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Abstract

Fix integers b > a ≥ 1 with g := gcd(a, b). A set S ⊆ N is {a, b}-multiplicative

if ax �= by for all x, y ∈ S. For all n, we determine an {a, b}-multiplicative set
with maximum cardinality in [n], and conclude that the maximum density of an
{a, b}-multiplicative set is b

b+g . For A,B ⊆ N, a set S ⊆ N is {A,B}-multiplicative
if for all a ∈ A and b ∈ B and x, y ∈ S, the only solutions to ax = by have a = b
and x = y. For 1 < a < b < c and a, b, c coprime, we give a O(1) time algorithm to
approximate the maximum density of an {{a}, {b, c}}-multiplicative set to arbitrary
given precision.

1. Introduction

Erdős [3], Erdős [4], Erdős [5] defined a set S ⊆ N to be multiplicative Sidon2 if
ab = cd implies {a, b} = {c, d} for all a, b, c, d ∈ S; see [9, 10, 11]. In a similar
direction, Wang [14] defined a set S ⊆ N to be double-free if x �= 2y for all x, y ∈ S,
and proved that the maximum density of a double-free set is 2

3 ; see [1] for related
results. Here N := {1, 2, . . . }, N0 = N ∪ {0}, [n] := {1, 2, . . . , n}, and the density of
S ⊆ N is

lim
n→∞

|S ∩ [n]|
n

.

Motivated by some questions in graph colouring, Pór and Wood [8] generalised the
notion of double-free sets as follows. For k ∈ N, a set S ⊆ N is k-multiplicative

1Research supported by the Australian Research Council.
2Additive Sidon sets have been more widely studied; see the classical papers [6, 12, 13] and the

survey by O’Bryant [7].
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(Sidon) if ax = by implies a = b and x = y for all a, b ∈ [k] and x, y ∈ S. Pór and
Wood [8] proved that the maximum density of a k-multiplicative set is Θ( 1

log k ).
Here we study the following alternative generalization of double-free sets. For

distinct a, b ∈ N, a set S ⊆ N is {a, b}-multiplicative if ax �= by for all x, y ∈ S.
Our first result is to determine the maximum density of an {a, b}-multiplicative set.
Assume that a < b throughout.

Say x ∈ N is an i-th subpower of b if x = biy for some y �≡ 0 (mod b). If x is
an i-th subpower of b for some even/odd i then x is an even/odd subpower of b.
The following table gives the even subpowers of b ∈ {2, 3, 4} and the corresponding
entry in The On-Line Encyclopedia of Integer Sequences.

b = 2 1, 3, 4, 5, 7, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, . . . [A003159]
b = 3 1, 2, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 22, . . . [A007417]
b = 4 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, . . . [A171948]

We prove the following result:

Theorem 1. Fix integers b > a � 1. Let g := gcd(a, b). Then for every integer

n ∈ N, the even subpowers of
b
g in [n] are an {a, b}-multiplicative set in [n] with

maximum cardinality. And the even subpowers of
b
g are an {a, b}-multiplicative set

with density
b

b+g , which is maximum.

Note that if g = a then b � 2g and b + g � 3
2b, and if g < a then a � 2g and

b + g � b + a < 3
2b. In both cases the density bound b

b+g in Theorem 1 is at least
2
3 , which is the bound obtained by Wang [14] for the a = 1 and b = 2 case.

We propose a further generalization of double-free sets. Let A,B ⊆ N. Say
S ⊆ N is {A,B}-multiplicative if ax = by implies a = b and x = y for all a ∈ A and
b ∈ B, and x, y ∈ S. One case is easily dealt with. If B := {b} and b is coprime
to each element of A, and there is some element a ∈ A such that a < b, then, by
the reasoning above, the even subpowers of b form an {A,B}-multiplicative set of
(maximum) density b

b+1 .
The simplest nontrivial case (not covered by Theorem 1) is {A,B}-

multiplicativity for A = {a}, B = {b, c}, 1 < a < b < c, with a, b, c pairwise
coprime. We have the following theorem:

Theorem 2. Consider a, b, c ∈ N pairwise coprime, with 1 < a < b < c. For all

fixed � > 0, there is a O(1) time algorithm that computes the maximum density of

an {{a}, {b, c}}-multiplicative set to within �.
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2. Proof of Theorem 1

First suppose that gcd(a, b) = 1. Let T be the set of even subpowers of b. We now
prove that T is an {a, b}-multiplicative set with maximum density. In fact, for all [n],
we prove that Tn := T ∩ [n] has maximum cardinality out of all {a, b}-multiplicative
sets contained in [n].

