IMPROVING THE CHEN AND CHEN RESULT FOR ODD PERFECT NUMBERS

Kevin A. Broughan
Department of Mathematics, University of Waikato, Hamilton, New Zealand
kab@waikato.ac.nz
Daniel Delbourgo
Department of Mathematics, University of Waikato, Hamilton, New Zealand
delbourgo@waikato.ac.nz

Qizhi Zhou
Department of Mathematics, University of Waikato, Hamilton, New Zealand
qz49@waikato.ac.nz

Received: 9/18/12, Revised: 2/1/13, Accepted: 5/2/13, Published: 6/14/13

Abstract

If q^{α} is the Euler factor of an odd perfect number N, then we prove that its so-called index $\sigma\left(N / q^{\alpha}\right) / q^{\alpha} \geq 3^{2} \times 5 \times 7=315$. It follows that for any odd perfect number, the ratio of the non-Euler part to the Euler part is greater than $3^{2} \times 5 \times 7 / 2$.

1. Introduction

The main motivation for studying the structure of an odd perfect number is ultimately to establish that such a number cannot exist. It is known that any odd perfect number N must have at least 9 distinct prime factors [10], be larger than 10^{1500} [12], have a squarefree core which is less than $2 N^{\frac{17}{26}}$ [9], and every prime divisor is less than $(3 N)^{\frac{1}{3}}[1]$. These results represent recent progress on what must be one of the oldest current problems in mathematics.

Following Dris [5], in this paper we define the index m of a prime power dividing N. Using a lower bound for the index one can derive an upper bound, in terms of N, for the Euler factor of N. Dris found the bound $m \geq 3$; then Dris and Luca [6] improved this to $m \geq 6$. In [4] a list of forms in terms of products of prime powers, which includes the results of Dris and Dris-Luca, is derived. We improve the method of [4], obtaining an expanded list of prime power products which cannot occur as the value of an index. This enables us to conclude, in the case of the Euler factor, that $m \geq 315$; for any other prime, if the Euler factor divides N to a power
at least 2 then $m \geq 630$, and if the Euler factor divides N to the power 1 then $m \geq 210$.

Notations: $\Omega(n)$ is the total number of prime divisors of n counted with multiplicity, $\omega(n)$ the number of distinct prime divisors of $n, \omega_{0}(n)$ is the number of distinct odd prime divisors of $n, \sigma(n)$ the sum of the divisors of $n, d(n)$ the number of divisors of $n, \log _{2} n$ the logarithm to base $2,(a, b)$ the greatest common divisor, $p^{e} \| n$ means p^{e} divides n but p^{e+1} does not, $\nu_{p}(n)$ the highest power of p which divides n, and $\operatorname{ord}_{p} a$ is the smallest power of a which is congruent to 1 modulo p. The symbol \square, when not being used to denote the end of a proof, represents the square of an integer.

Let N denote an odd perfect number, and q a prime divisor with $q^{\alpha} \| N$ say. We write the standard factorization of N as

$$
N=q^{\alpha} \times \prod_{i=1}^{k} p_{i}^{\lambda_{i}} \times \prod_{j=k+1}^{s} p_{j}^{\lambda_{j}}
$$

where for $1 \leq i \leq k$ we have

$$
\begin{equation*}
\sigma\left(p_{i}^{\lambda_{i}}\right)=m_{i} q^{\beta_{i}}, \beta_{i} \geq 0,\left(m_{i}, q\right)=1, m_{i}>1 \tag{1}
\end{equation*}
$$

