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Abstract
In this paper, we construct an infinite family of binary linear codes associated
with double cosets with respect to a certain maximal parabolic subgroup of the
orthogonal group O(2n+1, q). Here q is a power of two. Then we obtain an infinite
family of recursive fomulas generating the odd power moments of Kloosterman
sums with trace one arguments in terms of the frequencies of weights in the codes
associated with those double cosets in O(2n + 1, q), and in the codes associated
with similar double cosets in the symplectic group Sp(2n, q). This is done via the
Pless power moment identity and by utilizing the explicit expressions of exponential
sums over those double cosets related to the evaluations of “Gauss sums” for the
orthogonal group O(2n + 1, q).

1. Introduction

Let ψ be a nontrivial additive character of the finite field Fq with q = pr elements
(p a prime). Then the Kloosterman sum K(ψ; a) ([12]) is defined as

K(ψ; a) =
�

α∈F∗q

ψ(α + aα
−1) (a ∈ F∗q).

For this, we have the Weil bound

|K(ψ; a)| ≤ 2
√

q. (1.1)

The Kloosterman sum was introduced in 1926([11]) to give an estimate for the
Fourier coefficients of modular forms.
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For each nonnegative integer h, by MK(ψ)h we will denote the h-th moment of
the Kloosterman sum K(ψ; a). Namely, it is given by

MK(ψ)h =
�

a∈F∗q

K(ψ; a)h
.

If ψ = λ is the canonical additive character of Fq, then MK(λ)h will be simply
denoted by MKh. Here we recall that λ(x) = e2πitr(x)/p is the canonical additive
character of Fq, where tr(x) = x + xp + · · · + xpr−1

is the trace function Fq → Fp.

Explicit computations on power moments of Kloosterman sums were begun with
the paper [17] of Salié in 1931, where he showed, for any odd prime q,

MK
h = q

2
Mh−1 − (q − 1)h−1 + 2(−1)h−1 (h ≥ 1).

Here M0 = 0, and, for h ∈ Z>0,

Mh = |{(α1, · · · ,αh) ∈ (F∗q)h|
h�

j=1

αj = 1 =
h�

j=1

α
−1
j }|.

For q = p odd prime, Salié obtained MK1, MK2, MK3, MK4 in [17] by de-
termining M1, M2, M3. On the other hand, MK5 can be expressed in terms of
the p-th eigenvalue for a weight 3 newform on Γ0(15)(cf. [13], [16]). MK6 can be
expressed in terms of the p-th eigenvalue for a weight 4 newform on Γ0(6)(cf. [3]).
Also, based on numerical evidence, in [2] Evans was led to propose a conjecture
which expresses MK7 in terms of Hecke eigenvalues for a weight 3 newform on
Γ0(525) with quartic nebentypus of conductor 105.

From now on, let us assume that q = 2r. Carlitz[1] evaluated MKh for h ≤ 4.
Recently, Moisio was able to find explicit expressions of MKh, for h ≤ 10 (cf.[15]).
This was done, via Pless power moment identity, by connecting moments of Kloost-
erman sums and the frequencies of weights in the binary Zetterberg code of length
q + 1, which were known by the work of Schoof and Vlugt in [18].

In [7], the binary linear codes C(SL(n, q)) associated with finite special linear
groups SL(n, q) were constructed when n, q are both powers of two. Then we ob-
tained a recursive formula for the power moments of multi-dimensional Kloosterman
sums in terms of the frequencies of weights in C(SL(n, q).

