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Abstract
A lonesum matrix is a (0, 1)-matrix uniquely determined by its column and row

sums, and the sum of its all entries is called the “weight” of it. The generating

function of numbers of weighted lonesum matrices of each weight is given. A certain

explicit formula for the number of weighted lonesum matrices is also proved.

1. Introduction and Main Theorem

A matrix A is called a (0, 1)-matrix if each of its entries is either zero or one, and a

(0, 1)-matrix A is called lonesum if it is uniquely determined by its column and row

sums. For positive integers m and n, we denote by L(m,n) the number of m × n
lonesum matrices. Further, we define L(m, 0) = L(0, n) = 1 for all non-negative

integers m and n.

Brewbaker [1] proved that

L(m,n) = B(−m)
n (1)
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for any non-negative integers m and n. Here, B(k)
n is the n-th poly-Bernoulli number

of index k defined by

Lik(1− e−x
)

1− e−x
=

�

n≥0

B(k)
n

xn

n!
, (2)

where Lik(x) denotes the k-th polylogarithm (cf. [2]). Shikata [5] gave another

proof of equality (1). To obtain the equality, Shikata proved a generating function

representation of L(m,n) as follows:

�

m≥0,n≥0

L(m,n)
xm

m!

yn

n!
= (e−x

+ e−y − 1)
−1. (3)

For any lonesum matrix A, Nanbara [3] introduced the weight of A as the sum of

all entries in A, and did numerical experiments to some extent. For positive integers

m,n and a non-negative integer k, we denote by L(m,n, k) the number of m × n
lonesum matrices with weight k. Further, we define L(m, 0, 0) = L(0, n, 0) = 1 and

L(m, 0, k) = L(0, n, k) = 0 for any non-negative integers m,n and positive integer k.

By definition, we have L(m,n, k) = L(n,m, k) for 0 ≤ k ≤ mn, and

L(m,n) =

mn�

k=0

L(m,n, k).

The following is the main theorem of this paper, which gives a generating function

of L(m,n, k).

Theorem 1. Let x, y and q be indeterminates satisfying

qx = xq, qy = yq and yx = qxy. (4)

Then the following identity holds:
�

m,n,k≥0

L(m,n, k)
xm

m!

yn

n!
qk

= (e−x
+ e−y − 1)

−1. (5)

It is surprising that the right-hand sides of (3) and (5) coincide with each other.

Hence, by setting q = 1 in the equality (5), we naturally obtain the original gener-

ating function (3) of L(m,n).

2. Proof of Theorem 1

An m × n (0, 1)-matrix A = (ai,j) is called a Ferrers matrix if A satisfies the

condition

ai,j ≥ ai+1,j (1 ≤ i < m− 1, 1 ≤ j ≤ n),

ai,j ≥ ai,j+1 (1 ≤ i ≤ m, 1 ≤ j < n− 1).
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This condition means that all 1 entries of A are placed at the upper left of A (see

Fig. 1 in the proof of Theorem 1).

The following result is due to Ryser [4] (see also [5, Theorem 3.2]).

Proposition 2. Let A be an m × n (0, 1)-matrix. Then the following conditions
are equivalent:

(i) A is a lonesum matrix.

(ii) A has no minor of the form
�

1 0

0 1

�
or

�
0 1

1 0

�
.

(iii) A is obtained from a Ferrers matrix by permutations of columns and rows.

We can prove our main theorem from this proposition.

Proof of Theorem 1. For a Ferrers matrix A = (ai,j), we define mi and nj (1 ≤
i, j ≤ l) by the numbers of columns and rows as indicated in Figure 1. Here we

have

m1, . . . ,ml−1 > 0, ml ≥ 0, m1 + · · · + ml = m,

n1 ≥ 0, n2, . . . , nl > 0, n1 + · · · + nl = n.

Then the weight of A is expressed as

m1n1 + m2(n1 + n2) + · · · + ml(n1 + · · · + nl) =

�

l≥i≥j≥1

minj .

The number of lonesum matrices obtained from the matrix A is equal to

m!

m1! · · · ml!

n!

n1! · · · nl!
.

Therefore we have

�

m,n,k≥0

L(m,n, k)
xm

m!

yn

n!
qk

=

∞�

l=1

�

m1,...,ml−1>0,ml≥0
n1≥0,n2,...,nl>0

xm1+···+ml

m1! · · · ml!

yn1+···+nl

n1! · · · nl!
q

�
i≥j minj .

