ON q-ANALOG OF WOLSTENHOLME TYPE CONGRUENCES FOR MULTIPLE HARMONIC SUMS

Jianqiang Zhao
Department of Mathematics, Eckerd College, St. Petersburg, Florida
zhaoj8888@gmail.com

Received: 9/25/12 , Accepted: 4/20/13, Published: 4/25/13

Abstract

Multiple harmonic sums are iterated generalizations of harmonic sums. Recently Dilcher has considered congruences involving q-analogs of these sums in depth one. In this paper we shall study the homogeneous case for arbitrary depth by using generating functions and shuffle relations of the q-analog of multiple harmonic sums. At the end, we also consider some non-homogeneous cases.

1. Introduction

In [8] Shi and Pan extended Andrews' result [1] on the q-analog of Wolstenholme Theorem to the following two cases: for all prime $p \geq 5$

$$
\begin{array}{ll}
\sum_{j=1}^{p-1} \frac{1}{[j]_{q}} \equiv \frac{p-1}{2}(1-q)+\frac{p^{2}-1}{24}(1-q)^{2}[p]_{q} & \left(\bmod [p]_{q}^{2}\right), \\
\sum_{j=1}^{p-1} \frac{1}{[j]_{q}^{2}} \equiv-\frac{(p-1)(p-5)}{12}(1-q)^{2} & \left(\bmod [p]_{q}\right), \tag{2}
\end{array}
$$

where $[n]_{q}=\left(1-q^{n}\right) /(1-q)$ for any $n \in \mathbb{N}$ and $q \neq 1$. This type of congruences is considered in the polynomial ring $\mathbb{Z}[q]$ throughout this paper. Notice that the modulus $[p]_{q}$ is an irreducible polynomial in q when p is a prime. In [3] Dilcher generalized the above two congruences further to sums of the form $\sum_{j=1}^{p-1} \frac{1}{[j]_{q}^{n}}$ and $\sum_{j=1}^{p-1} \frac{q^{n}}{[j]_{q}^{n}}$ for all positive integers n in terms of certain determinants of binomial coefficients. However, his modulus is always $[p]_{q}$. He also expressed these congruences using Bernoulli numbers, Bernoulli numbers of the second kind, and Stirling numbers of the first kind, which we briefly recall now.

The well-known Bernoulli numbers are defined by the following generating series:

$$
\frac{x}{e^{x}-1}=\sum_{n=0}^{\infty} B_{n} \frac{x^{n}}{n!}=1-\frac{1}{2} \frac{x}{1!}+\frac{1}{6} \frac{x^{2}}{2!}-\frac{1}{30} \frac{x^{4}}{4!}+\cdots .
$$

On the other hand, the Bernoulli numbers of the second kind are defined by the power series (cf. [7, p. 114]).

$$
\frac{x}{\log (1+x)}=\sum_{n=0}^{\infty} b_{n} \frac{x^{n}}{n!}=1+\frac{1}{2} \frac{x}{1!}-\frac{1}{6} \frac{x^{2}}{2!}+\frac{1}{4} \frac{x^{3}}{3!}-\frac{19}{24} \frac{x^{4}}{4!}+\cdots
$$

This is a little different from the definition of \tilde{b}_{n} in [3], which is changed to b_{n} later in the same paper. Finally, the Stirling numbers of the first kind $s(n, j)$ are defined by

$$
x(x-1)(x-2) \cdots(x-n+1)=\sum_{j=0}^{n} s(n, j) x^{j} .
$$

Define

$$
\begin{equation*}
K_{n}(p):=(-1)^{n-1} \frac{b_{n}}{n!}-\frac{(-1)^{n}}{(n-1)!} \sum_{j=1}^{[n / 2]} \frac{B_{2 j}}{2 j} s(n-1,2 j-1) p^{2 j} \tag{3}
\end{equation*}
$$

By [3, Thm. 1, (6.5) and Thm. 4] and [4, Thm. 3.1] one gets:
Theorem 1.1. If $p>3$ is a prime, then for all integers $n>1$ we have

$$
\sum_{j=1}^{p-1} \frac{q^{j}}{[j]_{q}^{n}} \equiv K_{n}(p)(1-q)^{n} \quad\left(\bmod [p]_{q}\right)
$$

