2n; (p-1)/2) \pmod{[p]_q}$$

which yields the theorem by (4) easily.

To conclude the paper we remark that the congruence for general q-MHS should involve some type of q-analog of Bernoulli numbers and Euler numbers similar to the classical cases treated in [10]. We hope to return to this theme in the future.

Acknowledgement. This work is partly supported by the Faculty Development Fund of Eckerd College and the NSF grant DMS1162116.

References

 G.E. Andrews, q-analogs of the binomial coefficient congruences of Babbage, Wolstenholme and Glaisher, Discrete Math., 204(1) (1999), 15-25.

- D.M. Bradley, A q-analog of Euler's decomposition formula for the double zeta function, Int. J. Math. Math. Sci., Vol. 2005, Issue 21, 2005, pp. 3453–3458.
- [3] K. Dilcher, Determinant expressions for q-harmonic congruences and degenerate Bernoulli numbers, Electron. J. Combin., 15(1) (2008), R63.
- [4] F. T. Howard, Explicit formulas for degenerate Bernoulli numbers, Discrete Math. 162 (1996), 175–185.
- [5] M. Kaneko, N. Kurokawa, and M. Wakayama, A variation of Euler's approach to values of the Riemann zeta function, Kyushu J. Math. 57 (2003), 175–192.
- [6] E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. Math. 39 (1938), 350–360.
- [7] S. Roman, The Umbral Calculus, New York: Academic Press, 1984.
- [8] L.-L. Shi and H. Pan, A q-analogue of Wolstenholme's harmonic series congruence, Amer. Math. Monthly, 114(6) (2007), 529-531.
- J. Zhao, Multiple q-zeta functions and multiple q-polylogarithms, Ramanujan J., 14 (2)(2007), 189–221. arXiv: math/0304448
- [10] J. Zhao, Wolstenholme type theorem for multiple harmonic sums, Int. J. Number Theory, 4(1) (2008), 73–106.