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Abstract
For any positive integer n and for certain fixed positive integers a1, a2, . . . , a7, we

study the number of solutions in integers of

a1x
2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 + a5x

2
5 + a6x

2
6 + a7x

2
7 = n2.

When a1 = a2 = · · · = a7 = 1, this reduces to the classical formula for the number of

representations of a square as a sum of seven squares. A further eighteen analogous

results will be given.

1. Introduction

Let n be a positive integer and let its prime factorization be given by n =
�

p pλp .

Let rk(n) denote the number of solutions in integers of x2
1 + x2

2 + · · · + x2
k = n.

Three classical results are given by Hurwitz (see [6] and [5]) and Sandham (see

[9]), respectively:
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r3(n
2
) = 6

�

p≥3

�
pλp+1 − 1

p− 1
−

�
−1

p

�
pλp − 1

p− 1

�
, (1.1)

r5(n
2
) = 10

�
2
3λ2+3 − 1

23 − 1

� �

p≥3

�
p3λp+3 − 1

p3 − 1
− p

p3λp − 1

p3 − 1

�
(1.2)

and

r7(n
2
) = 14

�
5× 2

5λ2+3 − 9

25 − 1

� �

p≥3

�
p5λp+5 − 1

p5 − 1
− p2

�
−1

p

�
p5λp − 1

p5 − 1

�
, (1.3)

where the values of the Legendre symbol are given by

�
−1

p

�
=

�
1 if p ≡ 1 (mod 4),

−1 if p ≡ −1 (mod 4).

In recent work [3], the number of solutions in integers of

n2
= x2

1 + bx2
2 + cx2

3 (1.4)

was investigated for certain values of b and c. When b = c = 1, the number of

solutions of (1.4) is given by (1.1). The number of solutions of (1.4) in the case

b = 1, c = 2 is given by

Theorem 1.1. [3, Theorem 1.2] The number of (x1, x2, x3) ∈ Z3
such that

n2
= x2

1 + x2
2 + 2x2

3

is given by

4 b(λ2)

�

p≥3

�
pλp+1 − 1

p− 1
−

�
−8

p

�
pλp − 1

p− 1

�
, (1.5)

where

b(λ2) =

�
1 if λ2 = 0,
3 if λ2 ≥ 1

and the values of the Legendre symbol are given by

�
−8

p

�
=

�
1 if p ≡ 1 or 3 (mod 8),

−1 if p ≡ 5 or 7 (mod 8).

Further three-variable analogues of Theorem 1.1 were given in [3] and five-variable

analogues were analyzed in [4]. In this work we study seven-variable analogues of

Theorem 1.1. That is, we investigate the number of solutions in integers of

a1x
2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 + a5x

2
5 + a6x

2
6 + a7x

2
7 = n2
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for certain fixed positive integers a1, a2, a3, a4, a5, a6 and a7. The number of

solutions in the case a1 = a2 = · · · = a7 = 1 is given by Sandham’s identity (1.3).

This work is organized as follows. In Section 2 we define some notation and

list all the results by grouping them into three theorems. The results in the first

theorem are different from the others and they are treated in Section 3. Proofs of

results in the second theorem are given in Section 4. Finally, results in the third

theorem can be deduced from the results in the second theorem. A proof of one of

them is given as an illustration in Section 5.

2. Notation and Results

Let n be a positive integer and let its prime factorization be n = 2
λ2

�
p≥3 pλp . Let

m =
�

p≥3 pλp so that n = 2
λ2m and define s(n) and t(n) by

s(n) =

�

p≥3

�
p5λp+5 − 1

p5 − 1
− p2

�
−8

p

�
p5λp − 1

p5 − 1

�
(2.1)

and

t(n) =

�

p≥3

�
p5λp+5 − 1

p5 − 1
− p2

�
−1

p

�
p5λp − 1

p5 − 1

�
. (2.2)

