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Abstract

Fix integers b > a > 1 with g := gecd(a,b). A set S C N is {a, b}-multiplicative
if ax # by for all z,y € S. For all n, we determine an {a,b}-multiplicative set
with maximum cardinality in [n], and conclude that the maximum density of an
{a, b}-multiplicative set is b+ . For A, B CN, aset SCNis{A, B}-multiplicative
ifforalla € Aand b € B and x,y € S, the only solutions to ax = by have a = b
and z =y. For 1 < a <b< cand a,b,c coprime, we give a O(1) time algorithm to
approximate the maximum density of an {{a}, {b, ¢} }-multiplicative set to arbitrary
given precision.

1. Introduction

Erd8s [3], Erdés [4], Erdés [5] defined a set S C N to be multiplicative Sidon? if
ab = cd implies {a,b} = {c,d} for all a,b,c,d € S; see [9, 10, 11]. In a similar
direction, Wang [14] defined a set S C N to be double-free if x # 2y for all z,y € S,
and proved that the maximum density of a double-free set is 2; see [1] for related
results. Here N:={1,2,...}, Ny = NU{0}, [n] :={1,2,...,n}, and the density of
S CNis

lim S0l .

n—oo n
Motivated by some questions in graph colouring, Pér and Wood [8] generalised the
notion of double-free sets as follows. For k € N, a set S C N is k-multiplicative

IResearch supported by the Australian Research Council.
2 Additive Sidon sets have been more widely studied; see the classical papers [6, 12, 13] and the
survey by O’Bryant [7].
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(Sidon) if ax = by implies a = b and © = y for all a,b € [k] and z,y € S. Pér and
Wood [8] proved that the maximum density of a k-multiplicative set is @(@).

Here we study the following alternative generalization of double-free sets. For
distinct a,b € N, a set S C N is {a, b}-multiplicative if ax # by for all x,y € S.
Our first result is to determine the maximum density of an {a, b}-multiplicative set.
Assume that a < b throughout.

Say = € N is an i-th subpower of b if x = b’y for some y # 0 (mod b). If z is
an i-th subpower of b for some even/odd ¢ then z is an even/odd subpower of b.
The following table gives the even subpowers of b € {2, 3,4} and the corresponding
entry in The On-Line Encyclopedia of Integer Sequences.

b=2]1,3,4,5,7,9,11,12,13, 15, 16, 17, 19, 20, 21, 23, . .. [A003159]
b=3|1,2,4,57,8,9,10,11,13,14,16,17,18,19,20,22,...  [A007417]
b=4|1,2,3,56,7,9,10,11,13,14,15,16,17,18,19,21,...  [A171948g]

We prove the following result:

Theorem 1. Fix integers b > a > 1. Let g := ged(a,b). Then for every integer
n € N, the even subpowers of g in [n] are an {a,b}-multiplicative set in [n] with
maximum cardinality. And the even subpowers ofg are an {a,b}-multiplicative set

with density ﬁ, which is mazimum.

Note that if g = a then b > 2g and b+ g < %b, and if g < a then a > 2g and
b+g<b+ta< %b. In both cases the density bound ﬁ in Theorem 1 is at least
2, which is the bound obtained by Wang [14] for the a = 1 and b = 2 case.

We propose a further generalization of double-free sets. Let A,B C N. Say
S C Nis {A, B}-multiplicative if ax = by implies a = b and x = y for all @ € A and
b€ B, and z,y € S. One case is easily dealt with. If B := {b} and b is coprime
to each element of A, and there is some element a € A such that a < b, then, by
the reasoning above, the even subpowers of b form an {A, B}-multiplicative set of
(maximum) density Wbl'

The simplest nontrivial case (not covered by Theorem 1) is {A,B}-
multiplicativity for A = {a}, B = {b,c}, 1 < a < b < ¢, with a,b, ¢ pairwise
coprime. We have the following theorem:

Theorem 2. Consider a,b,c € N pairwise coprime, with 1 < a < b < ¢. For all
fized € > 0, there is a O(1) time algorithm that computes the mazimum density of
an {{a}, {b, c} }-multiplicative set to within e.
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2. Proof of Theorem 1

First suppose that ged(a,b) = 1. Let T be the set of even subpowers of b. We now
prove that T is an {a, b}-multiplicative set with maximum density. In fact, for all [n],
we prove that T, := T'N[n] has maximum cardinality out of all {a, b}-multiplicative
sets contained in [n].