These prime numbers p_{i} are called primes of type 1 . For $k+1 \leq j \leq s$

$$
\begin{equation*}
\sigma\left(p_{j}^{\lambda_{j}}\right)=q^{\beta_{j}}, \quad \beta_{j}>0 \tag{2}
\end{equation*}
$$

and the p_{j} are called primes of type 2.
One defines the index or perfect number index at prime q to be the integer

$$
\begin{equation*}
m:=\frac{\sigma\left(N / q^{\alpha}\right)}{q^{\alpha}} \tag{3}
\end{equation*}
$$

in particular $m=m_{1} \cdots m_{k}$.
In fact $4 \nmid m, q \nmid m$, and if an odd prime p satisfies $p^{e} \mid m$ then $p^{e} \mid N$. Furthermore if q is the Euler prime, then m is odd and each m corresponding to any other prime is even. Lastly we have the fundamental equation

$$
\begin{equation*}
m \times \sigma\left(q^{\alpha}\right)=2 \times \prod_{i=1}^{k} p_{i}^{\lambda_{i}} \times \prod_{j=k+1}^{s} p_{j}^{\lambda_{j}}=\frac{2 N}{q^{\alpha}} \tag{4}
\end{equation*}
$$

2. Preliminary Results

First we state the theorem of Chen and Chen [4].

Theorem 1 If N is an odd perfect number with a prime power $q^{\alpha} \| N$, then the index $m:=\sigma\left(N / q^{\alpha}\right) / q^{a}$ is not equal to any of the six forms

$$
\left\{p_{1}, p_{1}^{2}, p_{1}^{3}, p_{1}^{4}, p_{1} p_{2}, p_{1}^{2} p_{2}\right\}
$$

where p_{1} and p_{2} are any distinct primes.
The following lemma comes from [6]. Here we give an alternative proof.
Lemma 2 If for some j with $k+1 \leq j \leq s$ (so p_{j} is a prime of type 2) and for some γ with $2 \leq \gamma \leq \lambda_{j}$ we have $p_{j}^{\gamma} \mid\left(q^{\alpha+1}-1\right) /(q-1)$, then $p_{j}^{\gamma-1} \mid \alpha+1$.

Proof. Because $p_{j}\left(1+p_{j}+\cdots+p_{j}^{\lambda_{j}-1}\right)=q^{\beta_{j}}-1$ one deduces $p_{j}^{1} \| q^{\beta_{j}}-1$, in which case $p_{j}^{1} \| q^{\operatorname{ord}_{p_{j}}(q)}-1$. However

$$
\begin{equation*}
2 \leq \gamma \leq \nu_{p_{j}}\left(\frac{q^{\alpha+1}-1}{q-1}\right)=\nu_{p_{j}}\left(\frac{q^{\operatorname{ord}_{p_{j}}(q)}-1}{q-1}\right)+\nu_{p_{j}}\left(\frac{\alpha+1}{\operatorname{ord}_{p_{j}}(q)}\right) \tag{5}
\end{equation*}
$$

If $\operatorname{ord}_{p_{j}}(q)=1$ then $\gamma \leq \nu_{p_{j}}(\alpha+1)$ and $p_{j}^{\gamma} \mid \alpha+1$, whereas if $\operatorname{ord}_{p_{j}}(q)>1$ one has $\gamma \leq 1+\nu_{p_{j}}(\alpha+1)$ and therefore $p_{j}^{\gamma-1} \mid \alpha+1$.

Lemma 3 (Ljunggren, see [7]) The only integer solutions (x, n, y) with $|x|>$ $1, n>2, y>0$ to the equation $\left(x^{n}-1\right) /(x-1)=y^{2}$ are $(7,4,20)$ and $(3,5,11)$, i.e. $\left(7^{4}-1\right) /(7-1)=20^{2}$ and $\left(3^{5}-1\right) /(3-1)=11^{2}$.

Lemma 4 [7] The only solutions in non-zero integers with $n>1$ to the equation $y^{n}=x^{2}+x+1$ are $n=3, y=7$ and $x=18$ or $x=-19$.

The following well known result $[2,3,13]$ guarantees the existence of primitive prime divisors for expressions of the form $a^{n}-1$ with fixed $a>1$.

Lemma 5 Let a and n be integers greater than 1. Then there exists a prime $p \mid a^{n}-1$ which does not divide any of $a^{m}-1$ for each $m \in\{2, \ldots, n-1\}$, except possibly in the two cases $n=2$ and $a=2^{\beta}-1$ for some $\beta \geq 2$, or $n=6$ and $a=2$. Such a prime is called a primitive prime factor.