Let b(n) be defined by

∞�

n=1

b(n)qn
= q

∞�

i=1

�
1− q2i

�12
. (2.3)

Then let h(n) and k(n) be defined by

h(n) = b(m)

�

p≥3

�
1− p2

�
−8

p

�
b(m/p)

b(m)

�
(2.4)

and

k(n) = b(m)

�

p≥3

�
1− p2

�
−1

p

�
b(m/p)

b(m)

�
. (2.5)

We note that s(n), t(n), h(n) and k(n) do not depend on λ2, thus s(n) = s(m),

t(n) = t(m), h(n) = h(m) and k(n) = k(m). The theta functions ϕ(q) and ψ(q) are

defined for |q| < 1 by

ϕ(q) =

∞�

j=−∞
qj2

and ψ(q) =

∞�

j=0

qj(j+1)/2
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and for any positive integer k we define ϕk and ψk by

ϕk = ϕ(qk
) and ψk = ψ(qk

).

In addition, for positive integers a1, a2, a3, a4, a5, a6 and a7 and for any non-

negative integer n let r(a1,a2,a3,a4,a5,a6,a7)(n) denote the number of solutions in in-

tegers of

a1x
2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 + a5x

2
5 + a6x

2
6 + a7x

2
7 = n.

We note that Sandham’s result (1.3) is equivalent to

r(1,1,1,1,1,1,1)(n
2
) = 14

�
5× 2

5λ2+3 − 9

25 − 1

�
t(n). (2.6)

Analogously, we have the following results:

Theorem 2.1.

r(1,1,1,1,1,1,2)(n
2
) = 12

����
2
5λ2+5 − 63

25 − 1

���� s(n). (2.7)

r(1,1,1,1,2,2,2)(n
2
) =






6s(n) + 2h(n) if n is odd,

198×25λ2−756
25−1 s(n) if n is even.

(2.8)

r(1,1,2,2,2,2,2)(n
2
) =






3s(n) + h(n) if n is odd,

105×25λ2−756
25−1 s(n) if n is even.

(2.9)

Theorem 2.2.

r(1,2,2,2,2,2,2)(n
2
) = 2

����
2
5λ2+5 − 63

25 − 1

���� t(n). (2.10)

r(1,1,1,1,1,2,2)(n
2
) =






8t(n) + 2k(n) if n is odd,

250×25λ2−126
25−1 t(n) if n is even.

(2.11)

Theorem 2.3.

r(1,1,1,2,2,2,2)(n
2
) =






4t(n) + 2k(n) if n is odd,

126×25λ2−126
25−1 t(n) if n is even.

(2.12)
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r(1,1,1,1,1,1,4)(n
2
) =






6t(n) + 6k(n) if n is odd,

250×25λ2−126
25−1 t(n) if n is even.

(2.13)

r(1,1,1,1,1,4,4)(n
2
) =






3t(n) + 7k(n) if n is odd,

95×25λ2−126
25−1 t(n) if n is even.

(2.14)

r(1,1,1,1,4,4,4)(n
2
) =






2t(n) + 6k(n) if n is odd,

33×25λ2−126
25−1 t(n) if n is even.

(2.15)

r(1,1,1,4,4,4,4)(n
2
) =






3
2 t(n) +

9
2k(n) if n is odd,

35×25λ2−1−126
25−1 t(n) if n is even.

(2.16)

r(1,1,4,4,4,4,4)(n
2
) =






t(n) + 3k(n) if n is odd,

35×25λ2−1−126
25−1 t(n) if n is even.

(2.17)

r(1,4,4,4,4,4,4)(n
2
) =






1
2 t(n) +

3
2k(n) if n is odd,

35×25λ2−1−126
25−1 t(n) if n is even.

(2.18)

r(1,1,1,1,2,2,4)(n
2
) =






4t(n) + 4k(n) if n is odd,

126×25λ2−126
25−1 t(n) if n is even.

