CATALAN NUMBERS MODULO A PRIME POWER

Yong-Gao Chen ${ }^{1}$
School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing, P. R. CHINA
ygchen@njnu.edu.cn
\section*{Wen Jiang}
School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing, P. R. CHINA

Received: 9/6/12, Accepted: 5/1/13, Published: 6/14/13

Abstract

Let $C_{n}=(2 n)!/((n+1)!n!)$ be the n-th Catalan number. It is proved that for any odd prime p and integers a, k with $0 \leq a<p$ and $k>0$, if $0 \leq a<(p+1) / 2$, then the Catalan numbers $C_{p^{1}-a}, \ldots, C_{p^{k}-a}$ are all distinct modulo p^{k}, and the sequence $\left(C_{p^{n}-a}\right)_{n \geq 1}$ modulo p^{k} is constant from $n=k$ on; if $(p+1) / 2 \leq a<p$, then the Catalan numbers $C_{p^{1}-a}, \ldots, C_{p^{k+1}-a}$ are all distinct modulo p^{k}, and the sequence $\left(C_{p^{n}-a}\right)_{n \geq 1}$ modulo p^{k} is constant from $n=k+1$ on. The similar conclusion is proved for $p=2$ recently by Lin.

1. Introduction

Let $C_{n}=(2 n)!/((n+1)!n!)$ be the n-th Catalan number. In 2011, Lin [4] proved a conjecture of Liu and Yeh by showing that for all $k \geq 2$, the Catalan numbers $C_{2^{1}-1}, \ldots, C_{2^{k-1}-1}$ are all distinct modulo 2^{k}, and the sequence $\left(C_{2^{n}-1}\right)_{n \geq 1}$ modulo 2^{k} is constant from $n=k-1$ on. For $k=2,3$, this is proved by Eu, Liu and Yeh [2]. In this paper, the following result is proved.
Theorem 1. Let p be an odd prime and a, k be two integers with $0 \leq a<p$ and $k>0$. Then
(i) for $0 \leq a<\frac{1}{2}(p+1)$, the Catalan numbers $C_{p^{1}-a}, \ldots, C_{p^{k}-a}$ are all distinct modulo p^{k}, and the sequence $\left(C_{p^{n}-a}\right)_{n \geq 1}$ modulo p^{k} is constant from $n=k$ on;
(ii) for $\frac{1}{2}(p+1) \leq a<p$, the Catalan numbers $C_{p^{1}-a}, \ldots, C_{p^{k+1}-a}$ are all distinct modulo p^{k}, and the sequence $\left(C_{p^{n}-a}\right)_{n \geq 1}$ modulo p^{k} is constant from $n=k+1$ on.

[^0]
2. Proof of the Theorem

We begin with the following lemmas.
Lemma 1. ([1]) For any odd prime p and any positive integer k, we have

$$
p \nmid C_{p^{k}-1}
$$

Lemma 2. ([3, Theorem 129]) If p is an odd prime and k is a positive integer, then

$$
\prod_{\substack{0<d<p^{k} \\(d, p)=1}} d \equiv-1\left(\bmod p^{k}\right)
$$

Lemma 3. Let p be an odd prime, and a, i be integers with $0 \leq a<p$ and $i>0$. Then
(i) for $0 \leq a<\frac{1}{2}(p+1)$, we have

$$
C_{p^{i+1}-a} \equiv C_{p^{i}-a} \quad\left(\bmod p^{i}\right), \quad C_{p^{i+1}-a} \not \equiv C_{p^{i}-a} \quad\left(\bmod p^{i+1}\right)
$$

(ii) for $\frac{1}{2}(p+1) \leq a<p$, we have

$$
C_{p^{i+1}-a} \equiv C_{p^{i}-a} \quad\left(\bmod p^{i-1}\right), \quad C_{p^{i+1}-a} \not \equiv C_{p^{i}-a} \quad\left(\bmod p^{i}\right)
$$