We complete this set of preliminary results by filling in the missing case from the proof of the fundamental lemma [4, Lemma 2.4].

Lemma 6 Let N be an odd perfect number. Then $d(\alpha+1) \leq \omega(N)$ whenever a prime power $q^{\alpha} \| N$.

Proof. Let $n_{1}, n_{2}, \ldots, n_{w}$ denote all the distinct positive divisors of $\alpha+1$ which are greater than 1.

If $2 \mid \alpha+1$ then α is odd, and thus $q \equiv \alpha \equiv 1 \bmod 4$. Therefore q cannot be of the form $2^{\beta}-1$ and must be odd. By Lemma 5 there exists a primitive prime factor $q_{i} \mid q^{n_{i}}-1$; since $2 \mid q^{1}-1$ the q_{i} are all odd, and as they are primitive, one finds $q_{i} \nmid q^{1}-1$ also. Hence

$$
q_{i}\left|\frac{q^{n_{i}}-1}{q-1}\right| \frac{q^{\alpha+1}-1}{q-1}
$$

so that $q_{n_{1}} \cdots q_{n_{w}} \mid\left(q^{\alpha+1}-1\right) /(q-1)$. But $m \times \sigma\left(q^{\alpha}\right)=2 N / q^{\alpha}$ thus, including the divisor 1 and recalling $2 \mid \sigma\left(q^{\alpha}\right)$, one obtains the inequalities

$$
d(\alpha+1)=w+1 \leq \omega\left(\sigma\left(q^{\alpha}\right)\right) \leq \omega\left(m \sigma\left(q^{\alpha}\right)\right)=\omega\left(\frac{2 N}{q^{\alpha}}\right)=\omega(N)
$$

Alternatively if $2 \nmid \alpha+1$ then α is even so, again by Lemma 5 , we obtain distinct odd primes $q_{n_{i}}$ with

$$
q_{n_{1}} \cdots q_{n_{w}} \left\lvert\, \frac{q^{\alpha+1}-1}{q-1}\right.
$$

Because in this case $2 \mid m$ and $2 \nmid \sigma\left(q^{\alpha}\right)$, we deduce that

$$
d(\alpha+1)=1+w \leq 1+\omega\left(\sigma\left(q^{\alpha}\right)\right) \leq \omega\left(m \sigma\left(q^{\alpha}\right)\right)=\omega\left(\frac{2 N}{q^{a}}\right)=\omega(N)
$$

which completes the proof of the lemma.

3. The Proof

We now amend the proof of Theorem 1.1 of [4].
Lemma 7 Let N be an odd perfect number, and m the index at some prime divisor of N. Then

$$
\Omega(m)+\omega_{0}(m) \geq \omega(N)-\log _{2} \sqrt{\omega(N)}-\eta
$$

where $\eta=1$ if m is odd, $\eta=\frac{1}{2}$ if m is even and the Euler prime divides N to a power greater than 1, and $\eta=\frac{3}{2}$ if m is even and the Euler prime divides N exactly to the power 1.

Proof. Whenever $\left(m, p_{k+1} \cdots p_{s}\right)=p_{k+1} \cdots p_{s}$, one has an inequality

$$
s-k \leq \omega_{0}(m)=t
$$

and it follows that

$$
k+t \geq s=\omega(N)-1
$$

Because $k \leq \Omega(m), t=\omega_{0}(m)$ and $\omega(N) \geq 9$, we quickly deduce

$$
\Omega(m)+\omega_{0}(m) \geq k+t \geq \omega(N)-2 \geq \omega(N)-\log _{2} \sqrt{\omega(N)}-0.42
$$

The non-trivial case occurs when $\left(m, p_{k+1} \cdots p_{s}\right) \neq p_{k+1} \cdots p_{s}$. By suitably reordering the p_{i}, we can always write for some l with $k \leq l<s$:

$$
\begin{equation*}
\frac{p_{k+1} \cdots p_{s}}{\left(m, p_{k+1} \cdots p_{s}\right)}=p_{l+1} \cdots p_{s} \tag{6}
\end{equation*}
$$