In order to describe our results, we introduce two incomplete power moments of
Kloosterman sums, namely, the one with the sum over all a in F∗q with tr a=0 and
the other with the sum over all a in F∗q with tr a = 1. For every nonnegative integer
h, and ψ as before, we define

T0K(ψ)h =
�

a∈F∗q , tra=0

K(ψ; a)h
, T1K(ψ)h =

�

a∈F∗q , tra=1

K(ψ; a)h
, (1.2)
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which will be respectively called the h-th moment of Kloosterman sums with “trace
zero arguments” and those with “trace one arguments”. Then, clearly we have

MK(ψ)h = T0K(ψ)h + T1K(ψ)h
. (1.3)

If ψ = λ is the canonical additive character of Fq, then T0K(λ)h and T1K(λ)h

will be respectively denoted by T0K
h and T1K

h, for brevity.
In this paper, we will show the main Theorem 1.1 giving an infinite family of

recursive formulas generating the odd power moments of Kloosterman sums with
trace one arguments. To do that, we construct binary linear codes C(DC(n, q)),
associated with the double cosets DC(n, q)=Pσn−1P , for the maximal parabolic
subgroup P=P (2n + 1, q) of the orthogonal group O(2n + 1, q), and express those
power moments in terms of the frequencies of weights in the codes C(DC(n, q))
and C(�DC(n, q)). Here C(�DC(n, q)) is a binary linear code constructed similarly
from certain double cosets �DC(n, q) in the sympletic group Sp(2n, q). Then, thanks
to our previous results on the explicit expressions of exponential sums over those
double cosets related to the evaluations of “Gauss sums” for the orthogonal group
O(2n+1, q) [10], we can express the weight of each codeword in the dual of the codes
C(DC(n, q)) in terms of Kloosterman sums. Then our formulas will follow imme-
diately from the Pless power moment identity. Analogously to these, in [8](resp.
[9]), for q a power of three, two(resp. eight) infinite families of ternary linear codes
associated with double cosets in the symplectic group Sp(2n, q)(resp. orthogonal
group O−(2n, q)) were constructed in order to generate one (resp. four)infinite fam-
ilies of recursive formulas for the power moments of Kloosterman sums with square
arguments and for the even power moments of those in terms of the frequencies of
weights in those codes. We emphasize here that there have been only a few recursive
formulas generating power moments of Kloosterman sums including the one in [15].

Theorem 1.1 in the following(cf. (1.6)-(1.8)) is the main result of this paper.

Henceforth, we agree that the binomial coefficient
�

b

a

�
= 0 if a > b or a < 0. To

simplify notations, we introduce the following ones which will be used throughout
this paper at various places.

A(n, q) = q
1
4 (5n2−1)

�
n

1

�

q

Π(n−1)/2
j=1 (q2j−1 − 1), (1.4)

B(n, q) = q
1
4 (n−1)2(qn − 1)Π(n−1)/2

j=1 (q2j − 1). (1.5)

Here
�n
1

�
q

= qn−1
q−1 is a q-binomial coefficient.

Theorem 1.1. Let q = 2r
. Assume that n is any odd integer≥ 3, with all q, or

n=1, with q ≥ 8. Then, in the notations of (1.4) and (1.5), we have the following.
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For h=1,3,5,· · · ,

T1K
h = −

�

0≤l≤h−2, l odd

�
h

l

�
B(n, q)h−l

T1K
l

+ qA(n, q)−h
min{N(n,q),h}�

j=0

(−1)j
Dj(n, q)

h�

t=j

t!S(h, t)2h−t−1

�
N(n, q)− j

N(n, q)− t

�
,

(1.6)

where N(n, q) = |DC(n, q)| = A(n, q)B(n, q), Dj(n, q) = Cj(n, q) − �Cj(n, q), with

{Cj(n, q)}N(n,q)
j=0 , { �Cj(n, q)}N(n,q)

j=0 respectively the weight distributions of the binary

linear codes C(DC(n, q)) and C(�DC(n, q)) given by: for j = 0, · · · , N(n, q),

Cj(n, q) =
��

q−1A(n, q)(B(n, q) + 1)
ν1

�

×
�

tr(β−1)−1=0

�
q−1A(n, q)(B(n, q) + q + 1)

νβ

�

×
�

tr(β−1)−1=1

�
q−1A(n, q)(B(n, q)− q + 1)

νβ

�
,

(1.7)

�Cj(n, q) =
��

q−1A(n, q)(B(n, q) + 1)
ν0

�

×
�

tr(β−1)=0

�
q−1A(n, q)(B(n, q) + q + 1)

νβ

�

×
�

tr(β−1)=1

�
q−1A(n, q)(B(n, q)− q + 1)

νβ

�
.

