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Abstract
We study the recurrence relations and derive the generating functions of the entries
along the rows and diagonals of the Catalan and Bell number difference tables.

– In Memory of Professor Herb Wilf

1. Introduction

One of the most famous sequences in all of enumerative combinatorics is the Catalan
numbers

Cn =
1

n + 1

�
2n
n

�
.

They possess numerous fascinating properties and appear in many problems in
mathematics and computer science; see, for example, [1, 3]. A glimpse of the old
classic [2], and more recently, [4, 7], reveals there are hundreds of books and articles
written about the sequence {Cn}∞n=0. One of the reasons it occurs so frequently in
enumeration is a well-known recurrence relation that it satisfies:

C0 = 1, Cn =
n�

k=1

Ck−1Cn−k, n ≥ 1.

Interestingly, Cn also satisfies several other less famous recurrence relations. The
first is Touchard’s formula

Cn+1 =
�n/2��

k=0

�
n

2r

�
2n−2rCr.
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The second is an nth difference type recurrence formula

Cn =
�(n+1)/2��

r=1

(−1)r−1

�
n− r + 1

r

�
Cn−r (1)

They can be found on, for example, page 319 and 322 respectively of [4].
The structure of Equation (1) prompts us to study

Kn =
n�

r=0

(−1)n−r

�
n

r

�
Cr =

n�

r=0

(−1)n−r

r + 1

�
n

r

��
2r
r

�
. (2)

In the OEIS [6], {Kn}∞n=0 is sequence A005043. This sequence enumerates certain
Motzkin and Dyck paths. We notice that {Kn}∞n=0 is the leftmost diagonal of the
Catalan number difference table (see Table 1). The difference table contains an
infinite number of rows and diagonals. Only the first two diagonals and first four
rows are found in the OEIS. Furthermore, the OEIS only provides combinatorial
meaning for the two diagonals and first two rows. We wonder if there is a systematic
interpretation of the combinatorial meaning for all the rows and diagonals of the
Catalan difference table.

An answer can be found in the numeration of certain n×1 non-interlocking letter
columns discussed in Chapter 4 of [5]. The purpose of this paper is to explain this
association. During the process of exploring this connection we are able to derive
recurrence formulas and generating functions for each of the rows and diagonals.

We close this section with a derivation of the generating function K(t) of the
sequence {Kn}∞n=0. It is easy to show that

(−1)k

k + 1

�
2k
k

�
= 2 · 4k

� 1
2

k + 1

�
.

Together with

∞�

n=k

�
n

k

�
(−t)n−k =

∞�

r=0

�
k + r

r

�
(−t)r =

1
(1 + t)k+1

,
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we find

K(t) =
∞�
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n�
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.

As we shall see in Section 3, K(t) plays an important role in finding the generating
functions of the diagonals of the Catalan difference table.

2. Rows of the Catalan Difference Table

In the next two sections we shall combinatorially analyze the difference table of
the Catalan numbers. Table 1 shows a portion of this infinite table. The top row
consists of the Catalan numbers Cn, where n ≥ 0. The main diagonal contains the
numbers 1, 0, 1, 1, 3, 6, 15, 91, 252, 603, . . . . We shall show that this is precisely the
sequence {Kn}∞n=0.

1 1 2 5 14 42 132 429 1430 4862 16796 . . .
0 1 3 9 28 90 297 1001 3432 11934 . . .

1 2 6 19 62 207 704 2431 8502 . . .
1 4 13 43 145 497 1727 6071 . . .

3 9 30 102 352 1230 4344 . . .
6 21 72 250 878 3114 . . .

15 51 178 628 2236 . . .
36 127 450 1608 . . .

91 323 1158 . . .
232 835 . . .

603 . . .
. . .

Table 1: A portion of the Catalan number difference table.
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We use ci,n, where i ≥ 0 and n ≥ i, to denote the entry in the ith row and nth
column in this table. Obviously, c0,n = cn are the Catalan numbers. To maintain
consistency we will write cn instead of Cn in the rest of the paper.

2.1. The First Row of the Difference Table

The top row of the difference table contains the Catalan numbers cn, where n ≥ 0.
They enumerate many combinatorial objects. Standard interpretations include the
following:

• The number of ways to triangulate the interior of a convex (n + 2)-gon.

• The number of rooted binary trees of height n.

• The number of ways to parenthesize n pairs of left and right parentheses.