Applying [4] Equation (2.2) and (6), we see that

$$
p_{l+1}^{\lambda_{l+1}} \cdots p_{s}^{\lambda_{s}} \mid \sigma\left(q^{\alpha}\right)
$$

Moreover using [4] Equation (2.1) and [4] Lemma 2.3,

$$
p_{i}^{\lambda_{i}-1} \mid \alpha+1, \quad l+1 \leq i \leq s
$$

hence

$$
p_{l+1}^{\lambda_{l+1}-1} \cdots p_{s}^{\lambda_{s}-1} \mid \alpha+1
$$

Now for $k+1 \leq i \leq s$ one knows $\sigma\left(p_{i}^{\lambda_{i}}\right)=q^{\beta_{i}}$, and q is odd so we must have λ_{i} even. It follows for $l+1 \leq i \leq s$ each $\lambda_{i} \geq 2$, thus $p_{l+1} \cdots p_{s} \mid \alpha+1$. Note also that $l<s$ in which case $s-l \geq 1$.

If $s-l=1$ then because $\omega(N) \geq 9$,

$$
\Omega(m)+\omega_{0}(m) \geq k+t \geq l=s-1 \geq \omega(N)-2 \geq \omega(N)-\log _{2} \sqrt{\omega(N)}-0.42
$$

as in the previous case.
If $s-l \geq 2$ then we claim at most one of the $\lambda_{i}=2$ and the remainder have $\lambda_{i} \geq 4$. To see this, consider the equations

$$
p_{i}^{2}+p_{i}+1=q^{\beta_{i}} .
$$

If $\beta_{i}>1$ then, by Lemma 4 , the only solution is $\beta_{i}=3, q=7$ and $p_{i}=18$ which is not prime, so the solution cannot occur in this context. Hence $\beta_{i}=1$ and the form of the equation is $q=x^{2}+x+1$. But this, for given q, has at most one positive integer solution, therefore at most one prime solution p_{i}.

By renumbering the p_{i} if necessary, when $s-l \geq 2$ we can write

$$
p_{l+1}^{3} p_{l+2}^{3} \cdots p_{s-1}^{3} p_{s} \mid \alpha+1
$$

Case 1. Suppose that the index m is odd. Then q is the Euler prime, and consequently $2 \mid \alpha+1$. Hence

$$
2 p_{l+1}^{3} p_{l+2}^{3} \cdots p_{s-1}^{3} p_{s} \mid \alpha+1
$$

and thus, by Lemma 6, we have

$$
2^{2 s-2 l} \leq d(\alpha+1) \leq \omega(N)
$$

or in other words $s-l \leq \log _{2} \sqrt{\omega(N)}$, which implies

$$
l \geq \omega(N)-\log _{2} \sqrt{\omega(N)}-1
$$

As $\omega_{0}(m)=t$ then by Equation (6) we have $l-k \leq t$, so $l \leq \Omega(m)+\omega_{0}(m)$. Lastly because $\omega(N) \geq 9$,

$$
6.41 \leq \omega(N)-\log _{2} \sqrt{\omega(N)}-1 \leq l \leq \Omega(m)+\omega_{0}(m)
$$

Case 2. Here we assume the Euler prime divides N to a power at least 2. Let m be even. Now $m=m_{1} \cdots m_{k}$ and $2 \| m$ so, for a unique i, one knows that $2 \mid m_{i}$. We claim that $2 \neq m_{i}$. If not, then

$$
\sigma\left(p_{i}^{\lambda_{i}}\right)=2 q^{\beta_{i}}
$$

whence p_{i} is the Euler prime and $\lambda_{i}+1$ is even; we can write

$$
\frac{p_{i}^{\lambda_{i}+1}-1}{2\left(p_{i}-1\right)}=\left(\frac{p_{i}^{\frac{\lambda_{i}+1}{2}}-1}{p_{i}-1}\right) \times\left(\frac{p_{i}^{\frac{\lambda_{i}+1}{2}}+1}{2}\right)=q^{\beta_{i}}
$$

but this cannot hold since the two factors in the middle term are coprime and greater than 1 , thus $2 \neq m_{i}$.