(1.8)

Here the first sum in (1.6) is 0 if h = 1 and the unspecified sums in (1.7) and
(1.8) are over all the sets of nonnegative integers {νβ}β∈Fq satisfying

�
β∈Fq

νβ = j

and
�

β∈Fq
νββ = 0. In addition, S(h, t) is the Stirling number of the second kind

defined by

S(h, t) =
1
t!

t�

j=0

(−1)t−j

�
t

j

�
j

h
. (1.9)
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2. O(2n + 1, q)

For more details about this section, one is referred to the paper [10]. Throughout
this paper, the following notations will be used:

q = 2r (r ∈ Z>0),
Fq = the finite field with q elements,

TrA = the trace of A for a square matrix A,

t
B = the transpose of B for any matrix B.

Let θ be the nondegenerate quadratic form on the vector space F(2n+1)×1
q of all

(2n + 1)× 1 column vectors over Fq, given by

θ(
2n+1�

i=1

xie
i) =

n�

i=1

xixn+i + x
2
2n+1,

where {e1 = t[10 · · · 0], e2 = t[010 · · · 0], · · · , e2n+1 = t[0 · · · 01]} is the standard
basis of F(2n+1)×1

q .
The group O(2n+1, q) of all isometries of (F(2n+1)×1

q , θ) consists of the matrices



A B 0
C D 0
g h 1



 (A,B,C,D n× n, g, h 1× n)

in GL(2n + 1, q) satisfying the relations:
t
AC + t

gg is alternating

t
BD + t

hh is alternating

t
AD + t

CB = 1n.

Here an n× n matrix (aij) is called alternating if
�

aii = 0, for 1 ≤ i ≤ n,

aij = − aji = aji, for 1 ≤ i < j ≤ n.

Also, one observes, for example, that tAC + tgg is alternating if and only if
tAC = tCA and g =

�
diag(tAC), where

�
diag(tAC) indicates the 1 × n matrix

[α1, · · · ,αn] if the diagonal entries of tAC are given by

(t
AC)11 = α

2
1, · · · , (t

AC)nn = α
2
n, for αi ∈ Fq.

As is well known, there is an isomorphism of groups

ι : O(2n + 1, q) → Sp(2n, q) (




A B 0
C D 0
g h 1



 �→
�
A B

C D

�
). (2.1)
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In particular, for any w ∈ O(2n + 1, q),

Trw = Trι(w) + 1. (2.2)

Let P = P (2n + 1, q) be the maximal parabolic subgroup of O(2n + 1, q) given
by

P (2n + 1, q) =









A 0 0
0 tA−1 0
0 0 1








1n B 0
0 1n 0
0 h 1




�����

A ∈ GL(n, q)
B + thh is alternating




 .

The Bruhat decomposition of O(2n + 1, q) with respect to P = P (2n + 1, q) is

O(2n + 1, q) =
n�

r = 0

PσrP,

where

σr =





0 0 1r 0 0
0 1n−r 0 0 0
1r 0 0 0 0
0 0 0 1n−r 0
0 0 0 0 1




∈ O(2n + 1, q).

The symplectic group Sp(2n, q) over the field Fq is defined as:

Sp(2n, q) = {w ∈ GL(2n, q)| t
wJw = J},

with

J =
�

0 1n

1n 0

�
.

Let P
�
= P

�
(2n, q) be the maximal parabolic subgroup of Sp(2n, q) defined by:

P
�
(2n, q) =

��
A 0
0 tA−1

� �
1n B

0 1n

� ����� A ∈ GL(n, q),t B = B

�
.

Then, with respect to P
�

= P
�
(2n, q), the Bruhat decomposition of Sp(2n, q) is

given by

Sp(2n, q) =
n�

r = 0

P
�
σ
�

rP
�
,
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where

σ
�

r =





0 0 1r 0
0 1n−r 0 0
1r 0 0 0
0 0 0 1n−r



 ∈ Sp(2n, q).