We will need the following easy generalization of this theorem.
Theorem 1.2. If $p>3$ is a prime, then for every integer $n>t \geq 1$ we have

$$
\begin{equation*}
\sum_{j=1}^{p-1} \frac{q^{t j}}{[j]_{q}^{n}} \equiv(1-q)^{n} \sum_{i=0}^{t-1}\binom{t-1}{i}(-1)^{i} K_{n-i}(p) \quad\left(\bmod [p]_{q}\right) \tag{4}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\sum_{j=1}^{p-1} \frac{1}{[j]_{q}^{n}} \equiv(1-q)^{n}\left(\frac{p-1}{2}+\sum_{j=2}^{n} K_{j}(p)\right) \quad\left(\bmod [p]_{q}\right) \tag{5}
\end{equation*}
$$

Proof. If $t>1$ it is clear that

$$
q^{t j}=q^{j}\left(1-\left(1-q^{j}\right)\right)^{t-1}=q^{j} \sum_{i=0}^{t-1}\binom{t-1}{i}(-1)^{i}\left(1-q^{j}\right)^{i}
$$

So (4) follows from Theorem 1.1 immediately. Congruence (5) is a variation of [3, (5.11)].

All the sums in Theorem 1.1 and 1.2 are special cases of the q-analog of multiple harmonic sums. The congruence properties of the classical multiple harmonic sums (MHS for short) are systematically investigated in [10]. In this paper we shall study their q-analogs which are natural generalizations of the congruences obtained by Shi and Pan [8] and Dilcher [3].

Similar to its classical case (cf. [10]) a q-analog of multiple harmonic sum (q-MHS for short) is defined as follows. For $\mathbf{s}:=\left(s_{1}, \ldots, s_{\ell}\right) \in \mathbb{N}^{\ell}, \mathbf{t}:=\left(t_{1}, \ldots, t_{\ell}\right) \in \mathbb{N}^{\ell}$ and $n \in \mathbb{Z}_{\geq 0}$ set

$$
\begin{equation*}
H_{q}^{(\mathbf{t})}(\mathbf{s} ; n):=\sum_{1 \leq k_{1}<\cdots<k_{\ell} \leq n} \frac{q^{k_{1} t_{1}+\cdots+k_{\ell} t_{\ell}}}{\left[k_{1}\right]_{q}^{s_{1}} \cdots\left[k_{\ell}\right]_{q}^{s_{\ell}}}, \quad H_{q}^{*(\mathbf{t})}(\mathbf{s} ; n)=H_{q}^{(\mathbf{t})}(\mathbf{s} ; n) /(1-q)^{w(\mathbf{s})} \tag{6}
\end{equation*}
$$

where $w(\mathbf{s}):=s_{1}+\cdots+s_{\ell}$ is the weight, $\ell(\mathbf{s}):=\ell$ the depth and \mathbf{t} the modifier. For trivial modifier we set

$$
H_{q}(\mathbf{s} ; n):=H_{q}^{(0, \ldots, 0)}(\mathbf{s} ; n), \quad H_{q}^{*}(\mathbf{s} ; n)=H_{q}(\mathbf{s} ; n) /(1-q)^{w(\mathbf{s})}
$$

Note that in $[3] \tilde{H}_{q}(s ; p-1):=H_{q}^{(1)}(s ; p-1)$ are studied in some detail and are related to $H_{q}(s ; p-1)$. Also note that $H_{q}^{\left(s_{1}-1, \ldots, s_{\ell}-1\right)}(\mathbf{s} ; n)$ are the partial sums of the most convenient form of q-multiple zeta functions (see [9]).

In this paper we mainly consider q-MHS with the trivial modifier. By convention we set $H_{q}^{(\mathbf{t})}(\mathbf{s} ; r)=0$ for $r=0, \ldots, \ell(\mathbf{s})-1$, and $H_{q}^{(\mathbf{t})}(\emptyset ; n)=1$. To save space, for an ordered set $\left(e_{1}, \ldots, e_{t}\right)$ we denote by $\left\{e_{1}, \ldots, e_{t}\right\}^{d}$ the ordered set formed by repeating $\left(e_{1}, \ldots, e_{t}\right) d$ times. For example, $H_{q}\left(\{s\}^{\ell} ; n\right)$ will be called a homogeneous sum.