It follows that $k \leq \Omega(m)-1$. In this scenario with $s-l \geq 2$, we also know

$$
p_{l+1}^{3} p_{l+2}^{3} \cdots p_{s-1}^{3} p_{s} \mid \alpha+1
$$

thus

$$
2^{2 s-2 l-1} \leq d(\alpha+1) \leq \omega(N)
$$

which in turn implies

$$
l \geq s-\frac{1}{2}-\log _{2} \sqrt{\omega(N)}=\omega(N)-\log _{2} \sqrt{\omega(N)}-\frac{3}{2}
$$

It follows from the discussion that

$$
\omega(N)-\log _{2} \sqrt{\omega(N)}-\frac{3}{2} \leq l \leq k+t \leq \Omega(m)-1+\omega_{0}(m)
$$

and therefore

$$
6.91 \leq \omega(N)-\log _{2} \sqrt{\omega(N)}-\frac{1}{2} \leq \Omega(m)+\omega_{0}(m)
$$

Case 3. We shall now assume the Euler prime divides N exactly to the power 1 and that m is even. Here we have only the weaker inequality $k \leq \Omega(m)$, and using an identical argument to Case 2:

$$
5.91 \leq \omega(N)-\log _{2} \sqrt{\omega(N)}-\frac{3}{2} \leq \Omega(m)+\omega_{0}(m)
$$

Lemma 8 If the index m is a square, then $\alpha=1$.
Proof. If $m=$then necessarily q is the Euler prime. We must have $\sigma\left(q^{\alpha}\right)=2 \square$ and α is odd. Assuming $\alpha>1$ then

$$
\frac{1}{2}\left(\frac{q^{\alpha+1}-1}{q-1}\right)=\left(\frac{q^{(\alpha+1) / 2}-1}{q-1}\right) \times\left(\frac{q^{(\alpha+1) / 2}+1}{2}\right)=
$$

and the two factors in the penultimate term are coprime, in which case

$$
\frac{q^{(\alpha+1) / 2}-1}{q-1}=\square .
$$

By Lemma 3 one has $(\alpha+1) / 2 \leq 2$, and as $\alpha \equiv 1 \bmod 4$ we deduce $\alpha=1$, thereby yielding a contradiction.

Lemma 9 If the index m is odd, then it cannot be the sixth power of a prime.
Proof. Firstly the index being odd means it corresponds to the Euler prime. Assume $m=p^{6}=\square$. By Lemma 8, we have $\alpha=1$. If $p=p_{I}$ is of type 1 then $\sigma\left(p_{I}^{\lambda_{I}}\right)=p_{I}^{\theta} q^{\beta_{I}}$ for some $\theta>0$, which is false. Hence p_{I} will be type 2. If any other prime p_{j} were also of type 2 , then due to the equality $\sigma\left(q^{\alpha}\right)=\frac{2 N}{q^{\alpha} p_{I}^{6}}$ we would have $p_{j}^{2} \mid \sigma\left(q^{\alpha}\right)$ and also $q^{\beta_{j}}=\frac{p_{j}^{\lambda_{j}+1}-1}{p_{j}-1}$; however from Lemma 2 there is a divisibility $p_{j} \mid \alpha+1=2$, which is clearly false as $p_{j} \geq 3$.

Consequently there exists exactly one type 2 prime, p_{I}. Note that $\lambda_{I} \geq 6$. If $\lambda_{I} \neq 6$ we would have λ_{I} even and greater than 6 , implying $p_{I}^{2} \mid \sigma\left(q^{\alpha}\right)$ and by Lemma 2, $p_{I} \mid \alpha+1$ which is false. Hence $\lambda_{I}=6$ and we can write $\sigma\left(q^{\alpha}\right)=$ $2 p_{1}^{\lambda_{1}} \cdots p_{k}^{\lambda_{k}}$. But $m=p^{6}=m_{1} \cdots m_{k}$ has at most 6 factors, in which case $k \leq 6$; therefore $9 \leq \omega(N)=k+2 \leq 8$ a clear contradiction, completing the proof that $m \neq p^{6}$.