Put, for each r with 0 ≤ r ≤ n,

Ar = {w ∈ P (2n + 1, q) | σrwσ
−1
r ∈ P (2n + 1, q)},

A
�

r = {w ∈ P
�
(2n, q) | σ

�

rw(σ
�

r)
−1 ∈ P

�
(2n, q)}.

Expressing them as the disjoint union of right cosets of maximal parabolic sub-
groups, the double cosets PσrP and P

�
σ
�

rP
�
can be written respectively as

PσrP = Pσr(Ar \ P ), (2.3)

P
�
σ
�

rP
�
= P

�
σ
�

r(A
�

r \ P
�
). (2.4)

The order of the general linear group GL(n, q) is given by

gn =
n−1�

j=0

(qn − q
j) = q(

n
2)

n�

j=1

(qj − 1).

For integers n,r with 0 ≤ r ≤ n, the q-binomial coefficients are defined as:

�
n

r

�

q

=
r−1�

j=0

(qn−j − 1)/(qr−j − 1).

The following results follow either from [10] or from [4] plus the observation that
under the isomorphism ι in (2.1) P , Ar, σr are respectively mapped onto P,

�
A
�

r,σ
�

r:

|Ar| = |A
�

r| = grgn−rq
(n+1

2 )qr(2n−3r−1)/2
,

|P (2n + 1, q)| = |P
�
(2n, q)| = q(

n+1
2 )gn,

|Ar \ P (2n + 1, q)| = |A
�

r \ P
�
(2n, q)| = q(

r+1
2 )

�
n

r

�

q

,

|P (2n + 1, q)σrP (2n + 1, q)| = |P �(2n, q)σ
�

rP
�
(2n, q)|

= q
n2

�
n

r

�

q

q(
r
2)qr

n�

j=1

(qj − 1)

(= |P (2n + 1, q)|2|Ar|−1

= |P
�
(2n + q)|2|A

�

r|−1).

(2.5)



INTEGERS: 13 (2013) 8

In particular, with

DC(n, q) = P (2n + 1, q)σn−1P (2n + 1, q),

|DC(n, q)| = q
1
2 n(3n−1)

�
n

1

�

q

n�

j=1

(qj − 1) = A(n, q)B(n, q) (cf. (1.4), (1.5)). (2.6)

3. Exponential Sums Over Double Cosets of O(2n + 1, q)

The following notations will be employed throughout this paper:

tr(x) = x + x
2 + · · · + x

2r−1
the trace function Fq → F2,

λ(x) = (−1)tr(x)
the canonical additive character of Fq.

Then any nontrivial additive character ψ of Fq is given by ψ(x) = λ(ax), for a
unique a ∈ F∗q .

For any nontrivial additive character ψ of Fq and a ∈ F∗q , the Kloosterman sum
KGL(t,q)(ψ; a) for GL(t, q) is defined as

KGL(t,q)(ψ; a) =
�

w∈GL(t,q)

ψ(Trw + aTrw
−1).

Notice that, for t = 1, KGL(1,q)(ψ; a) denotes the Kloosterman sum K(ψ; a).
In [4], it is shown that KGL(t,q)(ψ; a) satisfies the following recursive relation: for

integers t ≥ 2, a ∈ F∗q ,

KGL(t,q)(ψ; a) = q
t−1

KGL(t−1,q)(ψ; a)K(ψ; a) + q
2t−2(qt−1 − 1)KGL(t−2,q)(ψ; a),

where we understand that KGL(0,q)(ψ, a) = 1.

From [4] and [10], we have (cf. (2.2)-(2.5)):

�

w∈PσrP

ψ(Trw)

= |Ar \ P |
�

w∈P

ψ(Trwσr)

= ψ(1)|A
�

r \ P
�
|
�

w∈P

ψ(Trι(w)σ
�

r)

= ψ(1)|A
�

r \ P
�
|

�

w∈P �

ψ(Trwσ
�

r)

(= ψ(1)
�

w∈P �σ�rP �

ψ(Trw))

= ψ(1)q(
n+1

2 )|A
�

r \ P
�
|qr(n−r)

arKGL(n−r,q)(ψ; 1).