(2.19)

r(1,1,1,2,2,4,4)(n
2
) =






2t(n) + 4k(n) if n is odd,

64×25λ2−126
25−1 t(n) if n is even.

(2.20)
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r(1,1,2,2,4,4,4)(n
2
) =






t(n) + 3k(n) if n is odd,

33×25λ2−126
25−1 t(n) if n is even.

(2.21)

r(1,1,2,2,2,2,4)(n
2
) =






2t(n) + 2k(n) if n is odd,

64×25λ2−126
25−1 t(n) if n is even.

(2.22)

r(1,2,2,2,2,4,4)(n
2
) =






t(n) + k(n) if n is odd,

33×25λ2−126
25−1 t(n) if n is even.

(2.23)

r(1,2,2,4,4,4,4)(n
2
) =






1
2 t(n) +

3
2k(n) if n is odd,

35×25λ2−1−126
25−1 t(n) if n is even.

(2.24)

All three theorems give values of r(a1,...,a7)(n
2
). Theorems 2.2 and 2.3 account

for all instances for which 1 = a1 ≤ a2 ≤ · · · ≤ a7 ≤ 4 with a1, . . . , a7 ∈ {1, 2, 4}
and for which the product a1a2 · · · a7 is an even power of 2. Theorem 2.1 accounts

for those instances for which 1 = a1 ≤ a2 ≤ · · · ≤ a7 = 2 with a1, . . . , a7 ∈ {1, 2}
and for which the product a1a2 · · · a7 is an odd power of 2. Some further comments

about other values of a1, . . . , a7 are given in the concluding remarks at the end of

the paper.

3. Proof of Theorem 2.1

In this section we will outline the proof of Theorem 2.1.

Lemma 3.1. Fix an odd integer m. For any nonnegative integer k, let

u1(k) = r(1,1,1,1,1,1,2)(2
2km2

),

u2(k) = r(1,1,1,1,2,2,2)(2
2km2

)

and

u3(k) = r(1,1,2,2,2,2,2)(2
2km2

).

Then

ui(k + 3) = 33ui(k + 2)− 32ui(k + 1) for i=1, 2 or 3.
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Moreover

u1(1) = 31u1(0), u1(2) = 1055u1(0)

u2(1) = 15u1(0), u2(2) = 543u1(0)

and

u3(1) = 7u1(0), u3(2) = 287u1(0).

Hence, on solving the recurrence relation, we have: for k ≥ 1

r(1,1,1,1,1,1,2)(2
2km2

) =

����
2
5k+5 − 63

25 − 1

���� r(1,1,1,1,1,1,2)(m
2
),

r(1,1,1,1,2,2,2)(2
2km2

) =
33× 2

5k − 126

(25 − 1)× 2
r(1,1,1,1,1,1,2)(m

2
)

and

r(1,1,2,2,2,2,2)(2
2km2

) =
35× 2

5k − 252

(25 − 1)× 4
r(1,1,1,1,1,1,2)(m

2
).

Proof. These can all be deduced by the methods in [3, Section 4].

It remains to determine the values of r(1,1,1,1,1,1,2)(m
2
), r(1,1,1,1,2,2,2)(m

2
) and

r(1,1,2,2,2,2,2)(m
2
) in the case that m is odd.

Proposition 3.2. Let m be a positive odd number and let its prime factorization

be given by

m =

�

p≥3

pλp .

Let s(m) and h(m) be defined by (2.1) and (2.4). Then

r(1,1,1,1,1,1,2)(m
2
) = 12s(m), (3.1)

r(1,1,1,1,2,2,2)(m
2
) = 6s(m) + 2h(m) (3.2)

and

r(1,1,2,2,2,2,2)(m
2
) = 3s(m) + h(m). (3.3)

We may note that Lemma 3.1 and Proposition 3.2 immediately imply (2.7)–(2.9)

in Theorem 2.1.