For our purpose we use an interpretation different from these three.
Consider an n× 1 column of letters selected from an alphabet A = {αi}i≥1. For

brevity we shall call it an n-column. Denote entries in an n-column by a1a2 . . . an.
An n-column is said to be non-skipping if, for any i, all predecessors of ai within
A must have already appeared among a1a2 . . . ai−1. In other words, after a1a2 . . . ai

is generated, ai+1 is either a letter that has already appeared, or the next letter in
A that has not appeared yet. Note that the definition implies that a non-skipping
n-column always starts with a1 = α1.

In addition, call a letter column interlocking if there exist 1 ≤ i < j < k < � ≤ n
such that ai �= aj , ai = ak, and aj = a�. In a way, we can say that the pattern
aiaj , where ai �= aj , repeats again later within the same column as aka�, with the
understanding that neither ai and aj nor ak and a� need to be adjacent.

For demonstrative purposes we shall use the English letters. In Figure 1 both
columns are non-skipping, but the one on the left is non-interlocking, while the one
on the right is interlocking due to the repetition of the AB pattern.

A
B
A
C
A
A

A
B
C
A
C
B

Figure 1: Examples of non-interlocking and interlocking letter columns

We are interested in the enumeration of non-interlocking and non-skipping (NINS)
n-columns. Notice that in an NINS n-column, if ak is the last occurrence of α1, then,
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because of the non-skipping property, we may assume that for some t ≥ 1, all the let-
ters α1,α2, . . . ,αt appear within a1a2 . . . ak. Now each of the letters α2,α3, . . . ,αt

cannot appear in the segment ak+1ak+2 . . . an, for otherwise, along with ak = α1,
one of the patterns α1αi, where 1 ≤ i ≤ t, would have reappeared. This means
only new letters αt+1,αt+2, . . . can appear in ak+1ak+2 . . . an. The non-skipping
property also requires ak+1 = αt+1. In addition, the segment ak+1ak+2 . . . an still
obeys the NINS condition. Therefore, over all NINS n-columns with ak as the last
occurrence of α1, the segments ak+1ak+2 . . . an are in one-to-one correspondence
with NINS (n − k)-columns. This important observation plays a key role in our
analysis.

Theorem 2.1 Let un denote the number of NINS n-columns. Define u0 = 1. Then

un = cn.

Proof. It is easy to verify that u1 = 1, u2 = 2, and u3 = 5. Their respective letter
columns are depicted in Figure 2.

A A A A A A A A
B A B B A B A

C B B A A

Figure 2: NINS letter columns of size at most three.

Let ak be the last occurrence of the letter α1 = A within an NINS n-column.
Obviously, 1 ≤ k ≤ n. Notice that a1a2 . . . ak−1 is a NINS (k − 1)-column. In
this regard, defining u0 = 1 counts the number of the null column. Our earlier
remark asserts that all the letters from ak+1 to an must be new, and the segment
ak+1ak+2 . . . an can be reduced to an NINS (n−k)-column. Figure 3 lists the NINS
4-columns according to this classification.

A A A A A A A A A A A A A A
B B B B B A A B A B B A B A
C C B C B B B A A C B B A A
D C C B B C B C B A A A A A

k = 1 k = 2 k = 3 k = 4

Figure 3: Classification of NINS 4-columns.

It follows that

u0 = 1, un =
n�

k=1

uk−1un−k, n ≥ 1.
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Since un satisfies the same initial condition and recurrence relation as the Catalan
numbers, we find un = cn. ✷

A closing remark: an alternate proof of Theorem 2.1 using parentheses can be
found in Chapter 4 of [5].

2.2. The General Row of the Difference Table

The second row of the Catalan difference table forms the sequence {c1,n}∞n=1. By
construction, we have c1,n = cn − cn−1, which leads to our first result regarding
c1.n.

Theorem 2.2 For n ≥ 2, the number of NINS n-columns that starts with AB is

c1,n. Equivalently, c1,n is the number of NINS n-columns that do not start with AA.

Proof. Without any restriction, there are cn NINS columns of size n× 1. Because
of non-skipping property, any such column has to start with AA or AB. Hence we
need to remove those that start with AA.

If an NINS n-column starts with AA, by removing the first A, we obtain an NINS
(n− 1)-column. Conversely, starting with any NINS (n− 1)-column, by appending
an A on top, we form an NINS n-column that starts with AA. Therefore there are
cn−1 such columns, and c1,n = cn − cn−1 counts the number of n-columns that do
not start with AA (consequently they must start with AB). ✷

We say that a letter column has a repetition of type i , or it has a repetition
at position i , if ai = ai+1. If i = n, an n-column has a repetition of type n if
it ends with an A. Equivalently, we may define repetition of type i as having the
property ai = a(i+1) mod n. Hence c1,n counts the number of NINS n-columns that
do not have repetition at position 1. Notice that, in particular, c1,1 = 0 because
the 1× 1 letter column A has a type 1 repetition.