Proof. First we deal with the case $a=1$.
Define $\tau_{p}(n)=n / p^{\alpha}$ for $p^{\alpha} \mid n$ and $p^{\alpha+1} \nmid n$. By Lemma 1, we have

$$
\begin{equation*}
2\left(2 p^{i+1}-1\right) C_{p^{i+1}-1}=\frac{2 \cdot\left(2 p^{i+1}-1\right)!}{p^{i+1}!\left(p^{i+1}-1\right)!}=\frac{\tau_{p}\left(2 \cdot\left(2 p^{i+1}-1\right)!\right)}{\tau_{p}\left(p^{i+1}!\left(p^{i+1}-1\right)!\right)}=\frac{\tau_{p}\left(\left(2 p^{i+1}\right)!\right)}{\left(\tau_{p}\left(p^{i+1}!\right)\right)^{2}} \tag{1}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
2\left(2 p^{i}-1\right) C_{p^{i}-1}=\frac{\tau_{p}\left(\left(2 p^{i}\right)!\right)}{\left(\tau_{p}\left(p^{i}!\right)\right)^{2}} \tag{2}
\end{equation*}
$$

Since

$$
p^{i+1}!=\prod_{\substack{0<d<p^{i+1} \\(d, p)=1}} d \cdot \prod_{v=1}^{p^{i}} v p
$$

by Lemma 2, we have

$$
\begin{equation*}
\tau_{p}\left(p^{i+1}!\right) \equiv-\tau_{p}\left(p^{i}!\right) \quad\left(\bmod p^{i+1}\right) \tag{3}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\tau_{p}\left(\left(2 p^{i+1}\right)!\right) \equiv \tau_{p}\left(\left(2 p^{i}\right)!\right) \quad\left(\bmod p^{i+1}\right) \tag{4}
\end{equation*}
$$

By (1), (2), (3) and (4), we have

$$
2\left(2 p^{i+1}-1\right) C_{p^{i+1}-1} \equiv 2\left(2 p^{i}-1\right) C_{p^{i}-1} \quad\left(\bmod p^{i+1}\right)
$$

That is,

$$
C_{p^{i+1}-1} \equiv\left(1-2 p^{i}\right) C_{p^{i}-1} \quad\left(\bmod p^{i+1}\right)
$$

Now Lemma 3 for $a=1$ follows immediately from Lemma 1 and the above congruence.

If $a=0$, then

$$
C_{p^{i}-a}=C_{p^{i}}=\frac{\left(2 p^{i}\right)!}{p^{i}!\left(p^{i}+1\right)!}=\frac{\left(2 p^{i}\right)\left(2 p^{i}-1\right)}{p^{i}\left(p^{i}+1\right)} C_{p^{i}-1}=\frac{2\left(2 p^{i}-1\right)}{p^{i}+1} C_{p^{i}-1}
$$

Thus, by Lemma 1 we have $p \nmid C_{p^{i}}$. Hence

$$
\begin{equation*}
\left(p^{i}+1\right) C_{p^{i}}=\frac{\tau_{p}\left(\left(2 p^{i}\right)!\right)}{\left(\tau_{p}\left(p^{i}!\right)\right)^{2}} \tag{5}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\left(p^{i+1}+1\right) C_{p^{i+1}}=\frac{\tau_{p}\left(\left(2 p^{i+1}\right)!\right)}{\left(\tau_{p}\left(p^{i+1}!\right)\right)^{2}} \tag{6}
\end{equation*}
$$

By (3)-(6) we have

$$
\left(p^{i}+1\right) C_{p^{i}} \equiv\left(p^{i+1}+1\right) C_{p^{i+1}} \quad\left(\bmod p^{i+1}\right)
$$

Now Lemma 3 for $a=0$ follows immediately.
Now we assume that $2 \leq a<p$. Then

$$
\begin{align*}
C_{p^{i}-a} & =\frac{\left(2 p^{i}-2 a\right)!}{\left(p^{i}-a\right)!\left(p^{i}-a+1\right)!} \\
& =\frac{\left(p^{i}-a+1\right) \cdots\left(p^{i}-1\right)\left(p^{i}-a+2\right) \cdots p^{i}}{\left(2 p^{i}-2 a+1\right) \cdots\left(2 p^{i}-2\right)} \cdot \frac{\left(2 p^{i}-2\right)!}{\left(p^{i}-1\right)!p^{i}!} \\
& =\frac{\left(p^{i}-a+1\right) \cdots\left(p^{i}-1\right)\left(p^{i}-a+2\right) \cdots p^{i}}{\left(2 p^{i}-2 a+1\right) \cdots\left(2 p^{i}-2\right)} C_{p^{i}-1} \tag{7}
\end{align*}
$$

