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Abstract
Csikvári, Gyarmati and Sárközy asked whether there exist Ramsey type theorems
for the equations a + b = cd and ab + 1 = cd in Zm for large enough m. In
this paper it is proved that for any r-coloring of Zm the more general equation
a1 + · · · + an = cd has a nontrivial monochromatic solution. Furthermore, an
example is presented which shows that the corresponding statement does not hold
for the equation ab + 1 = cd. We reformulate this problem with an additional
natural condition, and give a partial positive answer.

1. Introduction

Sárközy [10], [11] proved that if A,B, C,D are ”large enough” subsets of Zp, then
the equations

a + b = cd (1)

and
ab + 1 = cd (2)

can be solved with a ∈ A, b ∈ B, c ∈ C, d ∈ D. Gyarmati and Sárközy [5] generalized
these results on the solvability of (1) and (2) to finite fields. Moreover, there are
several papers written on the solvability of equations similar to (1) and (2) over a
finite field, especially over Zp. (See for example, [3], [4].) It is natural to consider the
solvability of these equations in Zm, as well ([8]). However, in [1] and [5] the authors
note that for composite m no density-type theorem can be proved for equations (1)
and (2) in Zm, which shows that Zp and Zm behave differently. Furthermore, it is
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asked whether there exist Ramsey type results: Is it true that for every r-coloring of
Zm equation (1) (or (2)) has a monochromatic solution, if r, the number of colors,
is fixed and m > N(r)?

Problem 1. Are there Ramsey type results on the solvability of (1), resp. (2), in
Zm?

Hindman answered the analogue of this question over N positively ([6]). He
showed that for every r-coloring of N the equation a1 + · · · + an = b1 . . . bn has a
solution where not only the numbers a1, . . . , an, b1, . . . , bn, but also the sums

�
i∈I

ai

(where ∅ �= I ⊆ {1, . . . , n}) and products
�

j∈J
bj (where ∅ �= J ⊆ {1, . . . , n}) are

all distinct (except
n�

i=1
ai and

n�
j=1

bj), and all of these sums and products have the

same color.
In this paper we consider Problem 1 in Zm. First note that in the case of equation

(1) trivial monochromatic solutions like 0 + 0 = 0 · 0 or 2 + 2 = 2 · 2 exist, naturally
these have to be excluded. This kind of solution, where a = b = c = d is called
trivial. In Section 2 we prove that a nontrivial monochromatic solution of (1)
always exists. On the other hand in Section 3 a counterexample is presented in the
case of equation (2), namely we show a coloring of Zm for infinitely many m such
that (2) does not have a monochromatic solution. Therefore, instead of m > N(r)
the condition p(m) > N(r) (where p(m) denotes the smallest prime divisor of m)
has to be assumed, otherwise no Ramsey type result exists. Finally, we show that
the answer is affirmative to this modified question in the special case when m is

a squarefree number satisfying r
�

p|m

1
p1/4

≤ 1√
10

. To avoid confusion, throughout

the paper the notion (a)m is going to be used for the modulo m residue class of
a ∈ Z if more than one moduli are used.

2. The Equation a1 + · · · + an = cd

In this section the equation a + b = cd, and more generally, the equation a1 + · · ·+
an = cd will be studied. The case of prime moduli is well-known by the following
theorem of Sárközy:

Theorem A (Sárközy, [10]). If p is a prime, A,B, C,D ⊆ Zp, |A||B||C||D| > p3
,

then equation (1) has a solution in Zp satisfying a ∈ A, b ∈ B, c ∈ C, d ∈ D.

In Theorem A the prime p cannot be replaced by an arbitrary m ∈ N. Moreover,
there is no density theorem for equation (1) in Zm for arbitrary m, that is, there
exists a constant c > 0 such that for infinitely many m there exists a set A ⊆ Zm

having at least cm elements such that (1) does not have a solution in A.
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Example 2. Let 4|m and A = {3, 7, 11, . . . ,m− 1} ⊆ Zm. The size of A is m
4 . If

a, b, c, d ∈ A, then a + b ≡ 2 (mod 4), cd ≡ 1 (mod 4), hence (1) does not have a
solution in A.