We can restate Theorem 2.2 as: for n ≥ 1, the number c1,n enumerates NINS
n-columns that do not have repetition at the first position. It turns out that this
result also holds for other rows in the Catalan difference table.

Theorem 2.3 For j ≥ 1, the sequence {cj,n}∞n=j counts the number of NINS n-

columns that do not have any repetition at the first j positions.

Proof. Induct on j. The case of j = 1 was proved in Theorem 2.2. Assume, for
some j ≥ 2, the sequence {cj−1,n}∞n=j−1 counts the number of NINS n-columns that
do not have type i repetitions for 1 ≤ i ≤ j − 1. We now analyze the meaning of
{cj,n}∞n=j , where cj,n = cj−1,n − cj−1,n−1.

To account for all NINS n-columns that do not have repetition at the first j
positions, we start with the cj−1,n columns that do not have repetition at the first
j − 1 positions, and remove from them those that do have a type j repetition.
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The case of n = j requires a separate treatment. Among the cj−1,j columns that
do not have repetition at the first j − 1 positions, some also have type j repetition,
hence must be discarded from our consideration. By definition, these columns have
aj = A. Notice that no repetition at position j − 1 implies aj−1 �= A. Hence
a1a2 . . . aj−1 is an NINS (j − 1)-column that does not have repetition at the first
j − 1 positions.

Conversely, by adding an A at the bottom of an NINS (j − 1)-column that does
not have repetition at its first j − 1 positions will create a repetition of type j.
Therefore, we need to throw out cj−1,j−1 of the original cj−1,j columns. Hence the
number of NINS n-columns that do not have repetition at the first j positions is
cj−1,j − cj−1,j−1, which is precisely cj,j .

Now we look at n ≥ j+1. Any column of this type must have aj−1 �= aj and aj =
aj+1. By deleting aj , we form a new NINS (n− 1)-column a1a2 . . . aj−1aj+1 . . . an,
which does not have repetition at its first j− 1 positions. Conversely, starting with
NINS (n − 1)-column b1b2 . . . bn−1 that does not have repetition at its first j − 1
positions, we can form an n-column b1b2 . . . bj−1bjbjbj+1 . . . bn−1 that does have a
type j repetition. Therefore the number of forbidden columns is cj−1,n−1.

We have proved that, for n ≥ j + 1, the number cj,n = cj−1,n − cj−1,n−1 gives
the number of NINS n-columns that do not have repetition at their first j positions.
This completes the induction. ✷

The combinatorial meaning of cj,n yields the following recurrence relation, in
which we adopt the usual convention that a summation is empty if its upper limit
is less than its lower limit.

Theorem 2.4 For n− 1 ≥ j ≥ 1,

cj,n = cj−1,n−1 +
j�

k=3

ck−1,k−1cj−k,n−k +
n�

k=max(3,j+1)

cn−kcj,k−1.

Proof. Consider any NINS n-column with no repetition at its first j positions. Let
ak be the last occurrence of A. Obviously k �= 2. If k = 1, then a2a3 . . . an is an
NINS (n−1)-column over the alphabet A−{A} = A−{α1} that does not have any
repetition at its first j − 1 positions. Hence there are cj−1,n−1 such NINS columns.

For 3 ≤ k ≤ j, the upper portion a1a2 . . . ak−1 (recall that ak−1 �= A) is an NINS
(k−1)-column without repetition at its first k−1 positions. This upper portion can
be formed in ck−1,k−1 ways. The lower portion ak+1ak+2 . . . an, as we had remarked
before, is essentially an NINS (n− k)-column. Since this is part of a letter column
that originally does not have repetition at positions 1 through j, we know that the
lower portion does not have any repetition at its first j − k positions. Hence it
can be formed in cj−k,n−k ways. We have found that

�j
k=3 ck−1,k−1cj−k,n−k NINS

columns of size n× 1 meet our condition.
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For each k that satisfies max(3, j + 1) ≤ k ≤ n, the same old familiar argument
yields cj,k−1cn−k columns. By combining the counts over all possible values of k,
we obtain the desired recurrence relation. ✷

Here are a few examples:

c1,n = cn−1 +
n�

k=3

cn−kc1,k−1, n ≥ 2,

c2,n = c1,n−1 +
n�

k=3

cn−kc2,k−1, n ≥ 3,

c3,n = c2,n−1 + cn−3 +
n�

k=4

cn−kc3,k−1, n ≥ 4,

c4,n = c3,n−1 + c1,n−3 + cn−4 +
n�

k=5

cn−kc4,k−1, n ≥ 5,

c5,n = c4,n−1 + c2,n−3 + c1,n−4 + 3cn−5 +
n�

k=6

cn−kc5,k−1, n ≥ 6.

