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Abstract
Heron triangles have the property that all three of their sides as well as their area
are positive integers. In this paper, we give some estimates for the number of Heron
triangles with two of their sides fixed. We provide a general bound on this count
H(a, b), where the sides a, b are fixed positive integers, and the estimate here is
better than the one of Ionascu, Luca and Stănică for the general situation of fixed
sides a, b. In the case of primes sides p, q, there is an additional hypothesis which
helps us to drop the upper bounds on H(p, q). In particular, we prove that H(p, q)
is less than or equal to 1 when p − q ≡ 2 (mod 4). We also provide a count for
the number of Heron triangles with a fixed height (there exists only one such when
the height is prime). Moreover, we study the decomposability property of a Heron
triangle into two similar ones, and provide some cases when a Heron triangle is not
decomposable.
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1. Introduction

In the field of two-dimensional Euclidean geometry, a Heron triangle has the prop-
erty that its three sides, as well as its area are positive integers. Many interesting
questions can be raised about these triangles, and there has been a plethora of
research regarding several properties of the Heron triangles.

Ionascu, Luca and Stănică [10] found an upper bound for the number of Heron
triangles with two fixed sides. They also found sharper upper bounds for the number
of Heron triangles with two fixed prime sides. We improve upon the general bounds
for two fixed integer sides, as well as give tight bounds for the case where the
two fixed sides are primes. We also prove certain upper bounds for the number of
Heron triangles for special cases involving the fixed sides; namely, fixed sides that are
prime squares, twin primes, or Sophie Germain primes. We also find an example of
a Heron triangle whose sides are all perfect squares (question raised in [13]), namely,
the triangle of sides [18532; 43802; 44272] and of area 32918611718880. We present
the first instance of such a triangle in this paper.

Further, we study the decomposability of Heron triangles into two smaller Heron
triangles. It is known from [5] that any Heron triangle is radially decomposable.
We show that any isosceles Heron triangle is decomposable, and prove a few results
regarding the non-decomposability of certain Heron triangles.

Throughout this paper, we denote the three sides of a general triangle by lower
case letters, like a, b, c, and the corresponding vertices by capital letters, like A,B,C.
By abuse of notation, we use the same capital letters for the angles, as well as for the
corresponding vertices of the triangle. The semi-perimeter (a+ b+ c)/2 is denoted
by s and hence the area is given by ∆ =

√
s(s− a)(s− b)(s− c) (Heron formula).

2. Heron Triangles with Two Fixed Sides

Let H(a, b) be the number of Heron triangles whose two sides a, b are fixed. In [10],
a general upper bound for H(a, b) has been proposed, as follows.

Proposition 1 ([10]). If a ≤ b are fixed, then 0 ≤ H(a, b) ≤ min{2a−1, 4 (τ(ab))2},
where τ(n) represents the number of positive divisors of an integer n.

We first find a better bound on H(a, b). Later in this section, we also study the
case with two fixed prime sides, and once again improve the corresponding bounds
proved in [10].

2.1. Counting Heron Triangles with Fixed Integer Sides

Since a triangle can be uniquely determined by the length of two sides and the angle
between them, we simply find the maximum number of all possible values of the
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angle between the two fixed sides such that the triangle is a Heron triangle; this
number will give an upper bound for H(a, b).

Let the prime factorization of an integer n be

n = 2a0

s∏

i=1

pai
i

r∏

j=1

q
ej
j (1)

with primes pi ≡ 3 (mod 4) and qj ≡ 1 (mod 4) for all i, j.

We shall require the following known results (see for example [1, Chapter XIV],
with a correction in [15]) on primitive Pythagorean triples involving the prime
factorization of n as above.

Lemma 2. Assume that the prime factorization of a positive integer n is as in (1).
Then:

1. n can be represented as the sum of two positive coprime squares if and only if
ai = 0 for all i = 0, 1, . . . , s.

2. Assuming that ai = 0 for all i = 0, 1, . . . , s, the number of representations
of n as the sum of two positive coprime squares, ignoring signs and order, is
given by 2w(n)−1, where w(n) denotes the number of distinct primes factors
of n which are ≡ 1 (mod 4).

Lemma 3. Assume that the prime factorization of a positive integer n is as in (1).
Then the number of primitive Pythagorean triples (u,w, v) with hypotenuse v divid-
ing n is given by T (n) = 1

2 (
∏r

j=1(2ej + 1)− 1).

Proof. For each factor v of n, the number of primitive Pythagorean triples with v as
hypotenuse is given by the number of representations of v as a sum of two positive
coprime squares m2 + n2. From Lemma 2, we know that v can be represented as
m2 + n2 with gcd(m,n) = 1 if and only if all of its prime factors are ≡ 1 (mod 4),
and the number of such representations is 2w(v)−1, where w(v) denotes the number
of distinct prime factors of v.