Now our aim is to prove that while there is no density theorem, a Ramsey type
result exists for the equation a + b = cd over Zm. Note that in general there are
many trivial solutions. First we have to determine all the trivial solutions, and to

do this we have to solve the congruence a2 ≡ 2a (mod m). Let m =
r�

i=1
pαi

i be

the canonical form of the number m. By the Chinese Remainder Theorem, it is
enough to determine the trivial solutions in Zp

αi
i

. Let us denote the number of
solutions of the congruence a2 ≡ 2a (mod pα) by s(pα). The following cases have
to be considered:

• p > 2: the congruence a2 ≡ 2a (mod pα) has 2 solutions, namely a ≡ 0 and
a ≡ 2, hence s(pα) = 2.

• pα = 2: a ≡ 0 is the only solution: s(2) = 1.

• pα = 4: the 2 solutions are a ≡ 0 and a ≡ 2, so s(4) = 2.

• p = 2,α ≥ 3: there are four solutions: a ≡ 0, 2, 2α−1, 2α−1 + 2, hence s(2α) =
4.

By the Chinese Remainder Theorem, the congruence a + b ≡ cd (mod m) has
r�

i=1
s(pαi

i ) trivial solutions.

Naturally, our goal is to prove that there exists a nontrivial solution of (1), as
well. To see this we will show that even the more general equation

a1 + · · · + an = cd (3)

always has a monochromatic solution such that a1, . . . , an, c, d ∈ Zm are pairwise
distinct. These solutions, where a1, . . . , an, c, d ∈ Zm are pairwise distinct, will be
called primitive. The proof of this result is based on the following version of Rado’s
theorem ([7], Theorem 9.4):

Rado’s Theorem. Let v ≥ 2. Let ci ∈ Z \ {0}, 1 ≤ i ≤ v be constants such

that there exists a nonempty set D ⊆ {i : 1 ≤ i ≤ v} with
�
i∈D

ci = 0. If there

exist distinct (not necessarily positive) integers yi such that

v�
i=1

ciyi = 0, then for

every natural number r there exists some t such that for every r-coloring of the set

{1, 2, . . . , t} the equation

c1x1 + · · · + cvxv = 0

has a monochromatic solution b1, . . . , bv in {1, 2, . . . , t}, where the bi-s are distinct.
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For more details on Rado’s theorems, see [2], [7] and [9]. The following observa-
tion is also needed:

Lemma 3. Let T ∈ N and N = TT
. If m > N , then m has a prime power divisor

greater than T .

Proof. For the sake of contradiction, suppose the contrary. Then each prime divisor
of m is at most T , therefore m is the product of at most T prime powers. Since
each prime power divisor is at most T , we have that m ≤ TT , which contradicts
our assumption.

Theorem 4. For every n, r ∈ N there exists some N = N(n, r) such that for every

N < m ∈ N and every r-coloring of Zm, equation (3) has a primitive monochromatic

solution in Zm.

Proof. First assume that n ≥ 2. Let αi = (1− n) + 2(i− 1) (for i = 1, . . . , n),γ =
n, δ = −n. Note that the numbers α1, . . . ,αn, γ, δ are distinct integers and α1 +
· · ·+ αn − nγ − nδ = 0. Therefore, the equation α1 + · · ·+ αn − nγ − nδ = 0 has a
solution in Z where the αi, γ, δ are distinct. Moreover, the sum of the coefficients
of α1, . . . ,αn, γ is 1 + · · · + 1− n = 0, and thus the equation α1 + · · · + αn − nγ −
nδ = 0 satisfies the conditions of Rado’s theorem, so the equation has a primitive
monochromatic solution in {1, 2, . . . ,K} for every r-coloring of {1, 2, . . . ,K}, if K
is large enough, say K ≥ K0. Let C = max(K0, r4(n + 2)4).

Take an arbitrary r-coloring of Zm. By applying Lemma 3 with T = C3 we
obtain that if m > N = TT , then m has a prime power divisor greater than T .

Now we prove that N = TT satisfies the condition of the theorem. In the proof
we distinguish two cases: the prime power divisor guaranteed by Lemma 3 is itself
a prime or it is not.