To prove Proposition 3.2, we will need:
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Lemma 3.3. Let f1, f2 and f3 be defined by

f1(q) =
1

8
ϕ5

1ϕ2 −
1

8
ϕ1ϕ

5
2,

f2(q) =
1

2
ϕ5

1ϕ2 − 2ϕ1ϕ
5
2

and

f3(q) = −1

4
ϕ5

1ϕ2 +
3

4
ϕ3

1ϕ
3
2 −

1

2
ϕ1ϕ

5
2.

And let their series expansions be given by

f1(q) =

∞�

n=0

a1(n)qn, f2(q) =

∞�

n=0

a2(n)qn
(3.4)

and

f3(q) =

∞�

n=0

a3(n)qn. (3.5)

Then for any nonnegative integer n and any prime p we have

aj(pn) = aj(p)aj(n)− χ(p)aj(n/p) for j ∈ {1, 2, 3} (3.6)

where χ is the completely multiplicative function defined on the positive integers by

χ(r) = r2

�
−8

r

�
(3.7)

and
�−8

r

�
is the Kronecker symbol, and aj(x) is defined to be zero if x is not an

integer.

Proof. The results for j=1 or 2 follow from work of Alaca et al. [1, pp. 291–292].

The result for j=3 was given by Martin [8, pp. 4828–4833].

We may note that

ϕ5
(q)ϕ(q2

) =
32

3
f1(q)−

2

3
f2(q), (3.8)

ϕ3
(q)ϕ3

(q2
) =

16

3
f1(q)−

2

3
f2(q) +

4

3
f3(q) (3.9)

and

ϕ(q)ϕ5
(q2

) =
8

3
f1(q)−

2

3
f2(q). (3.10)
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Let Aj(n) be defined by

∞�

n=0

Aj(n)qn
=

� ∞�

n=0

aj(n)qn

�2

for j ∈ {1, 2, 3}. (3.11)

The next result is due to Hurwitz.

Lemma 3.4. Suppose that a(n) is a function, defined for all non-negative integers

n, that satisfies the property

a(pn) = a(p)a(n)− χ(p)a

�
n

p

�

for all primes p, where χ is a completely multiplicative function. Then the coefficient

of qn2
in 


∞�

j=−∞
qj2



×
� ∞�

k=0

a(k)qk

�

is equal to
∞�

r=1

A

�
2n

r

�
χ(r)µ(r)

where µ is the Möbius function, A(n) is defined by

∞�

n=0

A(n)qn
=

� ∞�

k=0

a(k)qk

�2

and A(x) is defined to be 0 if x is not a non-negative integer.

Proof. See the work of Sandham [9, Section 2].

Before starting the next lemma, let us define [qk
]f(q) to be the coefficient of qk

in the Taylor expansion of f(q).

Lemma 3.5. Let m be a positive odd number and let its prime factorization be

given by

m =

�

p≥3

pλp .

Let c1(m), c2(m) and c3(m) be the coefficients of q2m
in

32

3
f2
1 (q)− 2

3
f2
2 (q),

16

3
f2
1 (q)− 2

3
f2
2 (q) +

4

3
f2
3 (q) and

8

3
f2
1 (q)− 2

3
f2
2 (q),

respectively. Let b(m) be defined by (2.3). Then

c1(m) =
1

22
[q2m

]ϕ12
(q), (3.12)
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c2(m) =
1

44
[q2m

]ϕ12
(q) + 2b(m) (3.13)

and

c3(m) =
1

88
[q2m

]ϕ12
(q) + b(m). (3.14)

And thus

c1(m) = 12

�

d|m

d5
= 12

�

p≥3

p5λp+5 − 1

p5 − 1
, (3.15)

c2(m) = 6

�

d|m

d5
+ 2b(m) = 6

�

p≥3

p5λp+5 − 1

p5 − 1
+ 2b(m) (3.16)

and

c3(m) = 3

�

d|m

d5
+ b(m) = 3

�

p≥3

p5λp+5 − 1

p5 − 1
+ b(m). (3.17)

Proof. (3.12)–(3.14) may be deduced by the methods in [3, Section 4], and (3.15)–

(3.17) follows from the result of [q2m
]ϕ12

(q) given in [7].

