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Abstract

Let Cn = (2n)!/((n + 1)!n!) be the n-th Catalan number. It is proved that for any

odd prime p and integers a, k with 0 ≤ a < p and k > 0, if 0 ≤ a < (p + 1)/2, then

the Catalan numbers Cp1−a, . . . , Cpk−a are all distinct modulo pk
, and the sequence

(Cpn−a)n≥1 modulo pk
is constant from n = k on; if (p + 1)/2 ≤ a < p, then the

Catalan numbers Cp1−a, . . . , Cpk+1−a are all distinct modulo pk
, and the sequence

(Cpn−a)n≥1 modulo pk
is constant from n = k + 1 on. The similar conclusion is

proved for p = 2 recently by Lin.

1. Introduction

Let Cn = (2n)!/((n + 1)!n!) be the n-th Catalan number. In 2011, Lin [4] proved

a conjecture of Liu and Yeh by showing that for all k ≥ 2, the Catalan numbers

C21−1,. . .,C2k−1−1 are all distinct modulo 2
k
, and the sequence (C2n−1)n≥1 modulo

2
k

is constant from n = k − 1 on. For k = 2, 3, this is proved by Eu, Liu and Yeh

[2]. In this paper, the following result is proved.

Theorem 1. Let p be an odd prime and a, k be two integers with 0 ≤ a < p and

k > 0. Then

(i) for 0 ≤ a < 1
2 (p + 1), the Catalan numbers Cp1−a, . . . , Cpk−a are all distinct

modulo pk
, and the sequence (Cpn−a)n≥1 modulo pk

is constant from n = k on;

(ii) for
1
2 (p + 1) ≤ a < p, the Catalan numbers Cp1−a, . . . , Cpk+1−a are all distinct

modulo pk
, and the sequence (Cpn−a)n≥1 modulo pk

is constant from n = k + 1 on.
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2. Proof of the Theorem

We begin with the following lemmas.

Lemma 1. ([1]) For any odd prime p and any positive integer k, we have

p � Cpk−1.

Lemma 2. ([3, Theorem 129]) If p is an odd prime and k is a positive integer, then

�

0<d<pk

(d,p)=1

d ≡ −1 (mod pk
).

Lemma 3. Let p be an odd prime, and a, i be integers with 0 ≤ a < p and i > 0.

Then

(i) for 0 ≤ a < 1
2 (p + 1), we have

Cpi+1−a ≡ Cpi−a (mod pi
), Cpi+1−a �≡ Cpi−a (mod pi+1

);

(ii) for
1
2 (p + 1) ≤ a < p, we have

Cpi+1−a ≡ Cpi−a (mod pi−1
), Cpi+1−a �≡ Cpi−a (mod pi

).

Proof. First we deal with the case a = 1.

Define τp(n) = n/pα
for pα | n and pα+1 � n. By Lemma 1, we have

2(2pi+1 − 1)Cpi+1−1 =
2 · (2pi+1 − 1)!

pi+1!(pi+1 − 1)!
=

τp(2 · (2pi+1 − 1)!)

τp(pi+1!(pi+1 − 1)!)
=

τp((2pi+1
)!)

(τp(pi+1!))2
. (1)

Similarly, we have

2(2pi − 1)Cpi−1 =
τp((2pi

)!)

(τp(pi!))2
. (2)

Since

pi+1
! =

�

0<d<pi+1
(d,p)=1

d ·
pi�

v=1

vp,

by Lemma 2, we have

τp(p
i+1

!) ≡ −τp(p
i
!) (mod pi+1

). (3)

Similarly, we have

τp((2p
i+1

)!) ≡ τp((2p
i
)!) (mod pi+1

). (4)
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By (1), (2), (3) and (4), we have

2(2pi+1 − 1)Cpi+1−1 ≡ 2(2pi − 1)Cpi−1 (mod pi+1
).

That is,

Cpi+1−1 ≡ (1− 2pi
)Cpi−1 (mod pi+1

).

Now Lemma 3 for a = 1 follows immediately from Lemma 1 and the above congru-

ence.

If a = 0, then

Cpi−a = Cpi =
(2pi

)!

pi!(pi + 1)!
=

(2pi
)(2pi − 1)

pi(pi + 1)
Cpi−1 =

2(2pi − 1)

pi + 1
Cpi−1.

Thus, by Lemma 1 we have p � Cpi . Hence

(pi
+ 1)Cpi =

τp((2pi
)!)

(τp(pi!))2
. (5)

Similarly, we have

(pi+1
+ 1)Cpi+1 =

τp((2pi+1
)!)

(τp(pi+1!))2
. (6)

By (3)-(6) we have

(pi
+ 1)Cpi ≡ (pi+1

+ 1)Cpi+1 (mod pi+1
).

Now Lemma 3 for a = 0 follows immediately.

Now we assume that 2 ≤ a < p. Then

Cpi−a =
(2pi − 2a)!

(pi − a)!(pi − a + 1)!

=
(pi − a + 1) · · · (pi − 1)(pi − a + 2) · · · pi

(2pi − 2a + 1) · · · (2pi − 2)
· (2pi − 2)!

(pi − 1)!pi!

=
(pi − a + 1) · · · (pi − 1)(pi − a + 2) · · · pi

(2pi − 2a + 1) · · · (2pi − 2)
Cpi−1. (7)

By Lemma 1 we have p � Cpi−1 for i ≥ 1. If 2 ≤ a < 1
2 (p+1), then, by (7), we have

pi | Cpi−a, pi+1 � Cpi−a.

Similarly, we have

pi+1 | Cpi+1−a, pi+2 � Cpi+1−a.

Hence, if 2 ≤ a < 1
2 (p + 1), then

Cpi+1−a ≡ Cpi−a (mod pi
), Cpi+1−a �≡ Cpi−a (mod pi+1

).
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If
1
2 (p + 1) ≤ a < p, then, by (7), we have

pi−1 | Cpi−a, pi � Cpi−a.

Similarly, we have

pi | Cpi+1−a, pi+1 � Cpi+1−a.

Hence, if
1
2 (p + 1) ≤ a < p, then

Cpi+1−a ≡ Cpi−a (mod pi−1
), Cpi+1−a �≡ Cpi−a (mod pi

).

This completes the proof of Lemma 3.

Proof of Theorem 1. We prove (i). Case (ii) is similar. Assume that 0 ≤ a <
1
2 (p + 1). For any u ≥ v, by Lemma 3 (i) and pv | pu

, we have

Cpu+1−a ≡ Cpu−a (mod pv
). (8)

For 1 ≤ i < j ≤ k, by (8) and Lemma 3 (i) we have

Cpj−a ≡ Cpj−1−a ≡ · · · ≡ Cpi+1−a �≡ Cpi−a (mod pi+1
). (9)

Since pi+1 | pk
, it follows from (9) that

Cpj−a �≡ Cpi−a (mod pk
).

For n > k, by (8) we have

Cpn−a ≡ Cpn−1−a ≡ · · · ≡ Cpk−a (mod pk
).

This completes the proof of Theorem 1.
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