Thus, the number of primitive Pythagorean triples (u,w, v) with hypotenuse v
dividing n is given by

T (n) =
r∑

j=1

2j−1σj(α1,α2, . . . ,αr),

where σj(α1,α2, . . . ,αr), the j-th elementary symmetric polynomial, and 0 ≤ αj ≤
ej for 1 ≤ j ≤ r. The term σj(α1,α2, . . . ,αr) denotes the number of ways in which
a factor v of n can be constructed using j distinct prime factors of n, each ≡ 1
(mod 4). Using known properties of elementary polynomials, the expression for
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T (n) further simplifies to:

T (n) =
1

2

r∑

j=1

2jσj(α1,α2, . . . ,αr)

=
1

2




r∑

j=0

2jσj(α1,α2, . . . ,αr)− 1





=
1

2




r∏

j=1

(2ej + 1)− 1



 ,

as we have 0 ≤ αj ≤ ej for all 1 ≤ j ≤ r. Hence the result.

Assuming the previous notation, we present our first result, which follows an idea
of [10, Theorem 2.3].

Theorem 4. Let a, b be two fixed integers, and let ab be factored as in (1). Then

H(a, b) ≤ 3 + (−1)ab

2




r∏

j=1

(2ej + 1)− 1



 .

Proof. Let C be the angle between the sides a, b, and so, $ = 1
2ab sinC. Then,

sinC = 2"
ab = u

v for some integers u, v with gcd(u, v) = 1, which implies that the
integers u, v are two components from a primitive Pythagorean triple with v as
hypotenuse. Thus we have v = m2 + n2, u ∈ {m2 − n2, 2mn} for gcd(m,n) = 1,
m > n.

Also note that 2"
ab = u

v implies v|ab, and for each factor v of ab, there are
two options {m2 − n2, 2mn} for u. Thus, the number of possible values of sinC
is bounded above by 2T (ab), where T (ab) = 1

2 (
∏r

j=1(2ej + 1) − 1) denotes the
number of primitive Pythagorean triples with hypotenuse v dividing ab, derived
from Lemma 3.

In case ab is odd, so is v = m2 + n2. In this case, 2"
ab = u

v implies that 2|u,
and thus for each factor v of ab, the only possible choice for u is 2mn (as m2 − n2

is odd). Therefore, for ab odd, the number of possible values of sinC is bounded
above by T (ab), where T (ab) = 1

2 (
∏r

j=1(2ej + 1)− 1), derived from Lemma 3.

For each possible value of sinC, there are at most two possible values of C, and
thus we have H(a, b) ≤ 2T (ab) if ab is odd, and H(a, b) ≤ 4T (ab) if ab is even, from
which we derive the result.

Theorem 4 immediately offers us an interesting observation regarding a special
class of fixed sides (a, b).

Corollary 5. If all the prime factors of ab are ≡ 3 (mod 4), then H(a, b) = 0.
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Proof. If all prime factors of ab are ≡ 3 (mod 4), the prime factorization of ab
is

∏s
i=1 p

ai
i , as in (1), with ej = 0 for all 1 ≤ j ≤ r. In this case, T (ab) =

1
2 (
∏r

j=1(2ej + 1)− 1) = 0, and hence H(a, b) = 0 from Theorem 4.

At this point, let us refer to the results available in [10]. When two fixed sides
are primes, p, q (&= 2) say, one can get the following bounds from [10, Theorem 2.4]:

H(p, q) is






= 0 if both p and q are ≡ 3 (mod 4),
= 2 if p = q ≡ 1 (mod 4),
≤ 2 if p &= q and exactly one of p and q is ≡ 3 (mod 4),
≤ 5 if p &= q and both p and q are ≡ 1 (mod 4).

(2)

From Theorem 4, we immediately obtain the same bounds in two of the cases.

Corollary 6. Let p, q (&= 2) be two fixed prime sides of a triangle. Then:

H(p, q) is

{
= 0 if both p and q are ≡ 3 (mod 4),
≤ 2 if p &= q and exactly one of p and q is ≡ 3 (mod 4).

Proof. In the first case, H(p, q) = 0 from Corollary 5. In the second case, T (pq) =
1
2 ((2 × 1 + 1) − 1) = 1, and thus H(p, q) ≤ 2T (p, q) = 2 from Theorem 4, as pq is
obviously odd.

For the remaining two cases, we obtain the following from Theorem 4.

Corollary 7. Let p, q (&= 2) be two fixed prime sides of a triangle. Then:

H(p, q) is

{
≤ 4 if p = q ≡ 1 (mod 4),
≤ 8 if p &= q and both p and q are ≡ 1 (mod 4).