The generating function for the Catalan numbers is well-known [1, 2, 3, 7] to be

C(t) =
∞�

t=0

cntn =
1−

√
1− 4t

2t
.

The generating function for {cj,n}∞n=j can be derived recursively.

Theorem 2.5 Let Cj(t) =
�∞

n=j cj,ntn. Then C0(t) = C(t) = 1−
√

1−4t
2t , and, for

j ≥ 1,
Cj(t) = (1− t)Cj−1(t)− cj−1,j−1t

j−1.

Proof. Since cj,n = cj−1,n − cj−1,n−1, we obtain
∞�

n=j

cj,ntn =
∞�

n=j

cj−1,ntn − t
∞�

n=j

cj−1,n−1t
n−1

= [Cj−1(t)− cj−1,j−1t
j−1]− tCj−1(t),

which simplifies to the stated result. ✷

For examples,

C1(t) = (1− t)C0(t)− 1 = (1− t)C(t)− 1,
C2(t) = (1− t)C1(t) = (1− t)2C(t)− (1− t),
C3(t) = (1− t)C2(t)− t2 = (1− t)3C(t)− (1− 2t + 2t2).
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These examples suggests that it is possible to express Cj(t) in terms of C(t) explic-
itly.

Theorem 2.6 For j ≥ 0,

Cj(t) = (1− t)jC(t)−
j−1�

k=0

�
k�

i=0

(−1)i

�
j

i

�
ck−i

�
tk.

Proof. For n ≥ j, we know, from the construction of the difference table,

cj,n =
j�

i=0

(−1)i

�
j

i

�
cn−i. (3)

Thus

∞�

n=j

cj,ntn =
j�

i=0

(−1)i

�
j

i

�
ti

∞�

n=j

cn−it
n−i

=
j�

i=0

(−1)i

�
j

i

�
ti

�
C(t)−

j−i−1�

�=0

c�t
�

�

= (1− t)jC(t)−
j−1�

i=0

j−i−1�

�=0

(−1)i

�
j

i

�
c�t

i+�

= (1− t)jC(t)−
j−1�

k=0

�
k�

i=0

(−1)i

�
j

i

�
ck−i

�
tk,

which is what we want to prove. ✷

It is clear from the proof that a similar result also holds in any difference table.

3. Diagonals of the Catalan Difference Table

We now turn our attention to the sequences {c̃j,n}∞n=j , where j = 0, 1, 2, . . . , formed
by the diagonal entries in the Catalan difference table. Table 2 illustrates the
meaning of the notation we use to identify the entries. It is clear that c̃j,n = cn−j,n.
Hence c̃j,n counts the number of NINS n-columns that do not have repetition at
their first n− j positions.

3.1. The First Diagonal of the Catalan Difference Table

The entry c̃n = c̃0,n on the first diagonal counts the number of n× 1 NINS columns
that do not have a repetition at their first n positions. Recall that this means
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c̃0,0 c̃1,1 c̃2,2 c̃3,3 c̃4,4 . . .
c̃0,1 c̃1,2 c̃2,3 c̃3,4 . . .

c̃0,2 c̃1,3 c̃2,4 . . .
c̃0,3 c̃1,4 . . .

c̃0,4 . . .
. . .

Table 2: Renaming of the entries in the Catalan difference table.

these columns do not end with an A. Naturally we set c̃0 = 1. The combinatorial
interpretation also implies that c̃1 = 0. For n ≥ 2, we obtain the following recurrence
relation.

Theorem 3.1 For n ≥ 2,

c̃n =
n−1�

k=1

c̃k−1

�
c̃n−k + c̃n−k−1

�
.

Proof. Let ak be the last occurrence of A. Since the column cannot end with an
A, we find 1 ≤ k ≤ n − 1. In addition, ak−1 �= A, hence a1a2 . . . ak−1 is an NINS
(k − 1)-column that does not have a repetition at its first k − 1 positions. Thus
it can be formed in c̃k−1 ways. The remaining question is: in how many ways can
ak+1ak+2 . . . an be formed?