(3.1)
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Here ψ is any nontrivial additive character of Fq, a0 = 1, and, for r ∈ Z>0, ar

denotes the number of all r × r nonsingular alternating matrices over Fq, which is
given by

ar =

�
0, if r is odd,
q

r
2 ( r

2−1)
� r

2
j=1(q2j−1 − 1), if r is even

(3.2)

(cf.[4], Proposition 5.1).
Thus we see from (2.5), (3.1), and (3.2) that, for each r with 0 ≤ r ≤ n,

�

w∈PσrP

ψ(Trw) =






0, if r is odd,

ψ(1)q(
n+1

2 )qrn− 1
4 r2

�
n

r

�

q

×
�r/2

j=1(q
2j−1 − 1)KGL(n−r,q)(ψ; 1), if r is even.

(3.3)
For our purposes, we need only one infinite family of exponential sums in (3.3)

over P (2n+1, q)σn−1P (2n+1, q) = DC(n, q), for n = 1, 3, 5, · · · . So we state them
separately as a theorem.

Theorem 3.1. Let ψ be any nontrivial additive character of Fq. Then in the

notation of (1.4), we have

�

w∈DC(n,q)

ψ(Trw) = ψ(1)A(n, q)K(ψ; 1), for n = 1, 3, 5, · · · . (3.4)

Proposition 3.2. ([5]) For n = 2s(s ∈ Z≥0), and λ the canonical additive character

of Fq,

K(λ; an) = K(λ; a).

The next corollary follows from Theorem 3.1, Proposition 3.2 and a simple change
of variables.

Corollary 3.3. Let λ be the canonical additive character of Fq, and let a ∈ F∗q.
Then we have

�

w∈DC(n,q)

λ(aTrw) = λ(a)A(n, q)K(λ; a), for n = 1, 3, 5, · · · (3.5)

(cf. (1.4)).

Proposition 3.4. ([5]) Let λ be the canonical additive character of Fq, β ∈ Fq.

Then �

a∈F∗q

λ(−aβ)K(λ; a) =
�

qλ(β−1) + 1, if β �=0,

1, if β=0.
(3.6)
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For any integer r with 0 ≤ r ≤ n, and each β ∈ Fq, we let

NPσrP (β) = |{w ∈ PσrP |Trw = β}|.

Then it is easy to see that

qNPσrP (β) = |PσrP | +
�

a∈F∗q

λ(−aβ)
�

w∈PσrP

λ(aTrw). (3.7)

For brevity, we write
n(β) = NDC(n,q)(β). (3.8)

Now, from (2.6) and (3.5)-(3.7), we have the following result.

Proposition 3.5. With the notations in (1.4), (1.5), and (3.8), for n = 1, 3, 5, · · · ,

n(β) = q
−1

A(n, q)B(n, q) + q
−1

A(n, q)×






1, β = 1,
q + 1, tr(β − 1)−1 = 0,
−q + 1, tr(β − 1)−1 = 1.

(3.9)

Corollary 3.6. For each odd n ≥ 3, with all q, n(β) > 0, for all β; for n = 1, with

all q,

n(β) =






q, β = 1,
2q, tr(β − 1)−1 = 0,
0, tr(β − 1)−1 = 1.

(3.10)

Proof. n = 1 case follows directly from (3.9). Let n ≥ 3 be odd. Then, from (3.9),
we see that, for any β, we have n(β) ≥ q−1A(n, q)(B(n, q)− (q − 1)) > 0.

4. Construction of Codes

Let
N(n, q) = |DC(n, q)| = A(n, q)B(n, q), for n = 1, 3, 5, · · · (4.1)

(cf. (1.4), (1.5), (2.6)).
Here we will construct one infinite family of binary linear codes C(DC(n, q)) of

length N(n, q) for all positive odd integers n and all q, associated with the double
cosets DC(n, q).