The key to our proof is to model the problem using a directed graph. Let G be the
directed graph with V(G) := [n] where (z,y) € E(G) whenever bz = ay (implying
z < y). Thus S C [n] is {a,b}-multiplicative if and only if S is an independent
set in G. If (z,y, 2) is a directed path in G, then x = $y and z = gy. Thus each
vertex y has indegree and outdegree at most 1. Since (z,y) € E(G) implies z < y,
G contains no directed cycles. Thus G is a collection of disjoint directed paths.
Hence a maximum independent set in G is obtained by taking all the vertices at
even distance from the source vertices®, where a vertex y is a source (indegree 0) if
and only if ¢y is not an integer; that is, if y # 0 (mod b).

We now prove that the vertices at distance d from a source vertex are precisely
the d-th subpowers of b. We proceed by induction on d > 0. Each vertex y of G has
an incoming edge if and only if $y € N, which occurs if and only if y = 0 (mod b)
since ged(a,b) = 1. Thus the source vertices of G are precisely the 0-th subpowers
of b. This proves the d = 0 case of the induction hypothesis. Now consider a vertex
y at distance d from a source vertex. Thus y = gx for some vertex x at distance
d — 1 from a source vertex. By induction, z is a (d — 1)-th subpower of b. That
is, x = b%"!z for some z # 0 (mod b). Thus y = b*Z, which, since ged(a,b) = 1,
implies that Z is an integer. Hence Z # 0 (mod b) and y is a d-th subpower of b,
as claimed.

This proves that the even subpowers of b form a maximum independent set in
G. That is, T, is an {a, b}-multiplicative set of maximum cardinality in [n]. To
illustrate this proof, the following table shows two examples of the graph G with
b = 3. Observe that the i-th row consists of the i-th subpowers of 3 regardless of a.

a=1landb=3 a=2and b=3
1 2 4 5 7 8 0 11 ---|1 2 4 5 7 8 10 11 13 14 16
L 1 ! ! 1 1 Ll U 1l
3 6 12 15 21 24 30 33 3 6 12 15 21 24
L ! ! ! 1 1 1 ! 1
9 18 36 45 63 72 90 99 --- 9 18 36
L ! ! ! ! 1 ! !
27 48 108 135 189 216 270 297 --- 27 48

3Note that this is not necessarily the only maximum independent set—for a path component
with odd length, we may take the vertices at odd distance from the source of this path. This
observation readily leads to a characterization of all maximum independent sets in G, and thus of
all {a, b}-multiplicative sets in [n] with maximum cardinality. Details omitted.
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We now bound |7},| from above. Observe that
i : n
Tn:{b2y;0<z<%logbn,1§y§ﬁ,y¢0(modb)} .
Thus

L(IOgbn)/2J "b 1 n -‘

IT0] < Z T b2
i=0

b—1)n 1
i>0
(b—1)n b

We now bound |7},| from below. Observe that

T, = [n]\ {b2¢+1y :0<i< 4((logyn) — 1), 1<y < b%%, yZ0 (mod b)} .

Thus
L((logy n)—1)/2] b_1
Lol =n— > {T sz-‘
i=0
b—1)n 1
> n = ogym) +1) - LS L
>0
1 (b—1)n v
>n_§(<10gbn)+1)_ b2 b2 — 1
n

These upper and lower bounds on |T,| imply that

b
T | = " + O(log,n) .
Hence the density of T is b%, and because T,, is optimal for each n, no {a,b}-
multiplicative set has density greater than b%
We now drop the assumption that ged(a,b) = 1. Let g := ged(a,b). Since
ar = by if and only if ¢z = gy, a set S is {a,b}-multiplicative if and only if S is

b/g _ b
b/g+1 — b+g’

{%, g}—multiplicative. Since the theorem is proved.
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3. Proof of Theorem 2

Fix A = {a} and B = {b,c}, where 1 < a < b < ¢, and a, b, ¢ are pairwise coprime.
For convenience, we use the infinite graph GG with vertex set N and edge set

E(G) = {{z,y} : bz = ay or cx = ay, and z,y € N}.