Throughout the paper, we use short-hand $H_{q}(\mathbf{s})$ to denote $H_{q}(\mathbf{s} ; p-1)$ for some fixed prime p.

2. Homogeneous q-MHS

It is extremely beneficial to study the so-called stuffle (or quasi-shuffle) relations among MHS (see, for e.g., [10]). The same mechanism works equally well for q-MHS.

Recall that for any two ordered sets $\left(r_{1}, \ldots, r_{t}\right)$ and $\left(r_{t+1}, \ldots, r_{n}\right)$ the shuffle operation is defined by

$$
\operatorname{Shfl}\left(\left(r_{1}, \ldots, r_{t}\right),\left(r_{t+1}, \ldots, r_{n}\right)\right):=\bigcup_{\substack{\sigma \text { permutes }\{1, \ldots, n\}, \sigma^{-1}(1)<\cdots<\sigma^{-1}(t), \sigma^{-1}(t+1)<\cdots<\sigma^{-1}(n)}}\left(r_{\sigma(1)}, \ldots, r_{\sigma(n)}\right) .
$$

Fix a positive integer s. For any $k=1, \ldots, \ell-1$, by stuffle relation we have

$$
H_{q}^{*}((\ell-k) s) \cdot H_{q}^{*}\left(\{s\}^{k}\right)=\sum_{\mathbf{s} \in \operatorname{Shf}}\left(\{(\ell-k) s\},\{s\}^{k}\right)<H_{q}^{*}(\mathbf{s})+\sum_{\mathbf{s} \in \operatorname{Shf}\left(\{(\ell-k+1) s\},\{s\}^{k-1}\right)} H_{q}^{*}(\mathbf{s})
$$

Applying $\sum_{k=1}^{\ell-1}(-1)^{\ell-k-1}$ on both sides we get

$$
\begin{equation*}
H_{q}^{*}\left(\{s\}^{\ell}\right)=\frac{1}{\ell} \sum_{k=0}^{\ell-1}(-1)^{\ell-k-1} H_{q}^{*}((\ell-k) s) \cdot H_{q}^{*}\left(\{s\}^{k}\right) \tag{7}
\end{equation*}
$$

Theorem 2.1. Let s be a positive integer and let $\eta_{s}=\exp (2 \pi \sqrt{-1} / s)$ be the sth primitive root of unity. Then

$$
\sum_{\ell=0}^{\infty} H_{q}^{*}\left(\{s\}^{\ell}\right) x^{\ell} \equiv \frac{(-1)^{s}}{p^{s} x} \prod_{n=0}^{s-1}\left(1-\left(1-\eta_{s}^{n}(-x)^{1 / s}\right)^{p}\right) \quad\left(\bmod [p]_{q}\right)
$$

Proof. Let $\zeta=\exp (2 \pi \sqrt{-1} / p)$ be the primitive p th root of unity and set

$$
\begin{equation*}
P_{n}=\sum_{j=1}^{p-1} \frac{1}{\left(1-\zeta^{j}\right)^{n}} \tag{8}
\end{equation*}
$$

It is easy to see that $H_{q}^{*}(n) \equiv P_{n}\left(\bmod [p]_{q}\right)$. By using partial fractions Dilcher [4, (4.2)] obtained essentially the following generating function of P_{n} :

$$
\begin{equation*}
g(x):=\sum_{n=0}^{\infty} P_{n} x^{n}=-\frac{p x(x-1)^{p-1}}{1-(1-x)^{p}} \tag{9}
\end{equation*}
$$

Let $a_{\ell}=H_{q}^{*}\left(\{s\}^{\ell}\right)$ for all $\ell \geq 0$. Let $w(x)=\sum_{\ell=0}^{\infty} a_{\ell} x^{\ell}$ be its the generating function. By (7) we get

$$
w(x)=\sum_{\ell=0}^{\infty} a_{\ell} x^{\ell} \equiv 1+\sum_{\ell=1}^{\infty} \frac{1}{\ell} \sum_{k=0}^{\ell-1}(-1)^{\ell-k-1} P_{(\ell-k) s} a_{k} x^{\ell} \quad\left(\bmod [p]_{q}\right)
$$

