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Abstract
We consider the multiplicative structure of sets of the form AA + 1, where A is a
large, finite set of real numbers. In particular, we show that the additively shifted
product set, AA + 1, must have a large part outside of any proper non-degenerate
generalized geometric progression of comparable length. We prove an analogous
result in finite fields as well.

1. Introduction

There are many problems in additive combinatorics which seek to differentiate be-
tween additive and multiplicative structure. By additive (resp. multiplicative)
structure in a set, we refer to some arrangement or information that is largely
undisturbed by addition (resp. multiplication). A prime example is the sums and
products problem. Let A be a large, finite set of n natural numbers. Define the
sum set of A to be

A + A = {a + b : a ∈ A, b ∈ A}.

Define the product set of A to be

AA = {ab : a ∈ A, b ∈ A}.

Let | · | denote the size of a set. The sums and products problem conjectures that,

max{|A + A|, |AA|} ≥ cn
2−�

,

for any � > 0, and some constant, c = c(�) > 0, which is independent of n. In
[1], Elekes made progress with an elegant proof based on the celebrated Szemerédi-
Trotter point-line incidence theorem, from [9]. Many of the results in this area have
seen largely geometric proofs, including the current record in [8]. Therein, Solymosi
proved the remarkable result that either the set of sums or the set of products must
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have more than about n
4
3 elements. See the book by Nathanson, [7], or the book

by Tao and Vu, [10], for more.
One indication of multiplicative structure is how the size of a finite set A compares

to the size of AA. If AA is not much bigger that A, then there must be some
multiplicative structure in the set A. The construction of a product set will build
in some multiplicative structure. This can often be estimated using tools such
as multiplicative energy and the Plünnecke-Rusza inequalities. Again, see [7] and
[10] for more details. Our main focus is to show that the multiplicative structure
inherent in the product set of a large, finite set of numbers cannot be maximal after
an additive shift. This will be made precise in the statement of the main theorem.
First, however, we need to introduce some definitions and notation.

In what follows, we use the following asymptotic notation. If two positive quan-
tities, X and Y , vary with respect to some parameter, n, we say X � Y if X ≤ CY ,
for some constant, C > 0, which does not depend on n. We write X ≈ Y when
X � Y and Y � X. In what follows, the implied constant may depend on some
other parameters (such as δ or � below), but it will be independent of the size of
our set A.

If A is a set of numbers, then define its additive shift to be

A + 1 = {a + 1 : a ∈ A}.

Similarly, a scaling of A by some number s will be

sA = {sa : a ∈ A}.

We note that multiplicative behavior of additive shifts have been studied in relation
to product sets by Garaev and Shen in [2], and Jones and Roche-Newton in [6].
However, they consider sets of the form A(A + 1), which exhibit behavior which is
quite different from that of sets of the form AA + 1, considered here.

Let r0, r1, . . . , rd be real numbers called generators, and let l1, . . . , ld be posi-
tive integers greater than 2. We define the d-dimensional generalized arithmetic
progression

R = R(r0, r1, . . . , rd, l1, . . . , ld)

= {r0 + x1r1 + · · · + xdrd : xj ∈ Z, 0 ≤ xj < lj , j = 1, . . . , d} .

The related notion of a d-dimensional generalized geometric progression is defined
as

G = G(g0, R) = {gr
0 : r ∈ R},

where g0 is some positive real number and R is some d-dimensional arithmetic
progression. Either type of progression is said to be proper if every choice of
(x1, x2, . . . , xd) yields a distinct element of the set. Furthermore, we will call either
type of generalized progression degenerate if d grows asymptotically with the size
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of the progression. That is to say, if the number of generators is not like a constant
compared to the length of the progression, it is degenerate.

Such progressions exhibit maximality in arithmetic, or, respectively, geometric
structure. We clarify this with the following elementary proposition.

Proposition 1.1. If R is a non-degenerate generalized arithmetic progression, we
have that

|R + R| ≈ |R|.

Also, if G is a non-degenerate generalized geometric progression, we have that

|GG| ≈ |G|.

We now state the main result.

Theorem 1.2. Let A ⊂ R, be a large, finite set of numbers. Let G be any proper
non-degenerate generalized geometric progression with |G| ≈ |AA|. We have that
for any δ > 0

|(AA + 1) \ G| � |A|1−δ
.

The proof of Theorem 1.2 works for some slightly more general progressions.
Remark 2.3 provides some insight into how to modify the proof to slightly relax the
assumptions of properness and non-degeneracy. Two direct corollaries follow.

Corollary 1.3. Let A ⊂ R, be a large, finite set of numbers. Let G be any proper
non-degenerate generalized geometric progression with |G| ≈ |AA|. We have that

(AA + 1) �⊂ G.

Notice that for any non-degenerate geometric progression, H ⊂ R, there exists a
set H

� ⊂ R such that |H �
H

�| ≈ |H| and H ⊂ H
�
H

�
. If we apply Theorem 1.2 with

A = H
�, we get the following corollary.