Proof. In both the cases, pq is odd, and thus we have H(p, q) ≤ 2T (pq) from
Theorem 4. In the first case, T (pq) = T (p2) = 1

2 ((2 × 2 + 1) − 1) = 2, and thus
H(p, q) ≤ 2T (p, q) = 4. In the second case, T (pq) = 1

2 ((2×1+1)(2×1+1)−1) = 4,
and thus H(p, q) ≤ 2T (p, q) = 8.

Corollary 7 is slightly weaker than [10], but it has the advantage that it follows
easily from a more general result (Theorem 4), whereas the result from [10] had to
be dealt with as a separate problem, just for the primes. In the following section,
we discuss further improvements in the bounds for prime sides.

Let us compare our result with that of [10] by displaying some examples in
Table 1. Note that in the work of Ionascu, Luca and Stănică [10], H(a, b) ≤
min{2a − 1, 4 (τ(ab))2} (column 7 of Table 1), as stated in Proposition 1, as well.
The bound on H(a, b) that we propose in this section (column 4 in Table 1) is much
closer to the actual value (column 3 in Table 1), and it is clear that our result is
sharper than the existing bound, when a, b are composite integers.
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a b H(a, b) Upper bound Upper bound of [10]
(actual) from Theorem 4 2a− 1 4 (τ(ab))2 min{2a − 1, 4(τ(ab))2}

17 27 0 2 33 256 33
51 52 5 16 101 2304 101
65 87 4 26 129 1024 129
125 125 6 12 249 196 196
305 377 4 80 609 1024 609
714 728 5 16 1427 57600 1427
1189 1275 8 134 2377 9216 2377
3034 3434 7 160 6067 9216 6067
7089 7228 5 16 14177 20736 14177
81713 49274 0 16 98547 256 256

Table 1: Comparison of the bounds on H(a, b) when a, b are composite integers.

2.2. Counting Heron Triangles with Fixed Prime Sides

In this section, we present certain results, which under an additional hypothesis
slightly improves the bounds of H(a, b) from [10, Theorem 2.4].

Theorem 8. Let p, q (&= 2) be two fixed prime sides of a triangle. Then:

H(p, q) is






= 0 if both p and q are ≡ 3 (mod 4),
= 2 if p = q ≡ 1 (mod 4),
= 0 if p < q with p ≡ 1 (mod 4) and q ≡ 3 (mod 4),
≤ 1 if p > q with p ≡ 1 (mod 4) and q ≡ 3 (mod 4),
≤ 5 if p &= q and both p and q are ≡ 1 (mod 4).

Moreover, when both p and q are ≡ 1 (mod 4) with q > p and (t+1)(q− tp) is not
a perfect square, where t = (q/p), then H(p, q) ≤ 4.

Proof. We consider each case, separately (some are included in [10], certainly, but
we include them nonetheless, since we provide simpler proofs).

Case I. Both p and q are ≡ 3 (mod 4). This follows from Corollary 5.

Case II. p = q ≡ 1 (mod 4). When p = q ≡ 1 (mod 4) (and third side 2w), we
get H(p, q) ≤ 4 as an immediate consequence from Theorem 4, but an exact count
is easy to obtain. The area is ∆ = w

√
p2 − w2, and so, p is part of a Pythagorean

triple, that is, there exist integers m,n with p = m2+n2. By Lemma 2, since p ≡ 1
(mod 4), there is only one such representation (excluding order, say m > n), and
so, either w = 2mn, or w = m2 − n2, which implies that H(p, q) = 2, in this case.

For the next three cases, recall that the third side of the triangle is even, say 2w.
Using Heron’s formula,

4∆ =
√
(p+ q + 2w)(p+ q − 2w)(2w + p− q)(2w − p+ q)

=
√
((p+ q)2 − 4w2)(4w2 − (p− q)2).

(3)
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Case III. p < q with p ≡ 1 (mod 4) and q ≡ 3 (mod 4). As p < q, let us write
q − p = 4k + 2, and suppose that 2w is the third side. Certainly, by the triangle
inequality, (q − p)/2 = 2k + 1 < w < (q + p)/2 = p+ 2k + 1. From (3), we obtain

∆ =
√

(p+ 2k + 1 + w)(p+ 2k + 1− w)(w + 2k + 1)(w − 2k − 1)

=
√
((p+ 2k + 1)2 − w2)(w2 − (2k + 1)2).

We consider several cases. If there exists a prime r| gcd(p+2k+1−w,w− 2k− 1),
then r = p, and so, p|w − 2k − 1 < p, a contradiction. If there exists a prime
r| gcd(p+2k+1−w,w+2k+1), then r = p+4k+2 = q, and so, q|p+2k+1−w < p <
q, a contradiction. Moreover, if there exists a prime r| gcd(p+2k+1+w,w−2k−1),
then r = p + 4k + 2 = q, and so q|w − 2k − 1 < p, a contradiction. It remains to
consider the case of r| gcd(p + 2k + 1 + w,w + 2k + 1), which implies that r = p.
Combining all cases, we obtain that, for some integers m,n, we have

(p+ 2k + 1)2 − w2 = p!m2 and w2 − (2k + 1)2 = p!n2.