Notice that all these letters are different from those used in the upper portion
a1a2 . . . ak, and ak+1 is the next unused letter. The lower portion is essentially an
NINS (n−k)-column. However, an may or may not be equal to ak+1. If an �= ak+1,
what we have is an NINS (n − k)-column that does not have a repetition at its
first n − k positions, hence it can be formed in c̃n−k ways. If an = ak+1, then
an−1 �= ak+1. The removal of an will produce an NINS (n − k − 1)-column that
does not have a repetition at its first n − k − 1 positions, hence the lower portion
can be formed in c̃n−k−1 in this case. Combining what we have found yields the
given recurrence. ✷

This recurrence relation, along with the standard convolution argument, yields
the generating function of the sequence {c̃n}∞n=0.

Theorem 3.2 Let �C(t) =
�∞

n=0 c̃ntn, then

�C(t) =
(1 + t)−

√
1− 2t− 3t2

2t(1 + t)
.

Proof. Using the recurrence from Theorem 3.1, we find
∞�

n=2

c̃ntn = t
∞�

n=2

�
n−1�

k=1

c̃k−1c̃n−k

�
tn−1 + t2

∞�

n=2

�
n−1�

k=1

c̃k−1c̃n−k−1

�
tn−2.
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In terms of �C(t), we can rewrite it as

�C(t)− c̃0 − c̃1t = t �C(t)[ �C(t)− c̃0] + t2 �C(t) · �C(t).

Since c̃0 = 1 and c̃1 = 0, this reduces to the equation

(t + t2) �C2(t)− (1 + t) �C(t) + 1 = 0.

Solving for �C(t) finishes the proof. ✷

Note that we can write

�C(t) =
1
2t

�
1−

�
(1 + t)(1− 3t)

1 + t

�
=

1
2t

�
1−

�
1− 3t
1 + t

�
,

which is precisely K(t) in Section 1. This proves that Kn = c̃n for all n ≥ 0.

3.2. Other Diagonals of the Catalan Difference Table

For j ≥ 1, we find a recurrence for the sequence {c̃j,n}∞n=j .

Theorem 3.3 For n− 1 ≥ j ≥ 1,

c̃j,n =
j�

�=1

c̃j−�,j−�c̃�−1,n−j+�−1 +
n−j�

k=1

c̃k−1c̃j,n−k.

Proof. Let ak be the last occurrence of A in an NINS n-column that does not have
a repetition at its first n− j positions. Then 1 ≤ k ≤ n. Since n− j ≥ 1, we know
that a2 �= A. Hence, technically, k �= 2. Nevertheless, we shall see that it will be
taken care of, numerically, in the summation.

First consider n− j + 1 ≤ k ≤ n. In this case, the upper portion a1a2 . . . ak−1 is
an NINS (k− 1)-column that does not have a repetition at the first n− j positions,
so it can be formed in c̃k−1−(n−j),k−1 ways. The lower portion ak+1ak2 . . . an is
essentially an NINS (n − k)-column with no restriction in regard to repetitions,
hence it can formed in cn−k = c̃n−k,n−k ways. This case produces

n�

k=n−j+1

c̃n−k,n−k c̃k−1−(n−j),k−1 =
j�

�=1

c̃j−�,j−�c̃�−1,n−j+�−1

columns.
For 1 ≤ k ≤ n− j, the upper portion a1a2 . . . ak−1 does not have a repetition in

the first k − 1 positions, hence it can be formed in c̃k−1 ways. Note that c̃1 = 0,
which explains why k �= 2. The lower portion ak+1ak+2 . . . an is essentially an NINS
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(n− k)-column that does not have repetition in its first n− j − k positions, it can
be formed in c̃j,n−k ways. There are altogether

n−j�

k=1

c̃k−1c̃j,n−k

columns in this case. Combining this with the first case yields the stated recurrence
relation. ✷

For 1 ≤ j ≤ 4, we obtain these examples:

c̃1,n = c̃n−1 +
n−1�

k=1

c̃k−1c̃1,n−k, n ≥ 2,

c̃2,n = c̃n−2 + c̃1,n−1 +
n−2�

k=1

c̃k−1c̃2,n−k, n ≥ 3,

c̃3,n = 2c̃n−3 + c̃1,n−2 + c̃2,n−1 +
n−3�

k=1

c̃k−1c̃3,n−k, n ≥ 4,

c̃4,n = 5c̃n−4 + 2c̃1,n−3 + c̃2,n−2 + c̃3,n−1 +
n−4�

k=1

c̃k−1c̃4,n−k, n ≥ 5.