The key to our proof is to model the problem using a directed graph. Let G be the
directed graph with V (G) := [n] where (x, y) ∈ E(G) whenever bx = ay (implying
x < y). Thus S ⊆ [n] is {a, b}-multiplicative if and only if S is an independent
set in G. If (x, y, z) is a directed path in G, then x = a

b y and z = b
ay. Thus each

vertex y has indegree and outdegree at most 1. Since (x, y) ∈ E(G) implies x < y,
G contains no directed cycles. Thus G is a collection of disjoint directed paths.
Hence a maximum independent set in G is obtained by taking all the vertices at
even distance from the source vertices3, where a vertex y is a source (indegree 0) if
and only if a

b y is not an integer; that is, if y �≡ 0 (mod b).
We now prove that the vertices at distance d from a source vertex are precisely

the d-th subpowers of b. We proceed by induction on d � 0. Each vertex y of G has
an incoming edge if and only if a

b y ∈ N, which occurs if and only if y ≡ 0 (mod b)
since gcd(a, b) = 1. Thus the source vertices of G are precisely the 0-th subpowers
of b. This proves the d = 0 case of the induction hypothesis. Now consider a vertex
y at distance d from a source vertex. Thus y = b

ax for some vertex x at distance
d − 1 from a source vertex. By induction, x is a (d − 1)-th subpower of b. That
is, x = bd−1z for some z �≡ 0 (mod b). Thus y = bd z

a , which, since gcd(a, b) = 1,
implies that z

a is an integer. Hence z
a �≡ 0 (mod b) and y is a d-th subpower of b,

as claimed.
This proves that the even subpowers of b form a maximum independent set in

G. That is, Tn is an {a, b}-multiplicative set of maximum cardinality in [n]. To
illustrate this proof, the following table shows two examples of the graph G with
b = 3. Observe that the i-th row consists of the i-th subpowers of 3 regardless of a.

a = 1 and b = 3 a = 2 and b = 3

1 2 4 5 7 8 10 11 · · · 1 2 4 5 7 8 10 11 13 14 16 · · ·
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
3 6 12 15 21 24 30 33 · · · 3 6 12 15 21 24 · · ·
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
9 18 36 45 63 72 90 99 · · · 9 18 36 · · ·
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
27 48 108 135 189 216 270 297 · · · 27 48 · · ·
.
.
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3Note that this is not necessarily the only maximum independent set—for a path component

with odd length, we may take the vertices at odd distance from the source of this path. This

observation readily leads to a characterization of all maximum independent sets in G, and thus of

all {a, b}-multiplicative sets in [n] with maximum cardinality. Details omitted.
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We now bound |Tn| from above. Observe that

Tn =
�
b2iy : 0 � i � 1

2 logb n, 1 � y � n

b2i
, y �≡ 0 (mod b)

�
.

Thus

|Tn| �
�(logb n)/2��

i=0

�
b− 1

b

n

b2i

�

� 1 + 1
2 (logb n) +

(b− 1)n
b

�

i�0

1
b2i

� 1 + 1
2 (logb n) +

(b− 1)n
b

b2

b2 − 1

= 1 + 1
2 (logb n) +

b

b + 1
n .

We now bound |Tn| from below. Observe that

Tn = [n] \
�
b2i+1y : 0 � i � 1

2 ((logb n)− 1), 1 � y � n

b2i+1
, y �≡ 0 (mod b)

�
.

Thus

|Tn| � n−

�((logb n)−1)/2��

i=0

�
b− 1

b

n

b2i+1

�

� n− 1
2 ((logb n) + 1)−

(b− 1)n
b2

�

i�0

1
b2i

� n− 1
2 ((logb n) + 1)−

(b− 1)n
b2

b2

b2 − 1
= n− 1

2 ((logb n) + 1)−
n

b + 1

=
b

b + 1
n− 1

2 ((logb n) + 1) .

These upper and lower bounds on |Tn| imply that

|Tn| =
b

b + 1
n + Θ(logb n) .

Hence the density of T is b
b+1 , and because Tn is optimal for each n, no {a, b}-

multiplicative set has density greater than b
b+1 .

We now drop the assumption that gcd(a, b) = 1. Let g := gcd(a, b). Since
ax = by if and only if a

g x = b
g y, a set S is {a, b}-multiplicative if and only if S is

{
a
g , b

g}-multiplicative. Since b/g
b/g+1 = b

b+g , the theorem is proved.
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3. Proof of Theorem 2

Fix A = {a} and B = {b, c}, where 1 < a < b < c, and a, b, c are pairwise coprime.
For convenience, we use the infinite graph G with vertex set N and edge set

E(G) = {{x, y} : bx = ay or cx = ay, and x, y ∈ N}.