Add the previous two equations and obtain pq = p!(m2 + n2), and so $ ∈ {0, 1}. If
$ = 0, then pq = m2 + n2, and by Lemma 2, there are no representations of pq as a
sum of squares, as pq ≡ 3 (mod 4). If $ = 1, then we get that q = m2 + n2, which
is also a contradiction by Lemma 2. Thus, we get that H(p, q) = 0.

Case IV. p > q with p ≡ 1 (mod 4) and q ≡ 3 (mod 4). In this case, we write
p − q = 4k + 2, and proceed almost identically as in the previous case to obtain
that, for some integers m,n, we have

(q + 2k + 1)2 − w2 = q!m2 and w2 − (2k + 1)2 = q!n2.

Add the previous two equations and obtain pq = q!(m2 + n2), and so $ ∈ {0, 1}. If
$ = 0, then pq = m2 + n2, and by Lemma 2, there are no representations of pq as a
sum of squares, as pq ≡ 3 (mod 4). If $ = 1, then we get that p = m2 + n2, which
can be written in only one way, according to Lemma 2.

Now since w2 − (2k + 1)2 = qn2, we get

w = ±(2k + 1) + tq = ±p− q

2
+ tq,

for some integer t. We also know that 2w < p+ q and p < 2w + q, and thus w can
not be of the form p−q

2 + tq. Hence w must be of the form − p−q
2 + tq. Moreover,

since 2w < p+ q and p < 2w + q, the only option for t is (p/q). Thus, considering
all cases discussed till now, we get that H(p, q) ≤ 1.

Case V. p &= q and both p and q are ≡ 1 (mod 4). Assume p < q and write
q − p = 4k, and 2w for the third side of the Heron triangle. Certainly, by the
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triangle inequality, (q − p)/2 = 2k < w < (q + p)/2 = p+ 2k. From (3), we obtain

∆ =
√

(p+ 2k + w)(p+ 2k − w)(w + 2k)(w − 2k)

=
√
((p+ 2k)2 − w2)(w2 − (2k)2).

We consider several subcases. If there exists a prime r| gcd(p + 2k − w,w − 2k),
then r = p, and so, p|w− 2k < p, a contradiction. If there exists a prime r| gcd(p+
2k−w,w+2k), then r = p+4k = q, and so, q|p+2k−w < p < q, a contradiction.
Moreover, if there exists a prime r| gcd(p + 2k + w,w − 2k), then r = p + 4k = q,
and so q|w − 2k < p, a contradiction. It remains to consider the case of r| gcd(p+
2k+w,w+2k), which implies that r = p. Combining all cases, we obtain that, for
some integers m,n, we have

(p+ 2k)2 − w2 = p!m2 and w2 − (2k)2 = p!n2.

Add the previous two equations and obtain pq = p!(m2 + n2), and so $ ∈ {0, 1}. If
$ = 0, then pq = m2 + n2, and by Lemma 2, there are only two representations of
pq as a sum of squares.

If $ = 1, then we get that q can be written as q = m2 + n2 in only one way,
disregarding order. In this situation w2 ≡ (2k)2 (mod p), and thus w is of the form
w = ±2k + tp for some integer t. Since we know 2w < p + q and q < 2w + p, it
can not be of the form w = 2k + tp. Hence we must have w = −2k+ tp, and as we
know 2w < p + q and q < 2w + p, the only option for t is (q/p). Considering all
cases, we get that H(p, q) ≤ 2× 2 + 1 = 5.

The last claim follows easily, since if we assume that (t + 1)(q − tp) is not a
perfect square, for t = (q/p), then the two displayed identities from above (for
$ = 1) would imply that (p + 2k)2 − (tp − 2k)2 = pm2, which is equivalent to
(t + 1)(4k − (t − 1)p) = m2, that is, (t + 1)(q − tp) = m2, a contradiction. Thus
the count for the l = 1 case will not appear in this case and the bound will be
2× 2 = 4.

A natural question is whether the range of values in the last three inequalities of
Theorem 8 is completely covered. Given the extensive computations we performed,
we conjecture that H(p, q) never attains the values 4, 5 (under p &= q with p ≡ 1
(mod 4) and q ≡ 1 (mod 4)). However, we can certainly show that the following
values are attained:

1. H(p, q) is 0 or 1, when p > q with p ≡ 1 (mod 4) and q ≡ 3 (mod 4) and

2. H(p, q) is 0 or 1 or 2 or 3, when p &= q with p ≡ 1 (mod 4) and q ≡ 1 (mod 4).

In Table 2, we provide examples that indeed all such cases are possible. It does re-
quire further study for properties of the primes to exactly identify the corresponding
values of H(p, q), which we leave as an open problem.