The generating function �Cj(t) =
�∞

n=j c̃j,ntn can be expressed in terms of �C(t),
as follows.

Theorem 3.4 For j ≥ 0,

�Cj(t) = (1 + t)j �C(t)−
j−1�

k=0

�
k�

i=0

�
j

i

�
c̃k−i

�
tk.

Proof. The construction of the difference table ensures that for all n ≥ j ≥ 1,

c̃j,n = c̃j−1,n + c̃j−1,n−1.

By applying it repeatedly, we obtain

c̃j,n =
j�

i=0

�
j

i

�
c̃n−i.

Note its similarity to Equation (3). The rest of the proof is almost identical to that
of Theorem 2.6, and hence is omitted. ✷



INTEGERS: 13 (2013) 13

To illustrate Theorem 3.4, we list below the results for 1 ≤ j ≤ 4.

�C1(t) = (1 + t) �C(t)− 1,

�C2(t) = (1 + t)2 �C(t)− (1 + 2t),

�C3(t) = (1 + t)3 �C(t)− (1 + 3t + 4t2),

�C4(t) = (1 + t)4 �C(t)− (1 + 4t + 7t2 + 9t3).

Once again, we note that the same argument could be applied to the diagonal
entries of any difference table to produce similar results.

4. The Bell Number Difference Table

Thus far, we have discussed the correlation between NINS n-columns and the Cata-
lan number difference table. It is the non-interlocking property that gives rise to
the convolution-type recurrence relation that is often found in Catalan numbers.
What if we drop the non-interlocking property? The answer can be found in the
Bell number Bn, which counts the number of partitions of an n-set.

Theorem 4.1 The number of non-skipping n-columns, denoted NS n-columns, is

Bn.

Proof. Given any n × 1 non-skipping letter column, the subsets containing sub-
scripts whose respective positions hold the same letter form a partition of [n] =
{1, 2, . . . , n}. Conversely, given any partition of [n], we can name the subsets
SA, SB, . . . , such that their smallest elements are in ascending order. Next, let
ai = k if i ∈ Sk. The result is an n×1 non-skipping letter column. This proves that
the n×1 non-skipping columns are in one-to-one correspondence with the partitions
of [n], hence they are counted by the Bell number Bn. ✷

The Bell number Bn can be defined recursively as

B0 = 1, Bn =
n−1�

k=0

�
n− 1

k

�
Bk, n ≥ 1.

This enables us to obtain another proof.
Proof. (Alternate Proof) Let vn denote the number of non-skipping n-columns.
We adopt the convention that v0 = 1, which can be considered as the number of
null columns. For n ≥ 1, assume that there are k occurrences of A other than the
first one. Hence 0 ≤ k ≤ n−1. The locations of these k occurrences can be selected
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in
�n−1

k

�
ways. Once the A’s are placed, the remaining n−k spaces essentially form

an NS (n− k)-column that uses B, C, . . . . Therefore

vn =
n−1�

k=0

�
n− 1

k

�
vn−k.

Since vn and Bn obey the same recurrence and share the same initial condition, we
conclude that vn = Bn for all n ≥ 0. ✷

Since no interlocking occurs when n ≤ 3, we find B1 = C1 = 1, B2 = C2 = 3,
and B3 = C3 = 5. When n = 4 only one interlocking NS 4-column can be found,
namely, ABAB. It follows that B4 = 15, and C4 = 14.

Naturally one may ask if there is any combinatorial meaning attached to the Bell
number difference table (see Table 3). As in the case of the Catalan difference table,
we denote the numbers in this table by bj,n, where n ≥ j, and let b0,n = bn = Bn.

1 1 2 5 15 52 203 877 4140 21147 115975 . . .
0 1 3 10 37 151 674 3263 17007 94828 . . .

1 2 7 27 114 523 2589 13744 77821 . . .
1 5 20 87 409 2066 11155 64077 . . .

4 15 67 322 1657 9089 52922 . . .
11 52 255 1335 7432 43833 . . .

41 203 1080 6097 36401 . . .
162 877 5017 30304 . . .

715 4140 25287 . . .
3425 21147 . . .

17722 . . .
. . .

Table 3: A portion of the Bell number difference table.