Let Gn denote the subgraph of G induced by the vertex set [n]. Let δ be the
maximum density of an {{a}, {b, c}}-multiplicative set. Then

δ = lim
n→∞

α(Gn)
n

,

where α(Gn) is the size of a maximum independent set in Gn.
The infinite graph G has components Cp,q with vertex set

V (Cp,q) = {ap−x−ybxcyq : x, y ∈ N0}

for all p ∈ N0, q ∈ N, and q not divisible by a, b, or c. Note that each Cp,q is finite.
Define p as the height of the component, and subsets of constant x + y as rows.
Note that the maximum and minimum vertices in Cp,q are cpq and apq respectively.
The first few components of G for a = 2, b = 3, and c = 5 are shown below:

For a, b, c as above and fixed � > 0, let d be a non-negative integer d ∈ N0, to
be specified later. Basically, d is a cutoff height which allows us to partition the
components of Gn into three types, for any given n ∈ N. The first are complete

components Cp,q where n > cpq. The second are small incomplete components Sp,q

where p � d and apq � n < cpq. The third are large incomplete components Lp,q

with p > d and apq � n < cpq.
Let αT (Gn) denote the size of a maximum independent set in the components of

type T in Gn, for T ∈ {C,S, L}. We clearly have

α(Gn) = αC(Gn) + αS(Gn) + αL(Gn) .

Thus,

δ = lim
n→∞

αC(Gn)
n

+ lim
n→∞

αS(Gn)
n

+ lim
n→∞

αL(Gn)
n

= δC + δS + δL

where
δT = lim

n→∞

αT (Gn)
n

.
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Below we show that these limits exist, and we determine δC and δS explicitly. Then
we show that, for any � > 0, we can choose d so that δL < �. Hence, we can calculate
δ to arbitrary precision.

3.1. Complete Components

We require the following lemma about independent sets in grid-like graphs by Cas-
saigne and Zimmerman [2].

Lemma 1. Define a graph H by V (H) := N0 × N0 and

E(H) := {{v,w} : v,w ∈ V (H), |v1 − w1| + |v2 − w2| = 1}.

Suppose that F is a finite subgraph of H such that (x, y) ∈ V (F ) implies (x−1, y) ∈
V (F ) unless x = 0, and (x, y − 1) ∈ V (F ) unless y = 0. Then one of the sets

O := {(x, y) ∈ V (F ) : x + y is odd} or

E := {(x, y) ∈ V (F ) : x + y is even}

is a maximum independent set in F .

Now, consider a complete component Cp,1 of Gn. Note that every complete
component Cp,q of height q is isomorphic to Cp,1, and can be obtained by multiplying
each vertex by q. Thus, we call Cp,q a q-copy of Cp,1. In general, we use this
terminology for isomorphic components of any type obtained by multiplying each
vertex by q.

Observe that we can apply Lemma 1 to Cp,1, since it is isomorphic to a subgraph
of H with the required properties. Define a function ϕ : V (Cp,1) → N0 × N0 by

ϕ(ap−x−ybxcy) = (x, y).

If ap−x−ybxcy is adjacent to ap−x�−y�
bx�

cy�
, then |x − x�| + |y − y�| = 1 since they

must differ by a factor of b/a or c/a. Thus, since ϕ is injective, it defines an
isomorphism from Cp,1 to a subgraph of H. Assume ap−x−ybxcy ∈ V (Cp,1). Then
ap−x−y+1bx−1cy ∈ V (Cp,1) unless x = 0, and similarly ap−x−y+1bxcy−1 ∈ V (Cp,1)
unless y = 0. Under ϕ, these are clearly equivalent to the conditions required for
Lemma 1.

Hence, by Lemma 1 and the definition of ϕ, a maximum independent set in
Cp,1 is given by choosing all rows with x + y even, or all rows with x + y odd.
In fact, it is clear that a maximum independent set is obtained by choosing the
bottom row first, then alternating between remaining rows. Thus, if p = 2i − 1,
then α(Cp,1) = i(i + 1). If p = 2i, then α(Cp,1) = (i + 1)2. Since the largest vertex
in such a component is cp, we must have p � logc n for the component Cp,1 to be
complete. Hence, the maximum height of a complete component is �logc n�.
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Now we multiply by the number of components of height p that are complete.
For a given p, we require 1 � q � nc−p. Since a, b, c are pairwise coprime, the
density of numbers not divisible by a, b, or c is

(a− 1)(b− 1)(c− 1)
abc

,

the number of components of height p in Gn is

(a− 1)(b− 1)(c− 1)n
cpabc

+ o(n) .

