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Abstract
Here, we find all the solutions of the title Diophantine equation in positive integer
variables (m,n, x, y), where Fk is the k–th term of the Fibonacci sequence.

1. Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1, Fn+2 = Fn+1 +Fn

for all n ≥ 0. The Diophantine equation

Fx
n + Fx

n+1 = Fm (1)

in positive integers (m,n, x) was studied in [7]. There, it was showed that there
exists no solution other than (m,n) = (3, 1) for which 1x + 1x = 2 (valid for all
positive integers x), and the solutions for x = 1 and x = 2 arising via the formulas
Fn +Fn+1 = Fn+2 and F 2

n +F 2
n+1 = F2n+1. Equation (1) was revisited in [6] under

the more general form
Fx

n + Fx
n+1 = F y

m (2)

in positive integers (m,n, x, y) and it was shown that the only solutions of equation
(2) with y > 1 are (m,n, x, y) = (3, 4, 1, 3), (4, 2, 3, 2). Here, we reverse the role of
two exponents in equation (2) and study the equation

Fx
n + F y

n+1 = Fx
m or F y

n + Fx
n+1 = Fx

m (3)
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in positive integers (m,n, x, y). Our result is the following.

Theorem 1. The only positive integer solution (m,n, x, y) of one of equations (3)
with n ≥ 3 and x �= y is (5, 3, 2, 4) for which F 4

3 + F 2
4 = F 2

5 .

We note that the solutions of equation (3) either with n ∈ {1, 2} or x = y are
contained in the solutions of equation (2) and therefore are of no interest.

Before getting to the proof, we mention that similar looking equations have
already been studied. For example, in [4], it was shown that the only solution in
positive integers (k, �, n, r) of the equation

F k
1 + F k

2 + · · · + F k
n−1 = F �

n+1 + · · · + F �
n+r

is (k, �, n, r) = (8, 2, 4, 3), while in [9], T. Miyazaki showed that the only positive
integer solutions (x, y, z, n) of the equation

Fx
n + F y

n+1 = F z
2n+1

are for (x, y, z) = (2, 2, 1) (and for all positive integers n).

2. Preliminary Results

We write (α,β) = ((1 +
√

5)/2, (1−
√

5)/2) and use the Binet formula

Fn =
αn − βn

α− β
valid for all n ≥ 0. (4)

We also use the inequality

αn−2 ≤ Fn ≤ αn−1 valid for all n ≥ 1. (5)

We will need the following elementary inequality.

Lemma 1. For n ≥ 3, we have F 5
n ≥ F 3

n+1.

Proof. The inequality is clearly true for n = 3, so we assume that n ≥ 4. Observe
that Fn+1/Fn ≤ 5/3, since the above inequality is equivalent to 3Fn+1 ≤ 5Fn, or
3(Fn + Fn−1) ≤ 5Fn, or 3Fn−1 ≤ 2Fn, further with 3Fn−1 ≤ 2(Fn−1 + Fn−2), or
Fn−1 ≤ 2Fn−2, or Fn−2 + Fn−3 ≤ 2Fn−2, or Fn−3 ≤ Fn−2, which is clearly true for
n ≥ 4. Thus, �

Fn+1

Fn

�3

≤
�

5
3

�3

< 32 ≤ F 2
n

for n ≥ 4, which is equivalent to F 3
n+1 ≤ F 5

n .
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We shall need a couple of results from the theory of lower bounds for nonzero
linear forms in complex and p-adic logarithms which we now recall.

For an algebraic number η we write h(η) for its logarithmic height whose formula
is

h(η) =
1
d

�
log a0 +

d�

i=1

log
�
max{|η(i)|, 1}

��
,

with d being the degree of η over Q and

f(X) = a0

d�

i=1

(X − η(i)) ∈ Z[X] (6)

being the minimal primitive polynomial over the integers having positive leading
coefficient a0 and η as a root.

With this notation, Matveev (see [8] or Theorem 9.4 in [1]) proved the following
deep theorem:

Theorem 2. Let K be a real number field of degree D over Q, γ1, . . . , γt be nonzero
elements of K, and b1, . . . , bt be nonzero integers. Put

B ≥ max{|b1|, . . . , |bt|},

and
Λ = γb1

1 · · · γbt
t − 1.