Differentiating both sides and changing index $\ell \rightarrow \ell+1$ we get, modulo $[p]_{q}$,

$$
w^{\prime}(x) \equiv \sum_{\ell=0}^{\infty} \sum_{k=0}^{\ell}(-1)^{\ell-k} P_{(\ell-k+1) s} a_{k} x^{\ell} \equiv \sum_{k=0}^{\infty} \sum_{\ell=k}^{\infty}(-1)^{\ell-k} P_{(\ell-k+1) s} a_{k} x^{\ell}
$$

Changing index $\ell \rightarrow \ell+k$ and then exchanging the order of summation we get

$$
\begin{aligned}
w^{\prime}(x) & \equiv w(x) \sum_{\ell=0}^{\infty} P_{(\ell+1) s}(-x)^{\ell} \equiv \frac{w(x)}{-x}\left(\sum_{\ell=0}^{\infty} P_{\ell s}(-x)^{\ell}+1\right) \\
& \equiv \frac{w(x)}{-s x}\left(s+\sum_{n=0}^{s-1} \sum_{\ell=0}^{\infty} P_{\ell}\left(\eta_{s}^{n}(-x)^{1 / s}\right)^{\ell}\right) \\
& \equiv \frac{w(x)}{-s x}\left(s+\sum_{n=0}^{s-1} g\left(\eta_{s}^{n}(-x)^{1 / s}\right)\right) \\
& \equiv \frac{w(x)}{-s x}\left(s-\sum_{n=0}^{s-1} \frac{p \eta^{n}(-x)^{1 / s}\left(\eta^{n}(-x)^{1 / s}-1\right)^{p-1}}{1-\left(1-\eta_{s}^{n}(-x)^{1 / s}\right)^{p}}\right) .
\end{aligned}
$$

Here $\eta_{s}=\exp (2 \pi \sqrt{-1} / s)$ is the s th primitive root of unity. Thus

$$
(\ln w(x))^{\prime}=\left(-(\ln x)^{\prime}+\sum_{n=0}^{s-1} \frac{\left(1-\left(1-\eta^{n}(-x)^{1 / s}\right)^{p}\right)^{\prime}}{1-\left(1-\eta_{s}^{n}(-x)^{1 / s}\right)^{p}}\right)
$$

Therefore by comparing the constant term we get

$$
w(x) \equiv \frac{(-1)^{s}}{p^{s} x} \prod_{n=0}^{s-1}\left(1-\left(1-\eta_{s}^{n}(-x)^{1 / s}\right)^{p}\right) \quad\left(\bmod [p]_{q}\right)
$$

as desired.
Corollary 2.2. For every positive integer $\ell<p$ we have

$$
H_{q}\left(\{1\}^{\ell}\right) \equiv \frac{1}{\ell+1}\binom{p-1}{\ell} \cdot(1-q)^{\ell} \quad\left(\bmod [p]_{q}\right)
$$

Proof. By the theorem we get

$$
\begin{aligned}
\sum_{\ell=0}^{\infty} H_{q}^{*}\left(\{1\}^{\ell}\right) x^{\ell} & \equiv \frac{(1+x)^{p}-1}{p x} \\
& \equiv \frac{1}{p x} \sum_{\ell=0}^{\infty}\binom{p}{\ell+1} x^{\ell+1} \equiv \sum_{\ell=0}^{\infty} \frac{1}{\ell+1}\binom{p-1}{\ell} x^{\ell} \quad\left(\bmod [p]_{q}\right)
\end{aligned}
$$

The corollary follows immediately.
Corollary 2.3. For every positive integer $\ell<p$ we have

$$
H_{q}\left(\{2\}^{\ell}\right) \equiv(-1)^{\ell} \frac{2 \cdot \ell!}{(2 \ell+2)!}\binom{p-1}{\ell} \cdot F_{2, \ell}(p) \cdot(1-q)^{2 \ell} \quad\left(\bmod [p]_{q}\right)
$$

where $F_{2, \ell}(p)$ is a monic polynomial in p of degree ℓ.
Proof. By Theorem 2.1 we have modulo $[p]_{q}$