Corollary 1.4. Let G and H be any two large, finite, proper non-degenerate gen-
eralized geometric progressions with |G| ≈ |H|. We have that

(H + 1) �⊂ G.

We suspect that the additive shift disrupts multiplicative structure even more
than Theorem 1.2 indicates, as suggested by the following conjecture.

Conjecture 1.5. Let A ⊂ R, be a large, finite set of numbers. If

|(AA + 1) ∩BC| ≈ |AA|, and |BC| ≈ |AA|,

where B and C are also finite sets of numbers, then min{|B|, |C|} � 1.
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The next result is of a similar type, but in the setting of finite fields.

Theorem 1.6. Let A ⊂ Fq such that the following two conditions hold:

1. There exists a real number � > 0 such that |A||AA| � q
3
2+�

.

2. There exists a real number δ > 0 such that |AA| � q
1−δ

.

Let G be any proper non-degenerate generalized geometric progression with |G| ≈
|AA|. We have |(AA + 1) \ G| � q

δ
.

One should note that some condition like (2), the bound on |AA|, is necessary to
avoid triviality. However, it is reasonable to expect that one can improve this result
in either of two ways. First, condition (1), the bound on |A||AA|, could probably
be lowered, and second, the bound on |(AA + 1) \ G| could probably be raised. As
before, the proof will still work for some more general types of progressions. Again,
see the Remark 2.3.

2. Proof of Theorem 1.2

The basic outline of the proof is to start with a given large, finite subset of R. Then,
with this set and any appropriate generalized geometric progression, we construct
two large, finite sets of points in R2. We will then apply a recent result by Iosevich,
Roche-Newton, and Rudnev regarding the set of dot products determined by our
point sets, from [5]. The underlying arithmetic of the dot product set will allow us to
compare the elements of the shifted product set to the elements of the progression.

The key ingredient to their proof is inspired by recent developments in the study
of the Erdős distance problem. The classical Erdős distance problem asks for the
minimum number of distinct distances which can be determined by any large, finite
set of n points. The conjecture in the plane was that any such set must determine at
least n

1−� distinct distances, for any � > 0. Guth and Katz proved this in [3] with a
blend of cell-decomposition and algebraic geometry, applied to an incidence problem
in three dimensions. Shortly thereafter, Iosevich, Roche-Newton, and Rudnev, used
similar techniques to prove a related result on the number of distinct dot products
determined by such point sets in the plane. Specifically, they proved the following
theorem.

Theorem 2.1. Consider any large finite point sets E,F ⊂ R2 of n points each,
neither of which is contained in a single line. Let Π(E,F ) denote the set of dot
products Π(E,F ) = {x · y : x ∈ E, y ∈ F}. Then, for any � > 0, the number of
distinct dot products is bounded below by |Π(E,F )| � n

1−�
.

We now prove Theorem 1.2.
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Proof. Fix any large finite set A ⊂ R, and a real number δ > 0. Let G = G(g0, R)
be any non-degenerate generalized geometric progression with |G| ≈ |AA|. Consider
R = R(r0, r1, . . . , rd, l1, . . . , ld), the d-dimensional arithmetic progression defining
the exponents of g0 which make up G. Since G is non-degenerate, R must also be
non-degenerate. We will define g1 to be the “first element” of G, namely, g1 := g

r0
0 .

In what follows, we need to work with the normalized progression, G
� which will be

defined as
G
� :=

G

g1
=

�
g

g1
: g ∈ G

�
.

Notice that |G| = |G�|. Now, define the set B to be

B := {g ∈ G
� : gg ∈ G

�} = {g ∈ G
� : g = g

x1r1+···+xdrd
0 , xj < lj , xj ∈ 2N, j = 1, . . . , d}.

Claim 2.2. |B| ≈ |G|.

Since B ⊂ G
�, it is clear that |B| � |G|. Now we need only to show that |B| � |G|.

Notice that for an element to be in B, its square must be in G
�, hence the evenness

condition on the xj in the definition of B. So, we can count the number of elements
in B by counting the number of elements of G

� whose corresponding xj are all even.
By definition of the lj , we get

|B| ≥
d�

j=1

�
lj

2

�
≥

d�

j=1

lj

3
≥ |G|

3d
, (2.1)

as |G| is equal to the product of the lj , and the claim is proved.
By Claim 2.2, |B| ≈ |G|, so we have that |BB| ≈ |AA|. Now, we construct E

and F , finite subsets of R2,

E :=
�
(g1b, g1ba) ∈ R2 : b ∈ B, a ∈ A

�
, and F :=

�
(b, ba) ∈ R2 : b ∈ B, a ∈ A

�
.

These sets will have size |E| = |F | = |A||B| ≈ |A||G|.

Remark 2.3. Note that the size estimate in Claim 2.2 could be satisfied by some
slightly more general types of progressions. Specifically, as long as Claim 2.2 holds
for progression G, we can get the desired result.