Let A1, . . . , At be real numbers such that

Ai ≥ max{Dh(γi), | log γi|, 0.16}, i = 1, . . . , t.

Then, assuming that Λ �= 0, we have

|Λ| > exp
�
−1.4× 30t+3 × t4.5 ×D2(1 + log D)(1 + log B)A1 · · ·At

�
.

We shall also need the rational case version of a linear form in p-adic logarithms
proved by Kunrui Yu [10]. For a nonzero rational number r and a prime number p
put ordp(r) for the exponent of p in the factorization of r.

Theorem 3. Let γ1, . . . , γt be nonzero rational numbers and b1, . . . , bt be nonzero
integers. Put

B ≥ max{|b1|, . . . , |bt|, 3},
and

Λ = γb1
1 · · · γbt

t − 1.

Let A1, . . . , At be real numbers such that

Ai ≥ max{h(γi), log p}, i = 1, . . . , t.

Then, assuming that Λ �= 0, we have

ordp(Λ) < 19(20
√

t + 1)2t+2 p

(log p)2
log(e5t)A1 · · ·At log B.
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3. The Proof of Theorem 1

3.1. Inequalities Among the Variables m, n and x, y

We start with the following lemma.

Lemma 2. In any positive integer solution (m,n, x, y) of either one of equations
(3) with n ≥ 3 and x �= y, we have:

(i) m > n;

(ii) x < y;

(iii) m ≥ 5;

(iv) y(n + 1) > (m− 2)x and (n− 2)y < (m− 1)x.

Proof. (i) Either one of equations (3) implies that Fx
m > Fx

n , therefore m > n.

(ii) Let us now show that x < y. Assuming otherwise, we have that

Fx
m < Fx

n + Fx
n+1 < (Fn + Fn+1)x = Fx

n+2,

therefore m < n + 2. The case m ∈ {n, n + 1} is impossible because Fn and Fn+1

are coprime, so we get m < n, contradicting (i). (iii) Since m > n by (i) and the
fact that Fn is coprime to Fn+1, we deduce in fact that m > n+1, and since n ≥ 3,
we get that m ≥ 5.

(iv) This follows from (ii) and inequalities (5). More precisely,

α(n+1)y > F y
n+2 = (Fn + Fn+1)y > max{Fx

n + F y
n+1, F

y
n + Fx

n+1}
≥ Fx

m > α(m−2)x,

implying the first inequality (iv), and

α(n−2)y < F y
n < min{Fx

n + F y
n+1, F

y
n + Fx

n+1} ≤ Fx
m < α(m−1)x,

implying the second inequality (iv).

3.2. Bounding y in Terms of m

Lemma 3. Any positive integer solution (m,n, x, y) with n ≥ 3 and x �= y of
equation (3) satisfies one of the following inequalities

(i) y < 2× 1013m2 log m if y ≤ 2x;

(ii) y < 1013m log m if y > 2x.
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Proof. We distinguish the following two cases.

Case 1. y ≤ 2x. In this case, we apply a linear form in 2-adic logarithms upon
observing that exactly of Fn, Fn+1, Fm is even. The linear form is of the form

Λ = Fu
a F−v

b − 1,

where a and b are distinct in {n, n + 1,m} such that Fa and Fb are odd, and u and
v are in {2x, 2y}. In any case, if c is such that {a, b, c} = {n, n + 1,m} then it is
always the case that Fc is even and Fx

c | Fu
a − F v

b , therefore

ord2(Λ) ≥ ord2(Fx
c ) ≥ x ≥ y/2. (7)

To get an upper bound on ord2(Λ), we use Theorem 3. We take the parameters
t = 2, γ1 = Fa, γ2 = Fb, b1 = u, b2 = −v. We can take B = 2y. Since n + 1 < m,
by inequalities (5), we can take

A1 = A2 = m log α > max{log Fa, log Fb, log 2}.

Theorem 3 now gives

ord2(Λ) ≤ 19(20
√

3)6
�

2
(log 2)2

�
log(2e5)(m log α)2 log(2y), (8)

which compared with (7) gives

2y ≤ 4× 19× (20
√

3)6
�

2
(log 2)2

�
log(2e5)(log α)2 log(2y)

< 8× 1011m2 log(2y).