In the following section, we take a look at the bounds on H(a, b) where the sides
a, b are fixed primes with special properties.



INTEGERS: 13 (2013) 9

Case p q H(p, q) Third side
1 13 3 0 -

5 3 1 4

17 5 0 -
2 13 5 1 12

37 13 2 30,40
4241 2729 3 1530,1850, 6888

Table 2: H(p, q) for different values of p and q.

2.3. Counting Heron Triangles with Special Prime Sides

The case where the two sides a, b are Sophie Germain primes comes directly from
Theorem 8, as follows.

Corollary 9. Let p, q = 2p+ 1 be Sophie Germain primes. Then H(p, q) = 0.

Proof. We consider two cases. First suppose that p ≡ 3 (mod 4). Then q = 2p+1 ≡
3 (mod 4), and by Case I of Theorem 8, we have H(p, q) = 0. Now suppose p ≡ 1
(mod 4). Then we have q = 2p+1 ≡ 3 (mod 4), and by Case III of Theorem 8, we
immediately obtain H(p, q) = 0.

We obtain a similar result for Mersenne primes.

Corollary 10. Let p, q be two Mersenne prime numbers. Then H(p, q) = 0.

Proof. Suppose that the sides p, q are Mersenne primes, p = 2x − 1, q = 2y − 1 (for
some primes x ≤ y). Then, both p and q are ≡ 3 (mod 4) and so, by Case I of
Theorem 8, we have H(a, b) = 0.

In case of twin primes, we not only obtain a bound on H(p, q), but can also
estimate the third side in each case. The result is as follows.

Theorem 11. Let p, q = p + 2 be twin primes. Then H(p, q) ≤ 1. Moreover,
H(p, q) = 1 if and only if p−2 is a perfect square, and if that is so, the third side of
the triangle must be 2p− 2, and one must have p ≡ 11 (mod 12), p &≡ 7 (mod 8).

Proof. Recall that the third side of the triangle is even, say 2w. Also, by the triangle
inequality, we have w < p+ 1. Using Heron’s formula and (3),

∆ =
√
(p+ 1+ w)(p+ 1− w)(w + 1)(w − 1) =

√
((p+ 1)2 − w2)(w2 − 1).

Suppose that r &= 2 is a prime. As gcd(w + 1, w − 1)|2, one cannot have r| gcd(w +
1, w − 1). If r| gcd(p + 1 − w,w − 1), then r = p, which implies that p|w − 1 < p,
a contradiction. If r| gcd(p+ 1 + w,w − 1), then r = p+ 2 = q, which implies that
q|w − 1 < p, a contradiction. If r| gcd(p+ 1− w,w + 1), then r = p+ 2 = q, which
implies that q|w + 1 < p+ 2 = q, again a contradiction. If r| gcd(p+ 1+w,w + 1),
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then r = p, which implies that p|w+1 ≤ p+1, that is w+1 = p. To summarize, if
there exists a prime r &= 2 such that r|w2−1, then either w+1 = p, or either of w+1
and w − 1 is a whole square (note that w + 1 and w − 1 cannot be simultaneously
integer squares).

In the first case, where w+1 = p, we have H(a, b) ≤ 1. In fact, we can say more.
Since w+1 = p, then ∆ = 2p

√
p− 2. Writing ∆ = 2p∆′, we get p = ∆′2+2. Thus,

p ≡ 3 (mod 4) and since p is the smaller prime in a twin prime pair, it must also
satisfy p ≡ 5 (mod 6), and so p ≡ 11 (mod 12). From Gauss’ sum of three squares
function formula applied to p = ∆′2+12+12 (or simply by looking at ∆′ (mod 4)),
we see that we also need p &≡ 7 (mod 8).

In the second case, assume that the odd prime r divides w − 1, and w + 1 = 2e

for some positive integer e. From our discussion, we must have w − 1 = m2,
for some integer m. It easily follows that e = 1, and so w = 1. In that case,
4∆ =

√
2p(p+ 2) &∈ Z, since p is odd. Next, assume that w − 1 = 2f for some

positive integer f , and there is an odd prime r|w+ 1, that is, w+ 1 = n2 (for some
integer n), as per our earlier discussion. Then, we easily obtain w = 3, and so,
2∆ =

√
2(p− 2)(p+ 4) &∈ Z, since the prime p is odd. Thus, H(p, q) = 0 in both

these cases.

The only remaining case is when w + 1 = 2e and w − 1 = 2f simultaneously
for positive integer e, f . In this case, one obtains w = 3 once again, and thus,
H(p, q) = 0 in this case.