4.1. Rows of the Bell Difference Table

The proofs of Theorems 2.2 and 2.3 do not rely on the non-interlocking property,
hence we can apply them to non-skipping columns.

Theorem 4.2 For j ≥ 1 the sequence {bj,n}∞n=j counts the number of NS n-

columns that do not have any repetition at the first j positions.

The argument for the recurrence relation that the cj,n satisfy does depend on the
non-interlocking property. It appears that bj,n does not obey any simple recurrences.
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Nonetheless, it is clear from the structure of the difference table that

bj,n =
j�

i=0

(−1)i

�
j

i

�
bn−i.

There is another way to connect bj,n to the Bell numbers.

Theorem 4.3 For n ≥ 1,

b1,n+1 =
n−1�

k=0

�
n− 1

k

�
bn−k =

n−1�

�=0

�
n− 1

�

�
b�+1.

Proof. Once again let k count the number of A’s that occur beyond the initial A in
an NS (n+1)-column that begins with AB. Hence 0 ≤ k ≤ n−1. The placement of
these A’s is enumerated by

�n−1
k

�
. Once these A’s are placed, the remaining n− k

spaces are completed with an arbitrary NS (n−k)-column over A−{A} which starts
with B. The number of such letter columns is bn−k. This completes the proof of
the first equality. The second is obtained by a change in the index of summation.
✷

This result can be generalized.

Theorem 4.4 For n ≥ j ≥ 1,

bj,n+1 =
n−j�

k=0

�
n− j

k

�
bn−k =

n−j�

�=0

�
n− j

�

�
b�+j .

Proof. It suffices to prove the first equality. Induct on j. We have just proved the
case of j = 1. So we may assume the result holds for j − 1 for some j ≥ 2. Then,
using Pascal’s identity, we find

bj,n+1 = bj−1,n+1 − bj−1,n

=
n−j+1�

k=0

�
n− j + 1

k

�
bn−k −

n−j�

k=0

�
n− j

k

�
bn−k−1

=
n−j+1�

k=0

�
n− j + 1

k

�
bn−k −

n−j+1�

k=1

�
n− j

k − 1

�
bn−k

= bn +
n−j+1�

k=1

��
n− j + 1

k

�
−

�
n− j

k − 1

��
bn−k

=
n−j�

k=0

�
n− j

k

�
bn−k,

which completes the induction. ✷
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Corollary 4.5 For j ≥ 1, we have

bj,j+1 = bj , and bj,j+2 = bj + bj+1.

For j ≥ 2, we find

bj,j =
j−2�

k=0

(−1)kbj−1−k.

Proof. The first two results are direct consequences of Theorem 4.4. Apply

bj,j = bj−1,j − bj−1,j−1 = bj−1 − bj−1,j−1

repeatedly to derive the last identity. ✷

The simplicity of Theorem 4.4 and Corollary 4.5 suggest that there may exist
simple combinatorial proofs. We invite the readers to find them.

Bell numbers can be stated without using any recurrence. For instance, Dubin-
ski’s formula asserts that

Bn =
1
e

∞�

k=0

kn

k!
,

from which we obtain the following ordinary generating function

B(t) =
∞�

n=0

Bntn =
1
e

∞�

k=0

1
(1− kt)k!

.

Because of the remark following Theorem 2.6, we immediately obtain the next
result.

Theorem 4.6 Let Bj(t) =
�∞

n=j bj,ntn. For j ≥ 0.

Bj(t) = (1− t)jB(t)−
j−1�

k=0

�
k�

i=0

(−1)i

�
j

i

�
bk−i

�
tk.

We are often more interested in the exponential generating function

B(t) =
∞�

n=0

bn
tn

n!
= exp

�
et − 1

�
.

For j ≥ 1, the result for bj,n becomes rather easy if we study a non-standard form
of exponential generating function:

Bj(t) =
∞�

n=j

bj,n+1
tn

(n− j)!
.

Although it may look odd, it is precisely its peculiar set up that allows us to apply
Theorem 4.4 efficiently.
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Theorem 4.7 For j ≥ 1, the “shifted” exponential generating function for the

truncated sequence {bj,n+1}∞n=j is

Bj(t) = tjetB(j)(t),

where B(j)(t) denotes Dj
t B(t).

Proof. Using Theorem 4.4 we find

Bj(t) =
∞�

n=j

tn

(n− j)!

n−j�

k=0

�
n− j

k

�
bn−k

= tj
∞�

k=0

∞�

n=k+j

tk

k!
· bn−ktn−k−j

(n− k − j)!