Using the fact that for A > 3 the inequality

t < A log t implies t < 2A log A

(with A = 8× 1011m2), we have

2y < 2× 8× 1011m2(log(8× 1011) + 2 log m) < 2× 8× 1011m2(20 log m),

therefore
y < 2× 1013m2 log m, (9)

which takes care of (i). In the above inequalities we also used the fact that

log(8× 1011) + 2 log m < 20 log m,

which holds because m ≥ 5.
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Case 2. y > 2x. In this case, we use a linear form in complex logarithms. This
linear form is one of

Λ = Fx
mF−y

n+1 − 1 or Fx
mF−y

n − 1

depending on whether we work with the left equation (3) or with the right equation
(3), respectively. Clearly, Λ > 0. We first find an upper bound on Λ which follows
from equation (3). In case of the left equation (3), we have

Λ =
Fx

n

F y
n+1

<
Fx

n+1

F y
n+1

<
1

F y/2
n+1

. (10)

In case of the right equation (3), we have, by Lemma 1,

Λ =
Fx

n+1

F y
n

<
Fx

n+1

F 3y/5
n+1

<
1

F 3y/5−y/2
n+1

=
1

F y/10
n+1

. (11)

So, from (10) and (11), we get that the inequality

Λ <
1

F y/10
n+1

(12)

holds in all instances. We now find a lower bound on Λ by using Theorem 2. We
take t = 2, γ1 = Fm, γ2 = Fu with u ∈ {n, n + 1}, b1 = x, b2 = −y. We take
K = Q, so D = 1. We take B = y. By inequality (5), we can take A1 = m log α
and A2 = log Fn+1. We then get that

Λ > exp
�
−1.4× 305 × 24.5 × (m log α)× log Fn+1 × (1 + log y)

�
,

which together with (12) gives

(y/10) log Fn+1 < 1.4× 305 × 24.5 × (m log α)× log Fn+1 × (1 + log y),

or
y < 14× 305 × 24.5 × log α×m× (3 log y) < 2× 1011m log y,

where we used the inequality 1 + log y < 3 log y, which holds for all y ≥ 2. Thus,

y < 4× 1011m(log(2× 1011) + log m) < 4× 1011(20 log m) < 1013m log m,

where we used the fact that log(2 × 1011) + log m < 20 log m for all m ≥ 5. This
takes care of (ii).
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3.3. Small m

Lemma 4. If (m,n, x, y) �= (5, 3, 2, 4) is a positive integer solution of equation (3)
with n ≥ 3 and x �= y, then m ≥ 1000.

Proof. Assume that we work with the left equation (3). Then

F y
n+1 = Fx

m − Fx
n . (13)

Assume first that y ≥ 20. Observe that from the above equation we get that
Fm − Fn is a divisor of Fn+1. Let Dm,n = gcd(Fm − Fn, Fn+1). We first checked
computationally that there is no pair (m,n) with 6 ≤ n + 3 < m ≤ 999, such that
p20 | Fm − Fn for some prime factor p of Dm,n. It follows that all prime factors of
Fm − Fn appear in its factorization at powers smaller than 20. But if that is so, it
should be the case that D20

m,n is divisible by Fm−Fn. We checked computationally
that this is not the case for any such pair (m,n). The conclusion of this computation
is that m ∈ {n + 2, n + 3}. Now

Fn+2 − Fn = Fn+1 and Fn+3 − Fn = 2Fn+1.