Let g1, g2, · · · , gN(n,q) be a fixed ordering of the elements in DC(n, q) (n =
1, 3, 5, · · · ). Then we put

v(n, q) = (Trg1, T rg2, · · · , T rgN(n,q)) ∈ FN(n,q)
q , for n = 1, 3, 5, · · · .

Now, the binary linear code C(DC(n, q)) is defined as:

C(DC(n, q)) = {u ∈ FN(n,q)
2 |u · v(n, q) = 0}, for n = 1, 3, 5, · · · , (4.2)
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where the dot denotes the usual inner product in FN(n,q)
q .

The following Delsarte’s theorem is well-known.

Theorem 4.1. ([14]) Let B be a linear code over Fq. Then

(B|F2)
⊥ = tr(B⊥).

In view of this theorem, the dual C(DC(n, q))⊥ of the code C(DC(n, q)) is given
by

C(DC(n, q))⊥

= {c(a) = c(a;n, q) = (tr(aTrg1)), · · · , tr(aTrgN(n,q))|a ∈ Fq}
(4.3)

(n = 1, 3, 5, · · · ).

Let F+
2 , F+

q denote the additive groups of the fields F2, Fq, respectively. Then
we have the following exact sequence of groups:

0→ F+
2 → F+

q → Θ(Fq)→ 0,

where the first map is the inclusion and the second one is the Artin-Schreier operator
in characteristic two given by Θ(x) = x2 + x. So

Θ(Fq) = {α2 + α|α ∈ Fq}, and [F+
q : Θ(Fq)] = 2.

Theorem 4.2. ([5]) Let λ be the canonical additive character of Fq, and let β ∈ F∗q.
Then �

α∈Fq−{0,1}

λ(
β

α2 + α
) = K(λ;β)− 1. (4.4)

Theorem 4.3. The map Fq → C(DC(n, q))⊥(a �→ c(a)) is an F2-linear isomor-

phism for each odd integer n ≥ 1and all q, except for n = 1 and q = 4.

Proof. The map is clearly F2-linear and surjective. Let a be in the kernel of map.
Then tr(aTrg) = 0, for all g ∈ DC(n, q). If n ≥ 3 is odd, then, by Corollary 3.6,
Tr : DC(n, q)→ Fq is surjective and hence tr(aα) = 0, for all α ∈ Fq. This implies
that a = 0, since otherwise tr : Fq → F2 would be the zero map. Now, assume that
n = 1. Then, by (3.10), tr(aβ) = 0, for all β �= 1, with tr((β − 1)−1) = 0. Hilbert’s
theorem 90 says that tr(γ) = 0 ⇔ γ = α2 + α, for some α ∈ Fq. This implies
that λ(a)

�
α∈Fq−{0,1} λ( a

α2+α ) = q− 2. If a �= 0, then, invoking (4.4) and the Weil
bound (1.1), we would have

q − 2 = λ(a)
�

α∈Fq−{0,1}

λ(
a

α2 + α
) = ±(K(λ; a)− 1) ≤ 2

√
q + 1.

For q ≥ 16, this is impossible, since x > 2
√

x + 3, for x ≥ 16. On the other hand,
for q = 2, 4, 8, one easily checks from (3.10) that the kernel is trivial for q = 2, 8
and is F2, for q = 4.
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5. Power Moments of Kloosterman Sums With Trace One Arguments

Here we will be able to find, via the Pless power moment identity, an infinite family
of recursive formulas generating the odd power moments of Kloosterman sums with
trace one arguments over all Fq in terms of the frequencies of weights in C(DC(n, q))
and C(�DC(n, q)), respectively.

Theorem 5.1. (Pless power moment identity, [14]) Let B be a q-ary [n, k] code,

and let Bi(resp. B⊥
i ) denote the number of codewords of weight i in B(resp. in

B⊥
). Then, for h = 0, 1, 2, · · · ,

n�

j=0

j
h
Bj =

min{n,h}�

j=0

(−1)j
B
⊥
j

h�

t=j

t!S(h, t)qk−t(q − 1)t−j

�
n− j

n− t

�
, (5.1)

where S(h, t) is the Stirling number of the second kind defined in (1.9).