$$
\begin{aligned}
\sum_{\ell=0}^{\infty} H_{q}^{*}\left(\{2\}^{\ell}\right) x^{\ell} & \equiv \frac{1}{p^{2} x}\left(1-(1-\sqrt{-1} \sqrt{x})^{p}\right)\left(1-(1+\sqrt{-1} \sqrt{x})^{p}\right) \\
& \equiv \frac{1}{p^{2} x}\left|\sum_{j=1}^{(p-1) / 2}\binom{p}{2 j}(-1)^{j} x^{j}+\sqrt{-1} \sqrt{x} \sum_{j=0}^{(p-1) / 2}\binom{p}{2 j+1}(-1)^{j} x^{j}\right|^{2}
\end{aligned}
$$

which easily yields

$$
H_{q}^{*}\left(\{2\}^{\ell}\right) \equiv \frac{(-1)^{\ell}}{p^{2}}\left\{\sum_{\substack{j+k=\ell \\ 0 \leq j, k<p / 2}}\binom{p}{2 j+1}\binom{p}{2 k+1}-\sum_{\substack{j+k=\ell+1 \\ 1 \leq j, k<p / 2}}\binom{p}{2 j}\binom{p}{2 k}\right\}
$$

In the first sum above if $j+k=\ell+1$ and $1 \leq j, k<p / 2$ then we may assume $j>\ell / 2$. Then $(\ell+1)!\binom{p}{\ell+1}$ is a factor of $(2 j+1)!\binom{p}{2 j+1}$ as a polynomial of p, and so is $\ell!\binom{p-1}{\ell}$. Similarly we can see that $\ell!\binom{p-1}{\ell}$ is a factor of the second sum.

In order to determine the leading coefficient we set

$$
\begin{aligned}
& C_{1}(x)=\sum_{j=0}^{\ell} \frac{(2 \ell+2)!x^{2 j+1}}{(2 j+1)!(2 l-2 j+1)!}=\frac{(x+1)^{2 \ell+2}-(x-1)^{2 \ell+2}}{2} \\
& C_{2}(x)=\sum_{j=0}^{\ell+1} \frac{(2 \ell+2)!x^{2 j}}{(2 j)!(2 l-2 j+2)!}=\frac{(x+1)^{2 \ell+2}+(x-1)^{2 \ell+2}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \sum_{\substack{j+k=\ell \\
0 \leq j, k<p / 2}} \frac{1}{(2 j+1)!(2 k+1)!}-\sum_{\substack{j+k=\ell+1 \\
1 \leq j, k<p / 2}} \frac{1}{(2 j)!(2 k)!} \\
= & \frac{C_{1}(1)-\left(C_{2}(1)-2\right)}{(2 \ell+2)!}=\frac{2}{(2 \ell+2)!} .
\end{aligned}
$$

This finishes the proof of the corollary.
Corollary 2.4. Let ℓ be a positive integer. Set $\delta_{\ell}=\left(1+(-1)^{\ell}\right)$ and $L=3 \ell+3$. Then for every prime $p \geq L$ we have modulo $[p]_{q}$

$$
H_{q}\left(\{3\}^{\ell}\right) \equiv \begin{cases}\frac{-3 \cdot \ell!}{(3 \ell+1)!}\binom{p-1}{\ell} \cdot F_{3, \ell}(p) \cdot(1-q)^{3 \ell} & , \quad \text { if } \ell \text { is odd, } \tag{10}\\ \frac{6 \cdot \ell!}{(3 \ell+3)!}\binom{p-1}{\ell} \cdot F_{3, \ell}(p) \cdot(1-q)^{3 \ell} & , \quad \text { if } \ell \text { is even, }\end{cases}
$$

where $F_{3, \ell}(p)$ is a monic polynomial in p of degree $2 \ell-1$ if ℓ is odd and of degree 2ℓ if ℓ is even.

Proof. Let $\eta=\exp (2 \pi i / 3)$. Then $\eta^{2}+\eta+1=0$. By Theorem 2.1 we have

$$
\begin{equation*}
\sum_{\ell=0}^{\infty} H_{q}^{*}\left(\{3\}^{\ell}\right) x^{\ell} \equiv \frac{-1}{p^{3} x} \prod_{a=0}^{2}\left(1-\left(1-\eta^{a} \sqrt[3]{-x}\right)^{p}\right) \tag{11}
\end{equation*}
$$