Together with formula (8), we get that Fx
m − Fx

n = F y
n+1 is divisible by exactly the

same primes as Fm − Fn. By Carmichael’s Primitive Divisor Theorem (see [3]) for
Lucas sequences with coprime integer roots, we get that x ≤ 6. So,

Fx
m − Fx

n < Fx
m ≤ F 6

n+3 < (2Fn+2)6 < (4Fn+1)6 = 212F 6
n+1 < F 20

n+1 ≤ F y
n+1,

a contradiction. This calculation shows that 1 ≤ x < y ≤ 19. We tested the
remaining range 1 ≤ x < y ≤ 19 and 3 ≤ n < m ≤ 999 by brute force and
no solution came up. A similar argument works for the right equation (3) with
one exception. Namely, in the case when 5 ≤ n + 2 < m ≤ 999, by putting
Dm,n = gcd(Fm − Fn+1, Fn) computations revealed that, as before, p20 � Fm − Fn

for any prime p | Dm,n and any such pair (m,n), but the pair (m,n) = (14, 8) has
the property that D20

mn, is a multiple of Fm−Fn and is the only such pair. Namely,
in this case Fm −Fn = F14 −F9 = 343 = 73, and F8 = 21 = 3× 7. In this last case
however, again by Carmichael’s Primitive Divisor Theorem, Fx

14 − Fx
9 should have

a prime factor p ≡ 1 (mod x) if x > 6 which does not divide F14 − F8, but this is
not the case if x > 6 since Fx

14 − Fx
9 = F y

8 = 3y × 7y. Hence, again x ≤ 6, and
we get a contradiction because y ≥ 20. This shows that, as for the case of the left
equation (3), we must have 1 ≤ x < y ≤ 19. Again we tested this remaining range
by brute force and only the solution (5, 3, 2, 4) of the right equation (3) showed up.
The lemma is therefore proved.

3.4. Approximating F x
m

From now on, we assume that m ≥ 1000.
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Lemma 5. If (m,n, x, y) is a positive integer solution of equation (3) with n ≥ 3
and x �= y, then

Fx
m =

αmx

5x/2
(1 + ζm,x) , where |ζm,x| <

2
αm

.

Proof. We use the Binet formula (4) to get

Fx
m =

αmx

5x/2

�
1−

�
β

α

�m�x

=
αmx

5x/2

�
1− (−1)m

α2m

�x

. (14)

Observe that, by Lemmas 2 and 3, we have

x

α2m
<

y

α2m
<

2× 1013m2 log m

α2m
<

1
αm

,

where the last inequality holds for all m ≥ 86. Thus, if m is odd, then

1 <

�
1− (−1)m

α2m

�x

=
�

1 +
1

α2m

�x

< exp
� x

α2m

�

< exp
�

1
αm

�
< 1 +

2
αm

, (15)

where we also used the fact that exp(t) < 1 + 2t if t ∈ (0, 1). Similarly, when m is
even, using the fact that 1− t > exp(−2t) holds for t ∈ (0, 1/2), we have

1 >

�
1− (−1)m

α2m

�x

=
�

1− 1
α2m

�x

> exp
�
− 2x

α2m

�

> exp
�
− 2

αm

�
> 1− 2

αm
. (16)

From estimates (15) and (16), we deduce that in both cases m odd and m even we
have �

1 +
(−1)m

α2m

�x

= 1 + ζm,x, with |ζm,x| <
2

αm
,

which together with formula (14) finishes the proof of this lemma.

3.5. Approximating F u
a for a ∈ {n, n + 1}, u ∈ {x, y} and Large n

Lemma 6. If (m,n, x, y) is a positive integer solution of equation (3) with n ≥ 3,
x �= y and 2x ≥ y, then the estimates

Fu
a =

αau

5u/2
(1 + ζa,u) , where |ζa,u| <

2
αn

, (17)

hold for a ∈ {n, n + 1} and u ∈ {x, y}.
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Proof. The proof is based on inequality (iv) of Lemma 2, which in the particular
case y ≤ 2x implies

y(n + 1) > (m− 2)x ≥ (m− 2)y
2

, so n >
m− 2

2
− 1 =

m

2
− 2.

Now for a ∈ {n, n + 1} and u ∈ {x, y}, we have, by the Binet formula (4),

Fu
a =

αau

5u/2

�
1− (−1)a

α2a

�u

.

Observe that, by Lemma 4,

u

α2a
≤ y

α2n
≤ 2× 1013m2 log m

α2n
≤ 1

αn
,

where the last inequality is implied by

αn ≥ αm/2−2 ≥ 2× 1013m2 log m,

which holds for all m ≥ 182. The conclusion of the lemma follows as in the proof
of Lemma 5.