We are now ready for

Proof of Proposition 3.2. We will deal with (3.1) first. The proofs of (3.2) and (3.3)

will be similar.

By (3.4) and (3.8),

r(1,1,1,1,1,1,2)(m
2
) = [qm2

]

�
ϕ(q)

�
32

3
f1(q)−

2

3
f2(q)

��

=
32

3
[qm2

]



ϕ(q)
∞�

j=0

a1(j)q
j



− 2

3
[qm2

]



ϕ(q)
∞�

j=0

a2(j)q
j



 .

By Lemmas 3.3 and 3.4 and (3.11) this is equivalent to

r(1,1,1,1,1,1,2)(m
2
) =

32

3

∞�

r=1

A1

�
2m

r

�
χ(r)µ(r)− 2

3

∞�

r=1

A2

�
2m

r

�
χ(r)µ(r)

where χ(r) is the completely multiplicative function defined by (3.7). Since χ(r) = 0

if r is even, the last sum in the above is over odd values of r only. Moreover, since

m is odd, we may apply Lemma 3.5 to deduce that

r(1,1,1,1,1,1,2)(m
2
) =

∞�

r=1

c1(m/r)χ(r)µ(r)
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= c1(m)

�

r|m

c1(m/r)

c1(m)
χ(r)µ(r)

= c1(m)

�

p≥3

�
1− χ(p)

c1(m/p)

c1(m)

�

=



12

�

p≥3

p5λp+5 − 1

p5 − 1



×




�

p≥3

�
1− p2

�
−8

p

�
p5λp − 1

p5λp+5 − 1

�



= 12

�

p≥3

�
p5λp+5 − 1

p5 − 1
− p2

�
−8

p

�
p5λp − 1

p5 − 1

�

= 12s(m).

Similarly, we can deduce:

r(1,1,1,1,2,2,2)(m
2
) =

∞�

r=1

c2(m/r)χ(r)µ(r)

=

∞�

r=1

�
1

44
[q2m/r

]ϕ(q)12 + 2b(m/r)

�
χ(r)µ(r)

=



6

�

p≥3

p5λp+5 − 1

p5 − 1



×




�

p≥3

�
1− p2

�
−8

p

�
p5λp − 1

p5λp+5 − 1

�



+ 2b(m)

�

p≥3

�
1− p2

�
−8

p

�
b(m/p)

b(m)

�

= 6

�

p≥3

�
p5λp+5 − 1

p5 − 1
− p2

�
−8

p

�
p5λp − 1

p5 − 1

�

+ 2b(m)

�

p≥3

�
1− p2

�
−1

p

�
b(m/p)

b(m)

�

= 6s(m) + 2h(m)

and

r(1,1,2,2,2,2,2)(m
2
) =

∞�

r=1

c3(m/r)χ(r)µ(r)

=

∞�

r=1

�
1

88
[q2m/r

]ϕ(q)12 + b(m/r)

�
χ(r)µ(r)

=



3

�

p≥3

p5λp+5 − 1

p5 − 1



×




�

p≥3

�
1− p2

�
−8

p

�
p5λp − 1

p5λp+5 − 1

�


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+ b(m)

�

p≥3

�
1− p2

�
−8

p

�
b(m/p)

b(m)

�

= 3

�

p≥3

�
p5λp+5 − 1

p5 − 1
− p2

�
−8

p

�
p5λp − 1

p5 − 1

�

+ b(m)

�

p≥3

�
1− p2

�
−8

p

�
b(m/p)

b(m)

�

= 3s(m) + h(m).

4. Proof of Theorem 2.2

In this section, we will outline proofs of results in Theorem 2.2. The proof of (2.10)

depends on:

Lemma 4.1. Fix an odd integer m. For any nonnegative integer k let

u(k) = r(1,2,2,2,2,2,2)(2
2km2

).