We now use two ways to expand this. Set $y=\sqrt[3]{-x}$. First, the product on the right
hand side of (11) can be expressed as

$$
\begin{aligned}
& 1-\sum_{a=0}^{2}\left(1-\eta^{a} y\right)^{p}+\sum_{a=0}^{2}\left(1-\eta^{a} y\right)^{p}\left(1-\eta^{a+1} y\right)^{p}-\prod_{a=0}^{2}\left(1-\eta^{a} y\right)^{p} \\
= & 1-\sum_{j=0}^{p}\binom{p}{j} \sum_{a=0}^{2} \eta^{a j} y^{j}+\sum_{a=0}^{2}\left(1+\eta^{a} y+\eta^{a+1} y^{2}\right)^{p}-(1+x)^{p} \\
= & 1-3 \sum_{j=0}^{[p / 3]}\binom{p}{3 j} x^{j}+3 \sum_{\substack{j, k \geq 0, j+k<p \\
2 j+k \equiv 0(3)}} \frac{p!(-x)^{(j+2 k) / 3}}{j!k!(p-j-k)!}-(1+x)^{p} .
\end{aligned}
$$

Thus for $\ell>0$ we get

$$
H_{q}^{*}\left(\{3\}^{\ell}\right) \equiv \frac{1}{p^{3}}\left\{3 \delta_{\ell}\binom{p}{L}+(-1)^{\ell} \cdot 3 \sum_{k \geq 1}\binom{p}{L-k}\binom{L-k}{k}+\binom{p}{\ell+1}\right\}
$$

Note that if ℓ is odd then the degree of the polynomial is reduced to $3 \ell-1$ with leading coefficient given by

$$
(-1)^{\ell} \cdot 3 \frac{1}{(L-1)!}\binom{L-1}{1}=\frac{-3}{(L-2)!}=\frac{-3}{(3 \ell+1)!}
$$

as we wanted.
Now to prove $\ell!\binom{p}{\ell}$ is a factor we use the following expansion of (11):

$$
\sum_{\ell=0}^{\infty} \frac{1}{p^{3} x} \sum_{j, k, n \geq 1}(-1)^{j+k+n}\binom{p}{j}\binom{p}{k}\binom{p}{n} x^{(j+k+n) / 3} \eta^{k+2 n}
$$

Thus

$$
H_{q}^{*}\left(\{3\}^{\ell}\right) \equiv \frac{1}{p^{3}} \sum_{\substack{1 \leq j, k, n \leq p \\ j+k+n=3 \ell+3}}(-1)^{j+k+n}\binom{p}{j}\binom{p}{k}\binom{p}{n} \eta^{k+2 n} \quad\left(\bmod [p]_{q}\right)
$$

Notice that $j+k+n=3 \ell+3$ implies one of the indices, say j, is at least $\ell+1$. Then clearly $\binom{p}{j}$ contains $\ell!\binom{p}{\ell}$ as a factor, therefore so does $H_{q}^{*}\left(\{3\}^{\ell}\right)\left(\bmod [p]_{q}\right)$. This completes the proof of the corollary.

3. Some Non-Homogeneous q-MHS Congruences

In this section we consider some non-homogeneous q-MHS of depth two with modifiers of special type.

Theorem 3.1. Let m, n be two positive integers. For every prime p we have

$$
H_{q}^{(m, n)}(2 m, 2 n) \equiv \frac{1}{2}\{f(m ; p) f(n ; p)-f(m+n ; p)\} \quad\left(\bmod [p]_{q}\right)
$$

where

$$
f(N ; p)=(1-q)^{2 N} \sum_{i=0}^{N-1}\binom{N-1}{i}(-1)^{i} K_{2 N-i}(p)
$$

Proof. By definition and substitution $i \rightarrow p-i$ and $j \rightarrow p-j$ we have

$$
\begin{array}{rlr}
H_{q}^{*(m, n)}(2 m, 2 n) & =\sum_{1 \leq i<j<p} \frac{q^{m i+n j}}{\left(1-q^{i}\right)^{2 m}\left(1-q^{j}\right)^{2 n}} \\
& =\sum_{1 \leq j<i<p} \frac{q^{p m+p n-m i-n j}}{\left(1-q^{p-i}\right)^{2 m}\left(1-q^{p-j}\right)^{2 n}} \\
& \equiv \sum_{1 \leq j<i<p} \frac{q^{m i+n j}}{\left(q^{i}-q^{p}\right)^{2 m}\left(q^{j}-q^{p}\right)^{2 n}} & \left(\bmod [p]_{q}\right) \\
& \equiv \sum_{1 \leq j<i<p} \frac{q^{m i+n j}}{\left(1-p^{i}\right)^{2 m}\left(1-p^{j}\right)^{2 n}} & \left(\bmod [p]_{q}\right) \\
& \equiv H_{q}^{*(n, m)}(2 n, 2 m) & \left(\bmod [p]_{q}\right) \tag{12}
\end{array}
$$