3.6. A Small Linear Form in α and
√

5

Lemma 7. If (m,n, x, y) is a positive integer solution to equation (3) with n ≥ 3
and x �= y such that inequalities (17) hold, then putting λ = min{n, (m− n− 1)y},
we have

���1− αay−mx5(x−y)/2
��� <

13
αλ

for some a ∈ {n, n + 1}. (18)

Proof. By Lemma 5, we have
����F

x
m −

αmx

5x/2

���� <
2

αm

�
αmx

5x/2

�
.

Since m > n ≥ 3 and αm > αn = 2α + 1 = 2 +
√

5 > 4, it follows that 2/αm < 1/2,
therefore the above estimate implies that

����F
x
m −

αmx

5x/2

���� <
1
2

�
αmx

5x/2

�
, so

1
2

�
αmx

5x/2

�
< Fx

m <
3
2

�
αmx

5x/2

�
. (19)

In particular, ����F
x
m −

αmx

5x/2

���� <

�
4

αm

�
Fx

m.

Since we are assuming that estimates (17) hold, we get, by a similar argument, that
the estimates

����F
u
a −

αau

5u/2

���� <

�
4

αn

�
Fu

a hold with a ∈ {n, n + 1}, u ∈ {x, y}.
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Thus, in the case of the left equation (3), we get
����
αmx

5x/2
− αnx

5x/2
− α(n+1)y

5y/2

���� ≤
����
αmx

5x/2
− Fx

m

���� +
����
αnx

5x/2
− Fx

n

���� +
����
α(n+1)y

5y/2
− F y

n+1

����

≤
�

4
αm

�
Fx

m +
�

4
αn

�
(Fx

n + F y
n+1)

<

�
8

αn

�
Fx

m <

�
12
αn

��
αmx

5x/2

�
,

so that
���1− α(n+1)y−mx5(x−y)/2

��� <
1

α(m−n)x
+

12
αn

≤ 13
αmin{n,(m−n)x} . (20)

In the case of the right equation (3), a similar argument gives
����
αmx

5x/2
− αny

5y/2
− α(n+1)x

5x/2

���� <

�
12
αn

��
αmx

5x/2

�
,

leading to the similar looking inequality as (20), namely
���1− αny−mx5(x−y)/2

��� <
13

αmin{n,(m−n−1)x} , (21)

which together with (20) finishes the proof of this lemma.

3.7. An Upper Bound for λ

Lemma 8. If (m,n, x, y) is a positive integer solution of equation (3) with n ≥ 3
and x �= y such that inequality (18) holds, then

λ < 5× 1010 log y. (22)

Proof. We put

Λ = 1− αay−mx5(x−y)/2, where a ∈ {n, n + 1}

is the expression appearing in the left hand side of the inequality (18) from Lemma
7. Since α and 5 are multiplicatively independent, and x �= y, it follows that Λ �= 0.
Lemmas 6 and 7 show that

log |Λ| ≤ log 13− λ log α. (23)

We next find a lower bound on log |Λ|. For this, we use Theorem 2 with the choices
t = 2, K = Q(

√
5), γ1 = α, γ2 =

√
5, b1 = ay −mx and b2 = x − y. We have

D = 2. Since b2 < 0 and

|αb15(x−y)/2 − 1| <
13
αλ

≤ 13
α

< α5 − 1,
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we have

αb15(x−y)/2 < α5, so b1 ≤ (y − x)
log
√

5
log α

+ 5 < 2(y − x) + 5 ≤ 2y + 3.

Hence, we can take B = 2y + 3. We can also take A1 = log α and A2 = log 5.
Theorem 2 now tells us that

log |Λ| ≥ −1.4× 305 × 24.5 × 22(1 + log 2)(1 + log(2y + 3))(log α)(log 5). (24)

Putting together inequalities (23) and (24), we get

λ log α− log 13 < 1.4× 305 × 24.5 × 22(1 + log 2)(1 + log(2y + 3))(log α)(log 5),

or
λ <

log 13
log α

+ 1.4× 305 × 24.5 × 22(1 + log 2)(1 + log(2y + 3))(log 5).