Let G,, denote the subgraph of G induced by the vertex set [n]. Let § be the
maximum density of an {{a}, {b, c} }-multiplicative set. Then
(Gn)

.«
6 = lim
n—oo n

)

where a(G,,) is the size of a maximum independent set in G,,.
The infinite graph G has components C), ;, with vertex set

V(Cpq) = a9 cYq : v,y € No}

for all p € Ng, ¢ € N, and ¢ not divisible by a, b, or c. Note that each C,, , is finite.
Define p as the height of the component, and subsets of constant x + y as rows.
Note that the maximum and minimum vertices in Cp 4 are cPq and aPq respectively.
The first few components of G for a = 2, b = 3, and ¢ = 5 are shown below:

For a,b, c as above and fixed € > 0, let d be a non-negative integer d € Ny, to
be specified later. Basically, d is a cutoff height which allows us to partition the
components of GG, into three types, for any given n € N. The first are complete
components C), , where n > cPq. The second are small incomplete components S, 4
where p < d and aPq < n < cPq. The third are large incomplete components L, ,
with p > d and a?q < n < cPq.

Let ar(G,,) denote the size of a maximum independent set in the components of
type T in G, for T € {C, S, L}. We clearly have

a(Gp) = ac(Gr) + as(Gr) + an(Gyr) .

Thus,
5= tim 2€Cn) | gy @5(Gn) Ly m:50+65+&
n— oo n n— oo n n— oo n
where o
5T = hm aT( n)
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Below we show that these limits exist, and we determine d¢ and dg explicitly. Then
we show that, for any € > 0, we can choose d so that §;, < €. Hence, we can calculate
0 to arbitrary precision.

3.1. Complete Components

We require the following lemma about independent sets in grid-like graphs by Cas-
saigne and Zimmerman [2].

Lemma 1. Define a graph H by V(H) := Ny x Ny and
EH):={{v,w}:v,w e V(H),|v1 —w1| + |va — wa| = 1}.

Suppose that F is a finite subgraph of H such that (z,y) € V(F) implies (x —1,y) €
V(F) unless © =0, and (z,y — 1) € V(F) unless y = 0. Then one of the sets

O :={(z,y) e V(F):x+yis odd} or
E:={(z,y) e V(F):x+yis even}

18 a maximum independent set in F.

Now, consider a complete component C},; of G,. Note that every complete
component Cp, , of height ¢ is isomorphic to Cp 1, and can be obtained by multiplying
each vertex by ¢. Thus, we call Cp,, a g-copy of Cp 1. In general, we use this
terminology for isomorphic components of any type obtained by multiplying each
vertex by q.

Observe that we can apply Lemma 1 to C), 1, since it is isomorphic to a subgraph
of H with the required properties. Define a function ¢ : V/(Cp 1) — Ng x Ny by

p(a” ") = (2,y).

If aP~*=YbTe¥ is adjacent to a?~* ~¥'b* ¥’ then |x — 2’| + |y — /| = 1 since they
must differ by a factor of b/a or ¢/a. Thus, since ¢ is injective, it defines an
isomorphism from C), ; to a subgraph of H. Assume a?~*"¥b*c¥ € V(C)p 1). Then
aP=e=vHpr=1ey € V(Cp1) unless = 0, and similarly a?~*~¥H1pTcv=1 € V(C) 1)
unless y = 0. Under ¢, these are clearly equivalent to the conditions required for
Lemma 1.

Hence, by Lemma 1 and the definition of ¢, a maximum independent set in
Cp,1 is given by choosing all rows with x + y even, or all rows with z + y odd.
In fact, it is clear that a maximum independent set is obtained by choosing the
bottom row first, then alternating between remaining rows. Thus, if p = 27 — 1,
then a(Cp1) = i(i + 1). If p = 2i, then a(Cp 1) = (i + 1)2. Since the largest vertex
in such a component is c¢”, we must have p < log,n for the component C,; to be
complete. Hence, the maximum height of a complete component is |log.n].
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Now we multiply by the number of components of height p that are complete.
For a given p, we require 1 < g < nc™P. Since a,b, c are pairwise coprime, the
density of numbers not divisible by a, b, or ¢ is

(a—1)(b—-1)(c—1)
abc

)

the number of components of height p in G, is

(a—1D(b-1)(c—1)n
cPabe

o(n) .