We will consider Π(E,F ), the set of distinct dot products determined by pairs
in E × F . Notice that

Π(E,F ) = {(g1b, g1ba) · (b�, b�a�) : a, a
� ∈ A, b, b

� ∈ B}
= {g1bb

�(aa
� + 1) : a, a

� ∈ A, b, b
� ∈ B}

= g1BB(AA + 1) ⊂ G(AA + 1).

By construction, |Π(E,F )| = |g1BB(AA + 1)| ≤ |G(AA + 1)|.
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Set � = δ/3. Since � > 0, Theorem 2.1 gives us that

|Π(E,F )| � |E|1−� � (|A||B|)1−�
.

Comparing upper and lower bounds on |Π(E,F )| gives us

|G(AA + 1)| � (|A||B|)1−�
. (2.2)

Our aim is to get a lower bound on the exceptional set C := (AA + 1) \ G. From
(2.2), we get

(|A||B|)1−� � |G(AA + 1)| = |G((G ∩ (AA + 1)) ∪ C)| = |G(G ∩ (AA + 1)) ∪GC|.

Notice that the first term in the above union is a subset of GG, and therefore has
size � |G|, by Proposition 1.1. So we can conclude that

|GC| � (|A||B|)1−� ≈ (|A||G|)1−�
,

which, by simple counting, gives us that

|C| � (|A||G|)1−�

|G| = |A|1−�|G|−�
. (2.3)

Again, by a simple counting argument, we see that |A|2 � |AA|. Since |G| ≈ |AA|,
we can rewrite (2.3) as

|C| � |A|1−�|G|−� � |A|1−�|A|−2� � |A|1−δ
,

where the last line follows by definition of �.

3. Proof of Theorem 1.6

We follow a similar program to the proof of Theorem 1.2. Therefore, some details
are omitted. The dot product set estimate in the finite field setting is in a slightly
different form. It is due to Hart, Iosevich, Koh, and Rudnev. The statement of the
theorem in [4] is for one set, but the proof works, with obvious modifications, for
two sets. We consider the special case that both sets have the same size. For this
section, define Π(E,F ) as before, except for subsets of F2

q instead of R2. Also, let
F∗

q denote the multiplicative group of Fq.

Theorem 3.1. Let E,F ⊂ Fd
q such that |E| = |F | > q

d+1
2 . Then

F∗
q ⊂ Π(E,F ) = {x · y : x ∈ E, y ∈ F}.
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Notice that the size condition in Theorem 3.1 is given with constant 1. This is
why we include the � in the size condition of Theorem 1.6, although a slightly more
general statement is also true. Also, notice that we only use the case that d = 2.

Proof. Let A ⊂ Fq be given, and suppose that it satisfies the two size conditions:

1. There exists a real number � > 0 such that |A||AA| � q
3
2+�

.

2. There exists a real number δ > 0 such that |AA| � q
1−δ

.

Now, let G = G(g0, R) be any non-degenerate generalized geometric progression
with |G| ≈ |AA|. Again, let

g1 := g
r0
0 , G

� :=
G

g1
=

�
g

g1
: g ∈ G

�
, and B := {g ∈ G

� : gg ∈ G
�}.

Claim 2.2 still holds in this context, so, as before, we have |B| ≈ |BB| ≈ |AA|.
Now, we construct E and F , finite subsets of F2

q,

E :=
�
(g1b, g1ba) ∈ F2

q : b ∈ B, a ∈ A
�

, and F :=
�
(b, ba) ∈ F2

q : b ∈ B, a ∈ A
�

.

As in the proof of Theorem 1.2, the set of dot products determined by pairs in
E × F will be

Π(E,F ) = g1BB(AA + 1).

We also know that |E| = |F | = |A||B| ≈ |A||G|. So, by the first size condition
satisfied by A, and the fact that |G| ≈ |AA|, we see that |E| � q

3
2+�. Since E

is large enough to satisfy the hypotheses of Theorem 3.1, we are guaranteed that
|Π(E,F )| ≥ q − 1. Specifically, using the proof of Theorem 1.2 as a guide, we get

q − 1 ≤ |Π(E,F )| = |g1BB(AA + 1)| ≤ |G(AA + 1)|. (3.1)

We again seek a lower bound on the exceptional set. Define C ⊂ Fq to be (AA +
1) \ G. By (3.1), we get

q − 1 ≤ |G(AA + 1)| = |G((G ∩ (AA + 1)) ∪ C)| ≤ |G(G ∩ (AA + 1)) ∪GC|

Again, the first term in the union will have size � |G| ≈ |AA|. The second size
condition satisfied by A tells us that |AA| � q

1−δ, so the second term dominates.
This gives us that |GC| ≈ q, which, by simple counting and the fact that |G| ≈ |AA|,
yields

|C| � q

|AA| = q
δ
,

as claimed.
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