Since 1+ log(2y +3) ≤ 1+ log(4y) ≤ 5 log y for all y ≥ 2, the above inequality gives

λ <
log 13
log α

+ 1.4× 305 × 24.5 × 22(1 + log 2)(log 5)(5 log y) < 5× 1010 log y, (25)

which finishes the proof of this lemma.

3.8. The Case When x < y ≤ 2x

Lemma 9. Equation (3) has no positive integer solution (m,n, x, y) with n ≥ 3
and x < y ≤ 2x.

Proof. We exploit the conclusion of Lemma 8. We use the fact that

λ = min{(m− n− 1)x, n} ≥ min{y/2,m/2− 2}. (26)

If the minimum on the right above is y/2, then inequality (25) gives

y < 1011 log y giving y < 2× 1011 × log(1011) < 6× 1012,

so
B < 1.5× 1013.

If on the other hand the minimum in (26) is m/2−2, we then get, using also Lemma
2, that

m/2− 2 < 5× 1010 log(2× 1013m2 log m)
< 5× 1010(log(2× 1013) + 3 log m)
< 5× 1010 × (23 log m),
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where we used the fact that log(2 × 1013) + 3 log m < 30 + 3 log m < 23 log m for
m ≥ 5 (in fact, m ≥ 1000, so a slightly better inequality holds at this step). Hence,

m/2− 2 < 105× 1010 log m giving m < 3× 1012 log m.

This last inequality leads to

m < 2× 3× 1012 log(3× 1012) < 2× 1014,

so that
B = 2y + 3 ≤ 3 + 2× 2× 1013m2 log m < 1044.

Suppose now that λ > 10. Then 13/αλ < 1/2, and so inequality (18) implies by a
standard argument

|(ay −mx) log α− (y − x) log
√

5| <
26
αλ

,

or �����
ay −mx

y − x
− log

√
5

log α

����� <
26

(log α)(y − x)αλ
<

55
(y − x)αλ

. (27)

Let [a0, a1, . . . , a99] = p99/q99 be the 99th convergent of η = (log
√

5)/ log α. The
maximal ai for i = 0, . . . , 99 is a20 = 29. Furthermore, we also have q99 > 1048 > B.
Hence, �����

ay −mx

y − x
− log

√
5

log α

����� >
1

(29 + 2)(y − x)2
=

1
31(y − x)2

. (28)

Thus, we get, from inequalities (27) and (28),

1
31(y − x)2

<
54

(y − x)αλ

giving
αλ ≤ 54× 31× (y − x) < 2000×B < 2× 1047,

leading to

λ ≤ log(2× 1047)
log α

< 227.

If λ = n, we then get that m/2− 2 ≤ n < 227, so m < 458, contradicting the fact
that m ≥ 1000. If λ = (m − n − 1)x, then (m − n − 1)x < 227. In particular,
x < 227 and (m− n)x ≤ 2(m− n− 1)x < 454. Further, inequality (27) shows that

ay −mx

y − x
<

log
√

5
log α

+
55

(y − x)α
< 2 +

34
y − x

,

so
ay −mx < 2(y − x) + 34.
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If a = n, then

ay −mx = ny −mx = n(y − x)− (m− n)x < 2(y − x) + 34,

so
n ≤ (m− n)x

y − x
+ 2 +

34
y − x

< 454 + 2 + 34 = 490,

therefore m ≤ (m−n)+n < 454+490 = 944, contradicting the fact that m ≥ 1000.
If a = n + 1, then

ay −mx = (n + 1)y −mx = (n + 1)(y − x)− (m− n− 1)x < 2(y − x) + 34,

so
n + 1 <

(m− n− 1)x
y − x

+ 2 +
34

y − x
< 227 + 2 + 34 = 263,

so m ≤ (m− n) + n < 454 + 262 = 716, contradicting the fact that m ≥ 1000.

3.9. A Small Linear Form in Three Logarithms

From now on, we assume that y > 2x.

Lemma 10. Any positive integer solution (m,n, x, y) of equation (3) with n ≥ 3
and x �= y satisfies

���F y
a α−mx5x/2 − 1

��� <
4

αµ
for some a ∈ {n, n + 1}, (29)

where µ = min{m, (m− n− 2)x}.