Example 12. We can give several examples of Heron triangles based on twin primes
with parameters (p, q, 2p−2,∆), satisfying the conditions of our theorem: (3, 5, 4, 6),
(11, 13, 20, 66), (227, 229, 452, 6810).

It may be interesting to investigate primes with other special properties as well.

2.4. Heron Triangles with Square Sides

In this section, we first answer affirmatively an open question of Sastry [13], that
there exists a primitive (co-prime sides) Heron triangle with square sides. For that,
we ran experiments (using a “bounded” approach) in GNU/Linux environment
using C with GMP, and stopped when we obtained the following example.

Example 13. There exists a Heron triangle with square sides, namely

[a, b, c,$] = [18532, 43802, 44272, 32918611718880].

Now, we turn our attention to general Heron triangles with square sides, and
prove the following.

Proposition 14. There is no isosceles Heron triangles with square sides.
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Proof. Let the sides of the triangle be a2, a2, b2, and the height h corresponding to
b2. Since the semi-perimeter of a Heron triangle is an integer, then b is even, say
b = 2b1. By Pythagoras’ theorem, a4 = h2 +4b21, and since in a Heron triangle, the
heights are always rational numbers, we obtain that h is an integer. As a2, h, 2b21
form a Pythagorean triple, we can have the following two cases.

Case 1: 2b21 = 2mn, h = m2 − n2, a2 = m2 + n2 for some integers m,n with
gcd(m,n) = 1. So, b21 = mn. Now since m,n are co-prime to each other, m =
x2, n = y2 for some integers x, y. Therefore we get a2 = x4 + y4, which does not
have any integer solution, by a known consequence of Fermat’s Last Theorem.

Case 2: 2b21 = m2 − n2, h = 2mn, a2 = m2 + n2 for some integers m,n with
gcd(m,n) = 1. As, m2 − n2 is even and gcd(m,n) = 1, m,n are both odd. So,
m2 + n2 ≡ 2 (mod 8). But, for any integer a, a2 &≡ 2 (mod 8), and hence we get a
contradiction.

3. Heron Triangles with Other Constraints

In this section, rather than fixing the sides, we impose constraints on other proper-
ties of the triangle, namely one of the heights of the triangle, and the property of
decomposability.

3.1. Counting Heron Triangles with Fixed Height

We first fix one of the heights of a Heron triangle, which we assume integer, unless
otherwise specified. It is an easy exercise to show that if the Heron triangle contains
more than one integer height it cannot be primitive (that is, gcd(a, b, c) = 1). We
consider non-Pythagorean Heron triangles with fixed height h (of corresponding
vertex A) to obtain the following results.

Theorem 15. The following statements are true:

1. Let h be an integer. Then h is the height of a Heron triangle if and only if
h > 2.

2. For a fixed prime height h, there exists only one non-Pythagorean Heron tri-
angle which has b = c = h2+1

2 and a = h2 − 1.

3. For a fixed height h = 2α0
∏k

i=1 p
αi
i , where pi > 2 for all i ≥ 1, there exist

1
4

(
|2α0 − 1|

∏k
i=1(2αi + 1)− 1

)2
many non-Pythagorean Heron triangles.

Proof. Assume that the height of length h is the one corresponding to the side a
and to the angle A.
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Claim 1: Assume that h is rational and h ≤ 2; recall that the semi-perimeter
s = (a + b + c)/2. Square the area and impose the condition on the height to get
s(s − a)(s − b)(s − c) = a2h2

4 ≤ a2. Label x = s − a, y = s − b, z = s − c. Using
the triangle inequality, we get x + y + z = s > a and so, xyz < a. Therefore,
x + y + z > xyz, which we rewrite as 1

xy + 1
xz + 1

yz > 1. If min{x, y, z} ≥ 2, then

1 < 1
xy + 1

xz + 1
yz ≤ 3

4 , which is a contradiction. Thus, min{x, y, z} = 1. Assume

x = 1 (all the other cases are similar). Then, 1
y +

1
z +

1
yz > 1, and so, min{y, z} ≤ 2.

Case 1 Let min{y, z} = 1, say y = 1. Since x = y = 1, then s = a + 1 = b + 1,
and a = b. It follows from s = a+ c

2 = a+ 1 that c = 2. We get a triangle of sides
(a, a, 2), which cannot be Heron for any integer a ≥ 2.

Case 2: Let min{y, z} = 2, say y = 2. Then, 1
z + 1

2z > 1
2 , and so, z ≤ 2.

We have two possibilities, namely (x, y, z) ∈ {(1, 1, 1), (1, 1, 2)}, and (a, b, c) ∈
{(2, 2, 2), (3, 3, 2)}. However, neither of these triangles has integer area.