Lemma 5.2. Let c(a) = (tr(aTrg1), · · · , tr(aTrgN(n,q))) ∈ C(DC(n, q))⊥(n =
1, 3, 5, · · · ), for a ∈ F∗q. Then the Hamming weight w(c(a)) is expressed as follows:

w(c(a)) =
1
2
A(n, q)(B(n, q)− λ(a)K(λ; a))(cf. (1.4), (1.5)). (5.2)

Proof. Here we recall that the Hamming weight of the codeword c(a) is just the
number of nonzero coordinates.

w(c(a)) =
1
2

N(n,q)�

j=1

(1− (−1)tr(aTrgj)) =
1
2
(N(n, q)−

�

w∈DC(n,q)

λ(aTrw)).

Our result now follows from (3.5) and (4.1).

Let u = (u1, · · · , uNN(n,q)) ∈ FN(n,q)
2 , with νβ 1’s in the coordinate palces where

Tr(gj) = β, for each β ∈ Fq. Then from the definition of the codes C(DC(n, q))
(cf.(4.2)) that u is a codeword with weight j if and only if

�
β∈Fq

νβ = j and
�

β∈Fq
νββ = 0(an identity in Fq). As there are

�
β∈Fq

�
n(β)
νβ

�
(cf. (3.8)) many

such codewords with weight j, we obtain the following result.

Proposition 5.3. Let {Cj(n, q)}N(n,q)
j=0 be the weight distribution of C(DC(n, q))

(n = 1, 3, 5, · · · ). Then

Cj(n, q) =
� �

β∈Fq

�
n(β)
νβ

�
, (5.3)

where the sum is over all the sets of integers {νβ}β∈Fq (0 ≤ νβ ≤ n(β)), satisfying

�

β∈Fq

νβ = j, and

�

β∈Fq

νββ = 0. (5.4)
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Corollary 5.4. Let {Cj(n, q)}N(n,q)
j=0 (n = 1, 3, 5, · · · ) be as above. Then we have

Cj(n, q) = CN(n,q)−j(n, q), for all j, with 0 ≤ j ≤ N(n, q).

Proof. Under the replacements νβ → n(β)− νβ , for each β ∈ Fq, the first equation
in (5.4) is changed to N(n, q)− j, while the second one in there and the summand
in (5.3) is left unchanged. Here the second sum in (5.4) is left unchanged, since�

β∈Fq
n(β)β = 0, as one can see by using the explicit expressions of n(β) in (3.9)

and (3.10).

The formula appearing in the next theorem and stated in (1.7) follows from the
formula in (5.3), using the explicit value of n(β) in (3.9).

Theorem 5.5. Let {Cj(n, q)}N(n,q)
j=0 be the weight distribution of C(DC(n, q)) (n =

1, 3, 5, · · · ). Then, for j = 0, · · · , N(n, q),

Cj(n, q) =
��

q−1A(n, q)(B(n, q) + 1)
ν1

�

×
�

tr(β−1)−1=0

�
q−1A(n, q)(B(n, q) + q + 1)

νβ

�

×
�

tr(β−1)−1=1

�
q−1A(n, q)(B(n, q)− q + 1)

νβ

�
,

where the sum is over all the sets of nonnegative integers {νβ}β∈Fq satisfying
�

β∈Fq
νβ =

j and
�

β∈Fq
νββ = 0.

The recursive formula in the next theorem follows from the study of codes asso-
ciated with the double cosets �DC(n, q) = P

�
(2n, q)σ

�

n−1P
�
(2n, q) of the symplectic

group Sp(2n, q). It is slightly modified from its original version, which makes it
more usable in below.