Proof. Suppose that we work with the left equation (3). Then, by Lemma 5, we
have

Fx
n + F y

n+1 = Fx
m =

αmx

5x/2
(1 + ζm,x) ,

so ���F y
n+1α

−mx5x/2 − 1
��� ≤ |ζm,x| +

Fx
n

αmx/5x/2
. (30)

Estimate (19) gives

Fx
n

αmx/5x/2
<

3
2

�
Fx

n

Fx
m

�
<

2
α(m−n−1)x

,

where we used inequalities (5) to say that Fn < αn−1 and Fm > αm−2. Since
|ζm,x| < 2/αm by Lemma 5, we get, from inequality (30), that

���F y
n+1α

−mx5x/2 − 1
��� <

2
αm

+
2

α(m−n−1)x
≤ 4

αmin{m,(m−n−1)x} , (31)
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A similar argument applies to the right equation (3). In that case, we get

F y
n + Fx

n+1 = Fx
m =

αmx

5x/2
(1 + ζm,x),

therefore
���F y

nα−mx5x/2 − 1
��� < |ζm,x| +

Fx
n+1

αmx/5x/2
<

2
αm

+
3
2

�
Fx

n+1

Fx
m

�

<
2

αm
+

2
α(m−n−2)x

≤ 4
αmin{m,(m−n−2)x} , (32)

which together with inequality (31) completes the proof of this lemma.

Remark. Lemma 2 (iv) shows that

(m− 1)x > (n− 2)y > 2(n− 2)x, so m− 1 > 2n− 4 so m ≥ 2n− 2.

In particular, m− n− 2 ≥ (m− 6)/2. This will be useful later.

Lemma 11. Any positive solution (m,n, x, y) of equation (3) with n ≥ 3 and x �= y
satisfies:

(i) n > 10−14m/ log m;

(ii) n ≥ 1000.

Proof. We put Λ = F y
a α−mx5x/2− 1 for the form that appears in the left hand side

of inequality (29). Since mx > 0 and no power of α of positive integer exponent
can be a rational number, it follows that Λ �= 0. Inequality (29) shows that

log |Λ| < log 4− µ log α. (33)

We find a lower bound on log |Λ|. We use Theorem 2 with the choices of parameters
t = 3, γ1 = Fa, γ2 = α, γ3 =

√
5, b1 = y, b2 = −mx, b3 = −x. We have

K = Q(
√

5) for which D = 2. We take A1 = 2n log α, A2 = log α, and A3 = log 5.
We take B = my. We then have

log |Λ| > −1.4×306×34.5×22×(1+log 2)(1+log(my))(2n log α)(log α)(log 5). (34)

Comparing estimates (33) and (34), we get

µ <
4

log α
+ 1.4× 306 × 34.5 × 22 × (1 + log 2)× 2× (log α)× (log 5)n(2 log(my)).

giving
µ < 4× 1012n log(my).
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With Lemmas 3 and 10 and the remark following Lemma 10, we get

m− 6 < 8× 1012n log(2× 1013m4) = 8× 1012n(log(2× 1013) + 4 log m)
< 8× 1012n× (9 log m),

where we used the fact that log(2 × 1013) + 4 log m < 31 + 4 log m < 9 log m for
m ≥ 1000. Thus, we get

m < 6 + 8× 9× 1012n log m < 1014n log m, (35)

which leads to (i). For (ii), assuming that n < 1000, we get, by inequality (35),
that

m < 1017 log m therefore m < 2× 1017 log(1017) < 1019.

By (ii) of Lemma 3, we have

B = my < 1013m2 log m < 1053.

Clearly, since µ ≥ m/2− 3 > 10, it follows that 4/αµ < 1/2. A standard argument
implies that inequality (29) leads to

|y log Fa −mx log α + x log
√

5| <
8

αµ
, (36)

where a ≤ n + 1 ≤ 1000 and max{y,mx, x} ≤ B < 1053. However, the minimum of
the expression appearing in the left–hand side of inequality (36) even over all the
indices n < 3000 and coefficients at most 5 × 1065 in absolute value was bounded
from below using LLL in Section 6 of [4]. The lower bound there was 100/1.5750.
Hence, we get that

100
1.5750

<
8

αµ
, therefore µ < 750

�
log 1.5
log α

�
− log 12.5

log α
< 630.