We show the converse under the assumption that the height h is an integer.
Certainly, a Heron triangle of height 2 does not exist, since 2 must be part of a
Pythagorean triple and that is impossible. If h = 2k, then h2 = (k2+1)2−(k2−1)2;

if h = 2k+1, then h2 =
(
(k + 1)2 + k2

)2− (2k(k + 1))2. Thus, we can always write
h2 = x2 − y2 (for some integers x, y), and so, one may construct an isosceles Heron
triangle of height h by taking b = c = x, a = 2y (since h is integer and the base is
an even integer, the area is an integer).

A

B CD

c

v

h

u = a− v

b

A

B CD

c

v

h

u = a− v

b

Figure 1: Heron triangle with fixed height h.

Claim 2: Suppose that a Heron triangle (as in Figure 1) has sides of lengths a, b, c
and the prime number height h corresponding to A. In$ABD, we have h2+v2 = c2,
and so, h2 = (c + v)(c − v). As h is a prime and v &= 0, we get c + v = h2 and
c − v = 1. Therefore c = h2+1

2 and v = h2−1
2 . Similarly, in $ACD, we have

b+ (a− v) = h2, b− (a− v) = 1, and so b = h2+1
2 and a = h2 − 1. Hence the claim.

Claim 3: Now, let us consider the general case h = 2α0
∏k

i=1 p
αi
i , where pi > 2

for all i ≥ 1. In $ABD, by Pythagoras’ rule, we have h2 + v2 = c2, and so,
(c + v)(c − v) = h2 = 22α0

∏k
i=1 p

2αi
i . The choices for the pair (c + v, c − v) for

which c, v are positive integers must have both (c + v), (c − v) odd or both even.
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The number of such distinct choices is

X =
1

2

(
|2α0 − 1|

k∏

i=1

(2αi + 1)− 1

)
.

Once v is determined, in$ACD, the number of choices for the pair (b+a−v, b−a+v)

is, as before, X = 1
2

(
|2α0 − 1|

∏k
i=1(2αi + 1)− 1

)
, which will determine a, b.

Note that the choices of sides (c, v) in$ABD and that of sides (b, a−v) of$ACD
come from the same list, and each choice generates two non-Pythagorean Heron
triangles with height h, as shown in Figure 1, if and only if v &= a− v. In case the
choices are the same, i.e., v = a− v, then it will generate only one triangle, namely,

the first one shown in Figure 1. Thus, for X = 1
2

(
|2α0 − 1|

∏k
i=1(2αi + 1)− 1

)

many distinct choices in the list, we will have 2×
(X
2

)
+1×X = (X2−X)+X = X2

many distinct non-Pythagorean Heron triangles with fixed height h. Hence the total
number of Heron triangles having fixed height h is

X2 =
1

4

(
|2α0 − 1|

k∏

i=1

(2αi + 1)− 1

)2

.

Hence the result.

In view of Claim 1 in Theorem 15, it might be tempting to propose that, for
all rationals h > 2, a Heron triangle having height h exists. However, that is not
true. Take for example, h = 5/2. Assume that such a Heron triangle exists, with
sides a, b, c (u + v = a, with u, v ∈ Q, since h ∈ Q), as in Figure 1. Then we get
52 = (2c)2 − (2u)2, with u′ := 2u ∈ Z. Thus, 2c − u′ ∈ {1, 5, 25}, respectively,
2c + u′ ∈ {25, 5, 1}. However, none of the obtained systems have integers c, u′ as
solutions.

In case of Claim 3, to take an example, one may consider the case h = 10. From
Theorem 15, we obtain the number of distinct non-Pythagorean Heron triangles as

1

4
(|2× 1− 1|(2× 1 + 1)− 1)2 =

1

4
× 22 = 1.

It can be verified that the only non-Pythagorean Heron triangle with height h = 10
has sides (26, 48, 26).

3.2. Decomposable Heron Triangles

It is known that any Heron triangle is radially decomposable, that is, it can be
subdivided into n isosceles Heron triangles each composed of two circum-radii and
one side of the n-gon [5]. In this section we investigate the decomposability of a
Heron triangle into two Heron triangles as in Figure 2 (we say, on the side BC).
We first consider the case when the Heron triangle is isosceles. In this setting, we
can prove that a Heron triangle is always decomposable.
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A

B CD

c

x

y

a− x

b

Figure 2: Heron triangle decomposed into two Heron triangles.

Proposition 16. An isosceles Heron triangle of sides a, a, b can always be decom-
posed along the height corresponding to b.

Proof. Since our triangle is a Heron triangle, its semi-perimeter s = 2a+b
2 is an

integer. Hence, b must be even. So, b1 = b
2 is an integer. As $ = bh

2 is the area
of the triangle, which is an integer, the height h must be a rational number. Also
h2 = a2 − b21 is an integer. Hence, h must be an integer.

Now, to prove the proposed statement, we need to show that b1h
2 is an integer.