By shuffle relation we have
$H_{q}^{*(m)}(2 m) H_{q}^{*(n)}(2 n)=H_{q}^{*(m, n)}(2 m, 2 n)+H_{q}^{*(n, m)}(2 n, 2 m)+H_{q}^{*(m+n)}(2 m+2 n)$.
Together with (12) this yields

$$
2 H_{q}^{*(m, n)}(2 m, 2 n) \equiv H_{q}^{*(m)}(2 m) H_{q}^{*(n)}(2 n)-H_{q}^{*(m+n)}(2 m+2 n) \quad\left(\bmod [p]_{q}\right)
$$

Our theorem follows from (4) quickly.
In the study of q-multiple zeta functions the following function appears naturally (see $[9,(47)]$ or $[2$, Theorem 1]):

$$
\varphi_{q}(n)=\sum_{k=1}^{\infty}(k-1) \frac{q^{(n-1) k}}{[k]_{q}^{n}}=\sum_{k=1}^{\infty} \frac{k q^{(n-1) k}}{[k]_{q}^{n}}-\zeta_{q}(n)
$$

where $\zeta_{q}(n)=\sum_{k=1}^{\infty} \frac{q^{(n-1) k}}{[k]_{q}^{n}}$ is the q-Riemann zeta value defined by Kaneko et al. in [5]. Using the results we have obtained so far in this paper we discover a congruence related to the partial sums of $\varphi_{q}(2)$.

Proposition 3.2. For every prime p we have

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{k q^{k}}{[k]_{q}^{2}} \equiv-\frac{p(p-1)(p+1)}{24}(1-q)^{2} \quad\left(\bmod [p]_{q}\right) \tag{13}
\end{equation*}
$$

Proof. To save space, all congruences are modulo $[p]_{q}$ throughout this proof.
We can check the congruence (13) for $p=2$ and $p=3$ easily by hand. Now we assume $p \geq 5$. By definition we have

$$
H_{q}^{*}(2,1)=\sum_{1 \leq i<j<p} \frac{1}{\left(1-q^{i}\right)^{2}\left(1-q^{j}\right)}
$$

With the substitutions $i \rightarrow p-i$ and $j \rightarrow p-j$ we get

$$
\begin{aligned}
&-H_{q}^{*}(2,1)=-\sum_{1 \leq j<i<p} \frac{q^{2 i} \cdot q^{j}}{\left(q^{i}-q^{p}\right)^{2}\left(q^{j}-q^{p}\right)} \\
& \equiv-\sum_{1 \leq j<i<p} \frac{q^{2 i} \cdot q^{j}}{\left(q^{i}-1\right)^{2}\left(q^{j}-1\right)} \\
& \equiv-\sum_{1 \leq j<i<p} \frac{\left(q^{i}-1\right)^{2}+2\left(q^{i}-1\right)+1}{\left(q^{i}-1\right)^{2}} \cdot \frac{1-q^{j}-1}{1-q^{j}} \\
& \equiv H_{q}^{*}(1,2)-2 H_{q}^{*}(1,1)+\sum_{k=1}^{p-1} \frac{p-3+k}{1-q^{k}}-\sum_{k=1}^{p-1} \frac{k-1}{\left(1-q^{k}\right)^{2}}-\binom{p-1}{2} \\
& \equiv H_{q}^{*}(1,2)-2 H_{q}^{*}(1,1)+(p-3) H_{q}^{*}(1)+H_{q}^{*}(2) \\
&-\binom{p-1}{2}-\sum_{k=1}^{p-1} \frac{k q^{k}}{\left(1-q^{k}\right)^{2}} .
\end{aligned}
$$

Notice that we have the stuffle relations

$$
\begin{aligned}
H_{q}^{*}(2,1)+H_{q}^{*}(1,2) & =H_{q}^{*}(1) H_{q}^{*}(2)-H_{q}^{*}(3) \\
2 H_{q}^{*}(1,1) & =H_{q}^{*}(1)^{2}-H_{q}^{*}(2)
\end{aligned}
$$