(6)

By the commutation relations (4), we have

xm1+···+mlyn1+···+nlq
�

i≥j minj = yn1xm1yn2xm2 · · · ynlxml .
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m1

n1

m2

n2

ml

nl

· · ·

n

m

1

0

Figure 1: Ferrers matrix A

Hence the right-hand side of (6) equals

∞�

l=1

�

m1,...,ml−1>0,
ml≥0

n1≥0,n2,...,nl>0

yn1

n1!

xm1

m1!

yn2

n2!

xm2

m2!
· · · ynl

nl!

xml

ml!
=

∞�

l=1

ey
((ex − 1)(ey − 1))

l−1ex

= ey
�
1− (ex − 1)(ey − 1)

�−1
ex

=
�
e−x

(1− (ex − 1)(ey − 1))e−y
�−1

= (e−x
+ e−y − 1)

−1.

Now the proof is complete.

3. A Recurrence Relation and an Explicit Formula

In this section we investigate the following polynomial in q:

Lq(m,n) :=

mn�

k=0

L(m,n, k)qk, (m,n ≥ 0).
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When q = 1, we have

L1(m,n) =

mn�

k=0

L(m,n, k) = L(m,n).

This polynomial Lq(m,n) satisfies the following recurrence relation:

Proposition 3. For (m,n) �= (0, 0), we have

Lq(m,n) = −
m−1�

k=0

�
m

k

�
(−1)

m−kLq(k, n)−
n−1�

l=0

�
n

l

�
(−qm

)
n−lLq(m, l). (7)

Proof. By Theorem 1, the identity

(e−x
+ e−y − 1)

�

m≥0,n≥0

Lq(m,n)
xm

m!

yn

n!
= 1

holds. Since e−yxm
= xme−qmy

, we have

�

m≥0,n≥0

Lq(m,n)
xm

m!
(e−x

+ e−qmy
)
yn

n!
= 1 +

�

m≥0,n≥0

Lq(m,n)
xm

m!

yn

n!
.

Comparing the coefficients of both sides, we obtain that

m�

k=0

�
m

k

�
(−1)

m−kLq(k, n) +

n�

l=0

�
n

l

�
(−qm

)
n−lLq(m, l) = Lq(m,n)

for (m,n) �= (0, 0). The formula (7) immediately follows from this equation.

Now we give an explicit formula for the polynomial Lq(m,n). This formula can

be proved by using Proposition 3, but we will prove it directly to keep the proof

simple.

Theorem 4. For integers m ≥ 0 and n ≥ 0, we have

Lq(m,n) =

�

λ�m

(−1)
m+l(λ)

�
m

λ

�� l(λ)�

i=0

qλ1+···+λi

�n
. (8)

Here λ � m means that λ is a composition of m, i.e., λ = (λ1, . . . ,λl) is a sequence
of positive integers such that λ1 + · · · + λl = m. For such λ, l = l(λ) denotes its
length and

�m
λ

�
=

m!
λ1!···λl!

the associated multinomial coefficient.

Proof. We denote the right-hand side of (8) by Tq(m,n). By Theorem 1, it suffices

to show that �

m≥0,n≥0

Tq(m,n)
xm

m!

yn

n!
= (e−x

+ e−y − 1)
−1

(9)
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under the commutation relations (4). We have

�

n≥0

Tq(m,n)
xm

m!

yn

n!

=
xm

m!

�

λ�m

(−1)
m+l(λ)

�
m

λ

� �

n≥0




l(λ)�

i=0

qλ1+···+λi




n

yn

n!

=
xm

m!

�

λ�m

(−1)
m+l(λ)

�
m

λ

�
e
� l(λ)

i=0 qλ1+···+λiy

=

�

λ�m

(−1)
l(λ) (−x)

λl · · · (−x)
λ1

λl! · · · λ1!
e
� l(λ)

i=0 qλ1+···+λiy

=

�

λ�m

(−1)
l(λ)ey (−x)

λl

λl!
ey · · · ey (−x)

λ1

λ1!
ey

(here we used the relation (−x)
ieqiy

= ey
(−x)

i
). Consequently we obtain that

�

m≥0,n≥0

Tq(m,n)
xm

m!

yn

n!
=

�

l≥0

ey

l� �� �
(1− e−x

)ey · · · (1− e−x
)ey

= ey
�
1− (1− e−x

)ey
�−1

=
�
e−y − (1− e−x

)
�−1

= (e−x
+ e−y − 1)

−1

and this completes the proof.

Examples. We have:

Lq(1, n) = (1 + q)n,

Lq(2, n) = −(1 + q2
)
n

+ 2(1 + q + q2
)
n,

Lq(3, n) = (1 + q3
)
n − 3(1 + q + q3

)
n − 3(1 + q2

+ q3
)
n

+ 6(1 + q + q2
+ q3

)
n.

By putting q = −1 in the cases m = 2 and 3, we obtain the following alternating

sum formulas:

Corollary 5. For any integer n ≥ 1, we have
2n�

k=0

L(2, n, k)(−1)
k

= 2− 2
n, (10)

3n�

k=0

L(3, n, k)(−1)
k

= −3((−1)
n

+ 1) =

�
0 if n is odd,
−6 if n is even.

(11)
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