Note that we have the equation a2 = h2 + b21 and hence one of h, b1 must be
even (being part of a Pythagorean triple). So, b1h

2 is indeed an integer, hence the
result.

We can give many examples of such triangles, by simply concatenating two copies
of the same Pythagorean triangle. The parameters of the new triangle, which can
be decomposed along the height 2mn, will then be (a, b, c,∆) = (m2 + n2,m2 +
n2, 2(m2 − n2), 2mn(m2 − n2)), for any integers m > n.

Regarding indecomposability, we can prove the following results.

Proposition 17. Let a, b, c be the lengths of three sides of a Heron triangle, such
that a is prime and a ! b+ c. Then one cannot decompose $ABC into two Heron
triangles $ABD and $ADC.

Proof. Let the side BC of $ABC be decomposed into BD and DC where the
length of BD is the integer x. Let the length of AD be y. We refer to Figure 2 for
an illustration of such a case.

Now, from$ABC, we have cosB = c2+a2−b2

2ac , and from$ABD, we have cosB =
c2+x2−y2

2cx . So, we get c2+a2−b2

2ac = c2+x2−y2

2cx , from which we obtain

y2 = c2 + x2 − ax− x(c− b)(c+ b)

a
.

Since a is prime, a ! (b+ c), and x < a, we obtain that a must be a divisor of c− b.
If b &= c, then we must have a ≤ c− b, which contradicts the triangle inequality. If
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b = c, then a would have to be even (and prime), that is, a = 2. Then x = 2−x = 1,
and y would be a non integer height. The proof is done.

An example of such a Heron triangle has parameters (a, b, c,∆) = (13, 14, 15, 84)
(where 13 does not divide 14+15), which cannot be decomposed along the base of
length 13 (but in this case, it can be decomposed along the height corresponding
to the side 14). Another example has parameters (5, 29, 30, 72), and it satisfies our
conditions on two sides 5 ! 29 + 30, 29 ! 5 + 30).

From Proposition 17, we can derive the following two observations.

Remark 18. The above proof shows in fact that if the Heron triangle is isosceles,
with b = c, then, we only need the base a to be prime, and not the divisibility
condition.

Corollary 19. Let $ABC be a Heron triangle of sides a, b, c and area ∆, such
that a is a prime number and a ! ∆. Then one cannot decompose $ABC into two
Heron triangles $ABD and $ADC.

Proof. Suppose that one can decompose $ABC into two Heron triangles $ABD
and $ADC. Then, by Proposition 17, we must have a|b + c, and hence a2|(b +
c)2 − a2 = (b + c+ a)(b + c− a). Now, the area ∆ satisfies

16∆2 = (a+ b+ c)(a+ c− b)(a+ b− c)(b+ c− a),

and hence a2|16∆2, which implies a|∆, since a > 2 is prime (no side of a Heron
triangle can be 2). That is a contradiction and the proof is done.

From Proposition 17, it is clear that a|b+c is a necessary condition for decompos-
ability of $ABC on the side BC. However, this condition is not at all a sufficient
condition for such a decomposition. In this direction, we prove the following result.

Proposition 20. Suppose that a Heron triangle $ABC (as in Figure 2), of sides
a, b, c is decomposed into two triangles $ABD and $ADC, with BD = x. Assume
that c, x are odd. If a|(b+ c) and a+(c− b) c+b

a ≡ 4 (mod 8), then $ABD can not
be a Heron triangle.

Proof. Suppose that $ABC could be decomposed into $ABD and $ADC, both
of which are Heron triangles. In such a case, the relation

y2 = c2 + x2 − x

a
· (a2 + c2 − b2) (4)

holds with x, y integers. Note that $ABD is a Heron triangle and two of its sides
AB = c, BD = x are odd. Hence, AD = y must be even, and thus y2 ≡ 0, 4
(mod 8) in the LHS of (4). On the RHS of (4), c2 + x2 ≡ 2 (mod 8) as a, x are
odd. Thus, for the relation to be true, we require x

a (a
2 + c2 − b2) to be equal to
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±2 (mod 8). Since x is odd, one requires 1
a (a

2 + c2 − b2) ≡ ±2 (mod 8), which
contradicts the given condition 1

a (a
2 + c2 − b2) ≡ 4 (mod 8). Hence $ABD can

not be a Heron triangle.

4. Conclusion

In this paper, we estimate the numberH(a, b) of Heron triangles with two fixed sides
a, b. We also investigate H(p, q) when the sides p, q are fixed primes, and provide
slightly better results compared to [10]. In particular, we prove that H(p, q) is less
than or equal to 1 when p − q ≡ 2 (mod 4). We also count Heron triangles with
a fixed height and provide an estimate of the number of Heron triangles with a
fixed prime height. Moreover, we study the decomposability property of a Heron
triangle into two similar ones, and provide some cases where a Heron triangle is not
decomposable.
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