Let M(n) = 1
2�logc n�. The total number of vertices in a maximum independent

set in complete components is therefore

αC(Gn) =
(a− 1)(b− 1)(c− 1)n

abc

M(n)�

i=0

�
i(i + 1)
c2i−1

+
(i + 1)2

c2i

�
+ o(n) .

Thus, the density contribution is

δC = lim
n→∞

αC(Gn)
n

= lim
n→∞

1
n
·
(a− 1)(b− 1)(c− 1)n

abc

M(n)�

i=0

�
i(i + 1)
c2i−1

+
(i + 1)2

c2i

�

=
(a− 1)(b− 1)(c− 1)

abc

∞�

i=0

�
i(i + 1)
c2i−1

+
(i + 1)2

c2i

�

=
(a− 1)(b− 1)(c− 1)

abc
·

c4

(c− 1)3(c + 1)

=
(a− 1)(b− 1)c3

ab(c− 1)2(c + 1)
.

3.2. Small Incomplete Components

Now we consider the small incomplete components. Let Cp,1[r] be the subgraph of
Cp,1 induced by [r]. Define

f(p, r) := α(Cp,1[r])

for r ∈ N. We can calculate all f for p � d in O(cd) time with a computer, again
using Lemma 1. (In fact, these components have bounded size, so any exponential
time maximum independent set algorithm runs in O(1) time.) Note that Cp,q[n] is
a q-copy of Cp,1[�n/q�], and therefore α(Cp,q[n]) = f(p, �n/q�). So we can find the
size of maximum independent sets in the small components using the f ’s.

More precisely, given p � d and n, for how many values of q is Cp,q[n] a q-copy
of Cp,1[r], where r = �n/q�? First note that

n

r + 1
< q � n

r
.
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Thus, there are

(a− 1)(b− 1)(c− 1)n
abc

�
1
r
−

1
r + 1

�
+ o(n) =

(a− 1)(b− 1)(c− 1)n
abcr(r + 1)

+ o(n)

q-copies of Cp,1[r]. The only restriction on r is that ap � r � cp − 1. Hence, the
size of a maximum independent set in components of type S is

d�

p=0

cp−1�

r=ap

(a− 1)(b− 1)(c− 1)n
abcr(r + 1)

f(p, r) + o(n) .

As n →∞, the density contribution of small components is therefore

δS = lim
n→∞

1
n

d�

p=0

cp−1�

r=ap

(a− 1)(b− 1)(c− 1)n
abcr(r + 1)

f(p, r)

=
d�

p=0

cp−1�

r=ap

(a− 1)(b− 1)(c− 1)
abcr(r + 1)

f(p, r).

Since a, b and c are constants and d will be chosen so that it is bounded by a
function of a, b and c (see the next section for details), δS can be computed in O(1)
time.

3.3. Large Incomplete Components

Finally, we show that we can choose d so that the density of a maximum independent
set in components of type L is less than �. For large components,

p > d and apq � n < cpq .

The latter implies c−pn < q � a−pn. From the density of q, the number of large
incomplete components Lp,q for a given p > d is

(a− 1)(b− 1)(c− 1)n
abc

�
1
ap
−

1
cp

�
+ o(n) .

Since there are less than p2 vertices in a component of height p,

αL(Gn) �
∞�

p=d

p2
·
(a− 1)(b− 1)(c− 1)n

abc

�
1
ap
−

1
cp

�

� (a− 1)(b− 1)(c− 1)n
abc

∞�

p=d

p2

ap

=
(a− 1)(b− 1)(c− 1)n

abc
·
a1−d((a− 1)2d2 + 2(a− 1)d + a + 1)

(a− 1)3
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� (b− 1)(c− 1)n
bc

· a−d/2

where the last inequality holds for d � 22. Define β := (b− 1)(c− 1)/bc. Hence,

δL = lim
n→∞

αL(Gn)
n

� lim
n→∞

1
n
· βn · a−d/2 = βa−d/2 .

So, to obtain a precision of � in the approximation δ ≈ δC + δS , we pick

d = max{2 loga(β/�), 22}

which is a function of a, b, c, and �. This completes the proof of Theorem 2.
The following table gives approximate values of δ for small a, b, and c:

a b c δ
2 3 5 0.7292
2 3 7 0.7407
2 5 7 0.8235
2 5 9 0.8187
2 7 9 0.8709
3 4 5 0.7093
3 4 7 0.7934
3 5 7 0.8239
3 5 8 0.8212
3 7 8 0.8727

These results were obtained by incrementing d and looking for convergence to 4 dec-
imal places. We also approximated δS using a naive algorithm (based on Lemma 1)
for large n. Numerical convergence occurred at values of d slightly lower than the
bound given above.
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