= tj
� ∞�

k=0

tk

k!

�� ∞�

�=0

bj+�
t�

�!

�
,

from which the result follows. ✷

4.2. Diagonals of the Bell Difference Table

Following the same convention we adopted in the Catalan difference table, we name
the diagonal entries in the Bell difference table b̃j,n, where n ≥ j ≥ 0, and b̃j,n =
bn−j,n. Combinatorially, b̃j,n counts the number of NS n-columns that do not have
any repetition in its first n− j positions.

Theorem 4.8 For n ≥ j ≥ 0,

b̃j,n =
n−j�

k=0

(−1)k

�
n− j

k

�
bn−k.

Proof. Analytically, since b̃j,n = bn−j,n, this is a direct consequence due to the
construction of the difference table. What follows is a combinatorial proof. Let S
denote the of set of all NS n-columns. For 1 ≤ i ≤ n− j define Si to be the subset
of S that contains all the NS n-columns with a repetition at position i. Obviously,
|S| = bn. Consider Si1 ∩Si2 ∩ · · ·∩Sik . We may assume the subscripts i1, i2, . . . , ik
form � clusters of consecutive integers of sizes m1,m2, . . . ,m�. For each q, the qth

cluster of consecutive subscripts give rise to a block of mq + 1 repeated letters in
the n-columns. By deleting the first mq occurrences of these repeated letters for
each q, we obtain a NS column of size n −

��
q=1 mq = n − k. Since the converse

is also true, we see that
��Si1 ∩ Si2 ∩ · · · ∩ Sik

�� = n − k regardless of the choices of
i1, i2, . . . , ik. The result follows from principle of inclusion-exclusion. ✷
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Corollary 4.5 yields these special values for the first three diagonals:

b̃0,n =
n−2�

k=0

(−1)kbn−1−k, n ≥ 2, (4)

b̃1,n = bn−1, n ≥ 2,
b̃2,n = bn−2 + bn−1, n ≥ 3.

More generally, Theorem 4.4 becomes

Theorem 4.9 For n− 1 ≥ j ≥ 0,

b̃j+1,n+1 =
j�

k=0

�
j

k

�
bn−k =

j�

�=0

�
j

�

�
bn+�−j .

We can also compute the generating functions in the usual way.

Theorem 4.10 Let �Bj(t) =
�∞

n=j b̃j,ntn. Then �B(t) = �B0(t) = 1+tB(t)
1+t , and, for

j ≥ 0,

�Bj(t) = (1 + t)j �B(t)−
j−1�

k=0

�
k�

i=0

�
j

i

�
b̃k−i

�
tk.

Proof. It suffices to derive the generating function �B(t) = �B0(t). Define b−1 = 1 so
that (4) can be rewritten as

b̃0,n =
n�

k=0

(−1)kbn−1−k, n ≥ 0.

Then
�B(t) =

∞�

n=0

n�

k=0

(−1)kbn−1−ktn =

� ∞�

k=0

(−1)ktk
�� ∞�

�=0

b�−1t
�

�
.

Hence �B(t) = 1+tB(t)
1+t . ✷

For exponential generating functions, we study the shifted version

�Bj(t) =
∞�

n=j

b̃j,n
tn

(n− j)!
.

Theorem 4.11 For j ≥ 0, we find �Bj(t) = tje−tB(j)(t). In particular, �B0(t) =
e−tB(t) = exp(et − t− 1).
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Proof. Because of Theorem 4.8, we find

�Bj(t) =
∞�

n=j

tn

(n− j)!

n−j�

k=0

(−1)k

�
n− j

k

�
bn−k = tj

∞�

k=0

∞�

n=k+j

(−t)k

k!
· bn−ktn−k−j

(n− k − j)!

= tj
� ∞�

k=0

(−t)k

k!

�� ∞�

�=0

bj+�
t�

�!

�

= tje−tB(j)(t),

from which the special case of j = 0 follows easily. ✷

5. Closing Remarks

Interested readers may want to study the difference tables of other famous se-
quences, especially those with well-known combinatorial meanings.

We could also extend the definition (2) to

Kn,s,t =
n�

r=0

(−1)n−r

r + a

�
n

r

��
2r + b

r

�
.

Is there any combinatorial interpretation for this number?
We showed Kn = c̃n by proving that they share the same generating function.

Is it possible to find a direct combinatorial proof? The algebraic structure of (2)
suggests some kind of application of the principle of inclusion-exclusion may work.

We invite the readers to investigate these and other related problems.
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