Applying Lemmas 7 and 9, we have shown
Theorem 10 If N is an odd perfect number and the odd prime $q^{\alpha} \| N$ then the index $\sigma\left(N / q^{\alpha}\right) / q^{\alpha}$ is either odd when q is the Euler prime, or even but not divisible by 4 when q is not the Euler prime.
(i) If q is the Euler prime, it cannot take any of the 11 forms $\left\{p, p^{2}, p^{3}, p^{4}, p^{5}, p^{6}\right.$, $\left.p_{1} p_{2}, p_{1}^{2} p_{2}, p_{1}^{3} p_{2}, p_{1}^{2} p_{2}^{2}, p_{1} p_{2} p_{3}\right\}$ where p is any odd prime and p_{1}, p_{2}, p_{3} are any distinct odd primes.
(ii) If q is not the Euler prime and the Euler prime divides N to a power greater than 1, it cannot take any of the 7 forms $\left\{2,2 p, 2 p^{2}, 2 p^{3}, 2 p^{4}, 2 p_{1} p_{2}, 2 p_{1}^{2} p_{2}\right\}$.
(iii) If q is not the Euler prime and the Euler prime divides N to the power 1, it cannot take any of the 5 forms $\left\{2,2 p, 2 p^{2}, 2 p^{3}, 2 p_{1} p_{2}\right\}$.

Therefore the smallest possible value of the index m is, respectively:

$$
\begin{aligned}
3^{2} \times 5 \times 7=315 & \text { in case (i), } \\
2 \times 3^{2} \times 5 \times 7=630 & \text { in case (ii), } \\
\text { and } \quad 2 \times 3 \times 5 \times 7=210 & \text { in case (iii). }
\end{aligned}
$$

Corollary 11 It follows directly that for any odd perfect number, the ratio of the non-Euler part to the Euler part is greater than 315/2.

Acknowledgements. The first version of this paper was based on [6]. We are most grateful to a referee who alerted us to the recent work of Chen and Chen [4], and pointed out some errors in an earlier version.

References

[1] P. Acquaah and S. Konyagin, On prime factors of odd perfect numbers, Int. J. Number Theory 8 (2012), 1537-1540.
[2] A. S. Bang, Taltheoretiske undersogelser Tidsskrift for Mat. 5 (1886), 70-80, 130-137.
[3] G. D. Birkhoff and H. S. Vandiver, On the integral divisors of $a^{n}-b^{n}$, Ann. of Math. (2) 5 (1904), 173-180.
[4] F.-J. Chen and Y.-G. Chen, On odd perfect numbers, Bull. Aust. Math. Soc. 86 (2012), 510-514.
[5] J. A. B. Dris, Solving the odd perfect number problem: some old and new approaches, M. Sc. Thesis, De La Salle University, Philippines, 2008.
[6] J. A. B. Dris and F. Luca, A note on odd perfect numbers, preprint.
[7] D. Estes, R. Guralnick, M. Schacher and E. Straus, Equations in prime powers, Pacific J. Math. 118 (1985), 359-367.
[8] R. Heath-Brown, Odd perfect numbers, Math. Proc. Cambridge Phil. Soc. 115 (1994), 191196.
[9] F. Luca and C. Pomerance, On the radical of a perfect number, New York J. Math. 16 (2010), 23-30.
[10] P. P. Nielsen, An upper bound for odd perfect numbers, Integers, 3 (2003), \#A14.
[11] P. P. Nielsen, Odd perfect numbers have at least nine prime factors, Math. Comp. 76 (2007), 2109-2126.
[12] P. Ochem and M. Rao, Odd perfect numbers are greater than 10^{1500}, Math. Comp. 81 (2012), 1869-1877.
[13] M. Roitman, On Zsigmondy primes, Proc. Amer. Math. Soc. 125 (1997), 1913-1919.