Hence

$$
\sum_{k=1}^{p-1} \frac{k q^{k}}{\left(1-q^{k}\right)^{2}} \equiv\left(H_{q}^{*}(1)+2\right) H_{q}^{*}(2)-H_{q}^{*}(3)-H_{q}^{*}(1)^{2}+(p-3) H_{q}^{*}(1)-\binom{p-1}{2}
$$

Notice that by [3, Theorem 2]

$$
\begin{equation*}
H_{q}^{*}(3) \equiv-\frac{(p-1)(p-3)}{8} \tag{14}
\end{equation*}
$$

The proposition now follows from (1) and (2) immediately.

4. A Congruence of Lehmer Type

Instead of the harmonic sums up to $(p-1)$-st term Lehmer also studied the following type of congruence (see [6]): for every odd prime p

$$
\sum_{j=1}^{(p-1) / 2} \frac{1}{j} \equiv-2 q_{p}(2)+q_{p}(2)^{2} p \quad\left(\bmod p^{2}\right)
$$

where $q_{p}(2)=\left(2^{p-1}-1\right) / p$ is the Fermat quotient. It is also easy to see that for every positive integer n and prime $p>2 n+1$

$$
\sum_{j=1}^{(p-1) / 2} \frac{1}{j^{2 n}} \equiv 0 \quad(\bmod p)
$$

As a q-analog of the above we have
Theorem 4.1. Let n be a positive integer. For every odd prime p we have

$$
H_{q}^{(n)}(2 n ;(p-1) / 2) \equiv \frac{1}{2}(1-q)^{2 n} \sum_{j=0}^{n-1}\binom{n-1}{j}(-1)^{j} K_{2 n-j}(p) \quad\left(\bmod [p]_{q}\right)
$$

Proof. By definition and substitution $i \rightarrow p-i$ we have

$$
\begin{aligned}
H_{q}^{*(n)}(2 n) & =H_{q}^{*(n)}(2 n ;(p-1) / 2)+\sum_{1 \leq i \leq(p-1) / 2} \frac{q^{n(p-i)}}{\left(1-q^{p-i}\right)^{2 n}} \\
& \equiv 2 H_{q}^{*(n)}(2 n ;(p-1) / 2) \quad\left(\bmod [p]_{q}\right)
\end{aligned}
$$

which yields the theorem by (4) easily.
To conclude the paper we remark that the congruence for general q-MHS should involve some type of q-analog of Bernoulli numbers and Euler numbers similar to the classical cases treated in [10]. We hope to return to this theme in the future.

Acknowledgement. This work is partly supported by the Faculty Development Fund of Eckerd College and the NSF grant DMS1162116.

References

[1] G.E. Andrews, q-analogs of the binomial coefficient congruences of Babbage, Wolstenholme and Glaisher, Discrete Math., 204(1) (1999), 15-25.
[2] D.M. Bradley, A q-analog of Euler's decomposition formula for the double zeta function, Int. J. Math. Math. Sci., Vol. 2005, Issue 21, 2005, pp. 3453-3458.
[3] K. Dilcher, Determinant expressions for q-harmonic congruences and degenerate Bernoulli numbers, Electron. J. Combin., 15(1) (2008), R63.
[4] F. T. Howard, Explicit formulas for degenerate Bernoulli numbers, Discrete Math. 162 (1996), 175-185.
[5] M. Kaneko, N. Kurokawa, and M. Wakayama, A variation of Euler's approach to values of the Riemann zeta function, Kyushu J. Math. 57 (2003), 175-192.
[6] E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. Math. 39 (1938), 350-360.
[7] S. Roman, The Umbral Calculus, New York: Academic Press, 1984.
[8] L.-L. Shi and H. Pan, A q-analogue of Wolstenholme's harmonic series congruence, Amer. Math. Monthly, 114(6) (2007), 529-531.
[9] J. Zhao, Multiple q-zeta functions and multiple q-polylogarithms, Ramanujan J., 14 (2)(2007), 189-221. arXiv: math/0304448
[10] J. Zhao, Wolstenholme type theorem for multiple harmonic sums, Int. J. Number Theory, 4(1) (2008), 73-106.