Since in fact µ = min{m, (m− n− 1)x} ≥ min{m, (m− 6)x/2} and m ≥ 1000, the
only possibility is when µ = (m− n− 2)x and x = 1. If y ≥ 3, then, Lemma 2 (iv)
shows that

m− 1 > (n− 2)y ≥ 3n− 6 so m ≥ 3n− 4 so (m− n− 2) ≥ 2(m− 5)/3,

implying that µ = (m−n− 2)x ≥ 2(m− 5)/3 > 663, a contradiction with µ < 630.
Hence, y = 2. Let us see that this is impossible. Suppose that we work with the
left equation (3). Then

Fm = Fn + F 2
n+1 < F 2

n + F 2
n+1 = F2n+1

so Fm < F2n+1, therefore m < 2n. The case m = 2n is not convenient because Fn

and Fn+1 are coprime, so m ≤ 2n− 1, which is impossible because then

Fm ≤ F2n−1 = F 2
n−1 + F 2

n < (Fn + Fn−1)2 = F 2
n+1 < F 2

n+1 + Fn = Fm.
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Suppose now that we work with the right equation (3). Then

Fm = F 2
n + Fn+1 < F 2

n + F 2
n−1 = F2n−1 for n > 10.

The inequality n > 10 holds because m ≥ 1000, and the last inequality above is
implied by Fn+1 < F 2

n−1, which holds because Fn+1 < 2Fn < 4Fn−1 < F 2
n−1 for

n > 10. Hence, m < 2n − 1. The case m ≤ 2n − 3 leads to a contradiction since
then

Fm ≤ F2n−3 = F 2
n−1 + F 2

n−2 < (Fn−1 + Fn−2)2 = F 2
n < F 2

n + Fn+1 = Fm.

Finally, the case m = 2n− 2, gives

F2n−2 = F 2
n + Fn+1 = Fn(Fn + 1) + Fn−1.

Since Fn−1 | F2n−2 and Fn−1 is coprime to Fn, we get that Fn−1 is a divisor of
Fn + 1 = (Fn−2 + 1) + Fn−1, so Fn−1 divides Fn−2 + 1, which in turn implies that
Fn−2 + 1 ≥ Fn−1 = Fn−2 + Fn−3, or 1 ≥ Fn−3, which is false for n > 10.

Lemma 12. Estimates (17) hold.

Proof. As in the proofs of Lemma 5 and 6, it is enough, in light of the Binet formula
(4), to show that the inequality

y < αn (37)

holds. By Lemma 3 (ii) and Lemma 11 (i), it suffices that the inequality

log(1013m log m) < 10−14(log α)m/ log m

holds. The above inequality holds for m > 1018. On the other hand, if m ≤ 1018,
then again by Lemma 3 (ii) and Lemma 11 (ii), we have

y < 1013m log m < 1013(1018) log(1018) < 1033 < α1000 ≤ αn.

This finishes the proof of this lemma.

Lemma 13. Equation (3) has no positive integer solution (m,n, x, y) with n ≥ 3
and x �= y.

Proof. By Lemmas 6 and 12, inequalities (18) hold. Recall λ = min{n, (m−n−1)x}.
Inequality (22) is

λ < 5× 1010 log y.

By the remark following Lemma 10, m−1 > 2n−4, so (m−n−1) ≥ n−4. Hence,
for us, λ ≥ n− 4. By Lemma 11 (i) and 3 (ii), we get

10−14m/ log m− 4 < n− 4 ≤ λ < 5× 1010 log y < 5× 1010 log(1013m log m),
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giving m < 1030, so y < 1013m log m < 1045. We thus get inequality (27), which
we recall here under the form

�����
ay −mx

y − x
− log

√
5

log α

����� <
55

(y − x)α996
.

The calculation with the 99th convergent of log
√

5/ log α from the proof of Lemma
10 shows that the left hand side of the above inequality is at least 1/(31(y − x)2).
So, we get α996 < 55 × 31(y − x) < 55 × 31 × 1045 < 1050, which is absurd. This
finishes the proof of the lemma and of the theorem.
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