Then

u(k + 3) = 33u(k + 2)− 32u(k + 1),

u(1) = 31u(0), u(2) = 1055u(0)

and

u(0) =
1

7
r(1,1,1,1,1,1,1)(m

2
).

Hence, on solving the recurrence relation, we have

r(1,2,2,2,2,2,2)(2
2km2

) =
1

7

����
2
5k+5 − 63

25 − 1

���� r(1,1,1,1,1,1,1)(m
2
).

Proof. These may be deduced by the methods in [3, Section 4].

We are now ready for:

Proof of (2.10). By Lemma 4.1 and Sandham’s result (1.3), we can immediately

deduce:

r(1,2,2,2,2,2,2)(n
2
) = 2

����
2
5λ2+5 − 63

25 − 1

����
�

p≥3

�
p5λp+5 − 1

p5 − 1
− p2

�
−1

p

�
p5λp − 1

p5 − 1

�

= 2

����
2
5λ2+5 − 63

25 − 1

���� t(n).

This proves (2.10).
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Now we will outline the proof of (2.11). This will be achieved in two steps

according to whether n is even or odd. We begin with the case when n is even.

Lemma 4.2. Fix an odd integer m. For any nonnegative integer k let

u(k) = r(1,1,1,1,1,2,2)(2
2km2

).

Then

u(k + 3) = 33u(k + 2)− 32u(k + 1),

u(1) =
127

7
r(1,1,1,1,1,1,1)(m

2
) and u(2) =

4127

7
r(1,1,1,1,1,1,1)(m

2
).

Hence, on solving the recurrence relation, we have: for k ≥ 1

r(1,1,1,1,1,2,2)(2
2km2

) =
125× 2

5k − 63

(25 − 1)× 7
r(1,1,1,1,1,1,1)(m

2
)

and thus

r(1,1,1,1,1,2,2)(n
2
) =

250× 2
5λ2 − 126

25 − 1
t(n) (4.1)

where n is even.

Proof. These may be deduced by the methods in [3, Section 4], and (4.1) follows

from (2.6).

It remains to deal with the case when n is odd. We will need two lemmas.

Lemma 4.3. Let g1, g2 and g3 be defined by

g1(q) = qϕ2
(q)ψ4

(q2
), g2(q) = −1

4
ϕ2

(q)ϕ4
(−q), and g3(q) = qψ2

(q4
)ϕ4

(−q2
);

and let their series expansions be given by

g1(q) =

∞�

n=0

a1(n)qn, g2(q) =

∞�

n=0

a2(n)qn
(4.2)

and

g3(q) =

∞�

n=0

a3(n)qn. (4.3)

Then for any nonnegative integer n and any prime p we have

aj(pn) = aj(p)aj(n)− χ(p)aj(n/p) for j ∈ {1, 2, 3}

where χ is the completely multiplicative function defined on the positive integers by

χ(r) =

�
r2

�−1
r

�
if r is odd

0 if r is even
(4.4)

and
�−1

r

�
is the Kronecker symbol, and aj(x) is defined to be zero if x is not an

integer.
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Proof. This follows from [2, Theorem 2.4].

We note that

ϕ4
(q)ϕ2

(q2
) = 8g1(q)− 4g2(q) + 4g3(q), (4.5)

and we let Aj(n) be defined by

∞�

n=0

Aj(n)qn
=

� ∞�

n=0

aj(n)qn

�2

for j ∈ {1, 2, 3}. (4.6)

Lemma 4.4. Let m be an positive odd number and c(m) be the coefficient of q2m

in 8g2
1(q)− 4g2

2(q) + 4g2
3(q). Let b(m) be defined by (2.3). Then

c(m) =
1

33
[q2m

]ϕ12
(q) + 2b(m). (4.7)

And thus

c(m) = 8

�

d|m

d5
+ 2b(m) = 8

�

p≥3

p5λp+5 − 1

p5 − 1
+ 2b(m). (4.8)

Proof. Equation (4.7) may be deduced by the methods in [3, Section 4], and (4.8)

follows from the result of [q2m
]ϕ12

(q) given in [7].