Let M(n) = %|log,n]. The total number of vertices in a maximum independent
set in complete components is therefore

a—1)(b—1)(c—1)n <2 [i( i+ 1)2

abe 621—1 C2z

=0

Thus, the density contribution is

M(n) . 2
. ac(Gn) 1 (a—l)(b—l )(c—1)n i(i+1) (+1)
o= T Ay ; At T
(a—l)(b—l Je—1) & z—|—1) (i+1)2
- Z 21 2
1=0
B (a—l)(b—l)(c—l). ct
B abe (c—1)3(c+1)

_ (a-1)(b-1)c
~ablc—1)2(c+ 1)

3.2. Small Incomplete Components

Now we consider the small incomplete components. Let Cy, 1[r] be the subgraph of
Cp1 induced by [r]. Define

fp,r) i= a(Cpalr])

for r € N. We can calculate all f for p < d in O(c?) time with a computer, again
using Lemma 1. (In fact, these components have bounded size, so any exponential
time maximum independent set algorithm runs in O(1) time.) Note that C), 4[n] is
a g-copy of Cp1[[n/q]], and therefore o(Cp 4[n]) = f(p, [n/q]). So we can find the
size of maximum independent sets in the small components using the f’s.

More precisely, given p < d and n, for how many values of ¢ is Cp, 4[n] a g-copy
of Cp1[r], where r = [n/q|? First note that

<q<

RS

r+1
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Thus, there are

(a—1)(b—1)(c—1)n (1 1 ) +o(n) = (a—1)b—1)(c—1)n +o(n)

abe roor+1 aber(r 4+ 1)

g-copies of Cp, 1[r]. The only restriction on r is that a? < r < ¢? — 1. Hence, the
size of a maximum independent set in components of type S is

ZZ (a—1)( b_l)(c_lmf(pm)—i—o(n).

=5 aber(r + 1)

As n — oo, the density contribution of small components is therefore
d cP-1

5S_n1LII;OEZ Z (a —1)( bfl)(cfl)nf(pyr)

v aber(r+1)

d cP-1
Z Z a_;bcr rJr)(l(;_ l)f(p,r).

p=0r=a?

Since a, b and ¢ are constants and d will be chosen so that it is bounded by a
function of a, b and ¢ (see the next section for details), ds can be computed in O(1)
time.

3.3. Large Incomplete Components

Finally, we show that we can choose d so that the density of a maximum independent
set in components of type L is less than e. For large components,

p>d and aPq<n<cq .

The latter implies ¢ Pn < ¢ < a”Pn. From the density of ¢, the number of large
incomplete components L, , for a given p > d is

(a—1)(b—1)(c—Dn (1 _ 1) +o(n) .

abc ab P

Since there are less than p? vertices in a component of height p,
iz (a—1Db-=1)(c=1)n (1 1

b abc al  cP
p=d

a—1)(b-1(c=1)n sz

abc

C(a=-1)0b-1)(c-1)n a"Y((a—1)%d>+2(a—1)d+a+1)
abe . (a—1)3
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L O-De-1n
be
where the last inequality holds for d > 22. Define 8 := (b — 1)(c — 1)/be. Hence,
0r, = lim L(Gn) < lim = Bn-a¥?=pa"4? .
n— o0 n n—oo n

So, to obtain a precision of € in the approximation § ~ dc + dg, we pick

d = max{2log,(6/¢),22}

which is a function of a, b, ¢, and e. This completes the proof of Theorem 2.
The following table gives approximate values of § for small a, b, and c:

al|lb]|ec 1)

2 13|51 0.7292
23| 7] 0.7407
2 15|71 0.8235
2 15|91 0.8187
217191 0.8709
3 14|51 0.7093
314 |7]0.7934
315 |71 0.8239
315 |81 0.8212
3178108727

These results were obtained by incrementing d and looking for convergence to 4 dec-
imal places. We also approximated dg using a naive algorithm (based on Lemma 1)
for large n. Numerical convergence occurred at values of d slightly lower than the
bound given above.
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