Theorem 5.6. ([6]) For each odd integer n ≥ 3, with all q, or n = 1, with q ≥ 8,

1
2h

A(n, q)h
h�

l=0

(−1)l

�
h

l

�
B(n, q)h−l

MK
l

= q

min{N(n,q),h}�

j=0

(−1)j �Cj(n, q)
h�

t=j

t!S(h, t)2−t

�
N(n, q)− j

N(n, q)− t

�
(h = 1, 2, · · · ),

(5.5)

where N(n, q) = A(n, q)B(n, q), and { �Cj(n, q)}N(n,q)
j=0 is the weight distribution of
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C(�DC(n, q)) given by

�Cj(n, q) =
��

q−1A(n, q)(B(n, q) + 1)
ν0

�

×
�

tr(β−1)=0

�
q−1A(n, q)(B(n, q) + q + 1)

νβ

�

×
�

tr(β−1)=1

�
q−1A(n, q)(B(n, q)− q + 1)

νβ

�
.

Here the sum is over all the sets of nonnegative integers {νβ}β∈Fq satisfying�
β∈Fq

νβ = j and
�

β∈Fq
νββ = 0. In addition, S(h, t) is the Stirling number of

the second kind as in (1.9).
From now on, we will assume that n is any odd integer ≥ 3, with all q, or n = 1,

with q ≥ 8. Under these assumptions, each codeword in C(DC(n, q))⊥ can be
written as c(a), for a unique a ∈ Fq (cf. Theorem 4.3, (4.3)) and Theorem 5.6 in
the above can be applied.

Now, we apply the Pless power moment identity in (5.1) to B = C(DC(n, q))⊥(and
hence B⊥

j = Cj(n, q)), in order to get the result in Theorem 1.1 (cf. (1.6)-(1.8))
about recursive formulas. Below, “the sum over tra = 0(resp. tra = 1)” will mean
“the sum over all nonzero a ∈ F∗q , with tra = 0 (resp. tra = 1).” The left-hand side
of that identity in (5.1) is equal to

�

a∈F∗q

w(c(a))h
,

with w(c(a)) given by (5.2). We have

�

a∈F∗q

w(c(a))h =
1
2h

A(n, q)h
�

a∈F∗q

(B(n, q)− λ(a)K(λ; a))h

=
1
2h

A(n, q)h
�

tra=0

(B(n, q)−K(λ; a))h +
1
2h

A(n, q)h
�

tra=1

(B(n, q) + K(λ; a))h

(5.6)
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=
1
2h

A(n, q)h
�

tra=0

h�

l=0

(−1)l

�
h

l

�
B(n, q)h−l

K(λ; a)l

+
1
2h

A(n, q)h
�

tra=1

h�

l=0

�
h

l

�
B(n, q)h−l

K(λ; a)l

=
1
2h

A(n, q)h
h�

l=0

(−1)l

�
h

l

�
B(n, q)h−l(MK

l − T1K
l)(ψ = λ case of (1.2), (1.3))

+
1
2h

A(n, q)h
h�

l=0

�
h

l

�
B(n, q)h−l

T1K
l

=
1
2h

A(n, q)h
h�

l=0

(−1)l

�
h

l

�
B(n, q)h−l

MK
l

+ 2
1
2h

A(n, q)h
�

0≤l≤h, l odd

�
h

l

�
B(n, q)h−l

T1K
l

= q

min{N(n,q),h}�

j=0

(−1)j �Cj(n, q)
h�

t=j

t!S(h, t)2−t

�
N(n, q)− j

N(n, q)− t

�
(cf. (5.5))

+ 2
1
2h

A(n, q)h
�

0≤l≤h, l odd

�
h

l

�
B(n, q)h−l

T1K
l
.

On the other hand, the right hand side of the identity in (5.1) is given by:

q

min{N(n,q),h}�

j=0

(−1)j
Cj(n, q)

h�

t=j

t!S(h, t)2−t

�
N(n, q)− j

N(n, q)− t

�
. (5.7)

In (5.7), one has to note that dimF2C(DC(n, q))⊥ = r. Our main result in (1.6)
now follows by equating (5.6) and (5.7).
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