Proposition 4.5. Let m be a positive odd number and let its prime factorization be

given by m =
�

p≥3 pλp . Let t(m) and k(m) be defined by (2.2) and (2.5) respectively.

Then r(1,1,1,1,1,2,2)(m
2
) = 8t(m) + 2k(m).

Proof. By (4.2), (4.3) and (4.5),

r(1,1,1,1,1,2,2)(m
2
) = [qm2

] (ϕ(q) (8g1(q)− 4g2(q) + 4g3(q)))

= 8[qm2
]



ϕ(q)
∞�

j=0

a1(j)q
j



− 4[qm2
]



ϕ(q)
∞�

j=0

a2(j)q
j





+ 4[qm2
]



ϕ(q)
∞�

j=0

a3(j)q
j



 .

By Lemmas 3.4 and 4.3, and (4.6), this is equivalent to

r(1,1,1,1,1,2,2)(m
2
) = 8

∞�

r=1

A1

�
2m

r

�
χ(r)µ(r)− 4

∞�

r=1

A2

�
2m

r

�
χ(r)µ(r)

+ 4

∞�

r=1

A3

�
2m

r

�
χ(r)µ(r),
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where χ(r) is the completely multiplicative function defined by (4.4). Since χ(r) = 0

if r is even, the last sum in the above is over odd values of r only.

Moreover, since m is odd, we may apply Lemma 4.4 to deduce that

r(1,1,1,1,1,2,2)(m
2
) =

∞�

r=1

c(m/r)χ(r)µ(r)

=

∞�

r=1

�
1

33
[q2m/r

]ϕ(q)12 + 2b(m/r)

�
χ(r)µ(r)

=



8

�

p≥3

p5λp+5 − 1

p5 − 1



×




�

p≥3

�
1− p2

�
−1

p

�
p5λp − 1

p5λp+5 − 1

�



+ 2b(m)

�

p≥3

�
1− p2

�
−1

p

�
b(m/p)

b(m)

�

= 8

�

p≥3

�
p5λp+5 − 1

p5 − 1
− p2

�
−1

p

�
p5λp − 1

p5 − 1

�

+ 2b(m)

�

p≥3

�
1− p2

�
−1

p

�
b(m/p)

b(m)

�

= 8t(m) + 2k(m).

5. Proof of Theorem 2.3

In this section, we will give the proof of (2.12) and regard it as an illustration. Proofs

of the remaining results are all similar: for n is even, the value can be deduced from

the value of r(1,1,1,1,1,1,1)(n
2
) and for n is odd, the value can be deduced from

Theorem 2.2.

Lemma 5.1. Fix an odd integer m. For any nonnegative integer k let

u(k) = r(1,1,1,2,2,2,2)(2
2km2

).

Then u(k + 3) = 33u(k + 2)− 32u(k + 1),

u(1) = 9r(1,1,1,1,1,1,1)(m
2
) and u(2) = 297r(1,1,1,1,1,1,1)(m

2
).

Hence, on solving the recurrence relation, we have: for k ≥ 1

r(1,1,1,2,2,2,2)(2
2km2

) =
9× 2

5k − 9

25 − 1
r(1,1,1,1,1,1,1)(m

2
)
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and thus

r(1,1,1,2,2,2,2)(n
2
) =

126× 2
5λ2 − 126

25 − 1
t(n) (5.1)

where n is even.

Proof. These may be deduced by the methods in [3, Section 4], and (5.1) follows

from (2.6).

It remains to deal with the case when n is odd.

Lemma 5.2. Let n be a positive integer and let its prime factorization be given by

n = 2
λ2m where m =

�

p≥3

pλp .