By Lemma 1 we have $p \nmid C_{p^{i}-1}$ for $i \geq 1$. If $2 \leq a<\frac{1}{2}(p+1)$, then, by (7), we have

$$
p^{i} \mid C_{p^{i}-a}, \quad p^{i+1} \nmid C_{p^{i}-a} .
$$

Similarly, we have

$$
p^{i+1} \mid C_{p^{i+1}-a}, \quad p^{i+2} \nmid C_{p^{i+1}-a} .
$$

Hence, if $2 \leq a<\frac{1}{2}(p+1)$, then

$$
C_{p^{i+1}-a} \equiv C_{p^{i}-a} \quad\left(\bmod p^{i}\right), \quad C_{p^{i+1}-a} \not \equiv C_{p^{i}-a} \quad\left(\bmod p^{i+1}\right)
$$

If $\frac{1}{2}(p+1) \leq a<p$, then, by (7), we have

$$
p^{i-1} \mid C_{p^{i}-a}, \quad p^{i} \nmid C_{p^{i}-a} .
$$

Similarly, we have

$$
p^{i} \mid C_{p^{i+1}-a}, \quad p^{i+1} \nmid C_{p^{i+1}-a} .
$$

Hence, if $\frac{1}{2}(p+1) \leq a<p$, then

$$
C_{p^{i+1}-a} \equiv C_{p^{i}-a} \quad\left(\bmod p^{i-1}\right), \quad C_{p^{i+1}-a} \not \equiv C_{p^{i}-a} \quad\left(\bmod p^{i}\right)
$$

This completes the proof of Lemma 3.
Proof of Theorem 1. We prove (i). Case (ii) is similar. Assume that $0 \leq a<$ $\frac{1}{2}(p+1)$. For any $u \geq v$, by Lemma 3 (i) and $p^{v} \mid p^{u}$, we have

$$
\begin{equation*}
C_{p^{u+1}-a} \equiv C_{p^{u}-a} \quad\left(\bmod p^{v}\right) \tag{8}
\end{equation*}
$$

For $1 \leq i<j \leq k$, by (8) and Lemma 3 (i) we have

$$
\begin{equation*}
C_{p^{j}-a} \equiv C_{p^{j-1}-a} \equiv \cdots \equiv C_{p^{i+1}-a} \not \equiv C_{p^{i}-a} \quad\left(\bmod p^{i+1}\right) \tag{9}
\end{equation*}
$$

Since $p^{i+1} \mid p^{k}$, it follows from (9) that

$$
C_{p^{j}-a} \not \equiv C_{p^{i}-a} \quad\left(\bmod p^{k}\right)
$$

For $n>k$, by (8) we have

$$
C_{p^{n}-a} \equiv C_{p^{n-1}-a} \equiv \cdots \equiv C_{p^{k}-a} \quad\left(\bmod p^{k}\right)
$$

This completes the proof of Theorem 1.

References

[1] R. Alter and K. Kubota, Prime and prime power divisibility of Catalan numbers, J. Combin. Theory Ser. A 15 (1973), 243-256.
[2] S.-P. Eu, S.-C. Liu and Y.-N. Yeh, Catalan and Motzkin numbers modulo 4 and 8, European J. Combin. 29 (2008), 1449-1466.
[3] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Clarendon Press, Oxford Univ. Press, New York, 1979.
[4] H.-Y. Lin, Odd Catalan numbers modulo 2^{k}, Integers 12 (2012), no. 2, 161-165.

[^0]: ${ }^{1}$ This work was supported by the National Natural Science Foundation of China, Grant No 11071121.