Let t(m) and k(m) be defined by (2.2) and (2.5). Then t(m) =
1
2r(1,2,2,2,2,2,2)(m

2
)

and k(m) =
1
2r(1,1,1,1,1,2,2)(m

2
)− 2r(1,2,2,2,2,2,2)(m

2
).

Proof. This follows from Lemma 4.1 and Proposition 4.5.

Lemma 5.3. Let n be a positive integer and let its prime factorization be given by

n = 2
λ2m where m =

�

p≥3

pλp .

Then

r(1,1,1,2,2,2,2)(m
2
) = r(1,1,1,1,1,2,2)(m

2
)− 2r(1,2,2,2,2,2,2)(m

2
). (5.2)

Hence,

r(1,1,1,2,2,2,2)(m
2
) = 4t(m) + 2k(m). (5.3)

Proof. (5.2) can be deduced by the method in [3, Section 4], and (5.3) immediately

follows from Lemma 5.2 and (5.2).

By Lemma 5.1 and Lemma 5.3, we immediately deduce (2.12).

Finally, let a = (a1, a2, a3, a4, a5, a6, a7). Let n be a positive integer and let its

prime factorization be given by

n = 2
λ2m where m =

�

p≥3

pλp .

Then similar to (2.12), we can deduce that

ra(n
2
) =





dar(1,1,1,1,1,2,2)(m

2
) + ear(1,2,2,2,2,2,2)(m

2
) if n is odd,

ca(λ2)r(1,1,1,1,1,1,1)(m
2
) if n is even.
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Hence,

ra(n
2
) =





(8da + 2ea)t(n) + 2dak(n) if n is odd,

14ca(λ2)t(n) if n is even.

for the values of a, ca(λ2), da and ea given in the Table 1, below.

a ca da ea

(1, 1, 1, 1, 1, 1, 4)
125×25λ2−63

(25−1)×7 3 −9

(1, 1, 1, 1, 1, 4, 4)
95×25λ2−1−63

(25−1)×7
7
2 −25

2

(1, 1, 1, 1, 4, 4, 4)
33×25λ2−1−63

(25−1)×7 3 −11

(1, 1, 1, 4, 4, 4, 4)
5×25λ2−2−9

25−1
9
4 −33

4

(1, 1, 4, 4, 4, 4, 4)
5×25λ2−2−9

25−1
3
2 −11

2

(1, 4, 4, 4, 4, 4, 4)
5×25λ2−2−9

25−1
3
4 −11

4

(1, 1, 1, 1, 2, 2, 4)
9×25λ2−9

25−1 2 −4

(1, 1, 1, 2, 2, 4, 4)
32×25λ2−63
(25−1)×7 2 −7

(1, 1, 2, 2, 4, 4, 4)
33×25λ2−1−63

(25−1)×7
3
2 −11

2

(1, 1, 2, 2, 2, 2, 4)
32×25λ2−63
(25−1)×7 1 −3

(1, 2, 2, 2, 2, 4, 4)
33×25λ2−1−63

(25−1)×7
1
2 −3

2

(1, 2, 2, 4, 4, 4, 4)
5×25λ2−2−9

25−1
3
4 −11

4

Table 1: Data for (2.13)–(2.24)

6. Concluding Remarks

It is natural to ask if Theorem 2.1 can be extended by allowing some of the aj

to be equal to 4, that is, to consider the case 1 = a1 ≤ a2 ≤ · · · ≤ a7 = 4 for

which the product a1a2 · · · a7 is an odd power of 2. For example, consider the case

r(1,1,1,1,1,2,4)(n
2
). The methods in [3, Section 4] can be used to find a formula in

the case that n is even. For odd values of n, it would be necessary to study the

sextenary form r(1,1,1,1,2,4)(n) and be able to express ϕ4
(q)ϕ(q2

)ϕ(q4
) as a linear

combination of functions whose coefficients satisfy (3.6). Such a formula is not

known. This could be the subject of further investigation.
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