As the first case suppose that p > r4(n+2)4 is a prime divisor of m such that p2 �
m. Therefore, p and m/p are coprime, since p � m/p. For 1 ≤ i ≤ p define the mod
m residue class (xi)m by the congruences xi ≡ i (mod p) and xi ≡ 0 (mod m/p).
Now, we define an r-coloring of Zp depending on the given r-coloring of Zm in the
following way: For 1 ≤ i ≤ p let the color of (i)p ∈ Zp be the color of (xi)m. Note
that Zp is colored by r colors, so we can choose (at least) p

r elements having the same
color. Let us denote the set of these (at least) p

r elements by S. Now we partition
S ⊆ Zp into n + 2 disjoint sets S1, . . . ,Sn+2 ⊆ S such that the size of any two of
them differ by at most 1. Since p ≥ r4(n + 2)4 ≥ 2r(n + 2), each of the sets Si has
size at least � p

r(n+2)� ≥
p

2r(n+2) . Now let A,B, C,D ⊆ Zp be defined in the following
way: A = S1, B = S2 + · · · + Sn = {s2 + · · · + sn|s2 ∈ S2, . . . , sn ∈ Sn}, C = Sn+1,

D = Sn+2. By p > r4(n + 2)4 we obtain that |A||B||C||D| ≥
�

p
r(n+2)

�4
> p3, so

Theorem A can be applied, which yields that there exist a ∈ A, b ∈ B, c ∈ C, d ∈ D
such that a + b = cd in Zp. As b ∈ B, we have b = a2 + · · · + an for some ai ∈ Si.
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Let a1 = a. Therefore, there exist a1, . . . , an, c, d ∈ {1, 2, . . . , p} such that the
corresponding mod p residue classes have the same color, and the congruence

a1 + · · · + an ≡ cd (mod p)

holds. The elements (xa1)m, . . . , (xan)m, (xc)m, (xd)m ∈ Zm have the same color as
(a1)p, . . . , (an)p, (c)p, (d)p ∈ Zp; moreover, they are distinct, since (a1)p, . . . , (an)p,
(c)p, (d)p ∈ Zp are distinct as well. Furthermore, (xa1)m, . . . , (xan)m, (xc)m, (xd)m

is a solution of (3), since

• (xa1)m/p . . . (xan)m/p ≡ (xc)m/p(xd)m/p (mod m/p), as
xi ≡ 0 (mod m/p) for every i, and

• (xa1)p . . . (xan)p ≡ (xc)p(xd)p (mod p), as xi ≡ i (mod p) for every i and
a1 . . . an ≡ cd (mod p).

Hence, (xa1)m, . . . , (xan)m, (xc)m, (xd)m form a primitive monochromatic solution
of (3) in Zm.

As the second case, assume that for a prime power (but not prime) pt ≥ C3 we
have pt|m, where t ≥ 2 and t is the largest integer such that pt|m. Let t0 = �t/2�.
As t0 ≥ t/3, we have pt0 ≥ C. We show that a monochromatic solution of the
equation a1 + · · ·+ an ≡ cd (mod m) can be found among the residue classes of the
form (y · m

pt0 + n)m. Note that the congruence

�
α1 ·

m

pt0
+ n

�

m

+ · · · +
�

αn · m

pt0
+ n

�

m

≡
�

γ · m

pt0
+ n

�

m

�
δ · m

pt0
+ n

�

m

(mod m) (4)

is equivalent to
α1 + · · · + αn ≡ nγ + nδ (mod pt0).

As the next step we define an r-coloring of N depending on the given r-coloring of
Zm. Let the color of y ∈ N be the color of (y · m

pt0 + n)m ∈ Zm.
Since C ≥ K0, Rado’s theorem implies that there exist distinct integers α1, . . . ,

αn, γ, δ ∈ {1, 2, . . . , C} having the same color and satisfying α1+· · ·+αn−nγ−nδ =
0. The residue classes ai = (αi · m

pt0 +n)m, c = (γ · m
pt0 +n)m, d = (δ · m

pt0 +n)m give
a solution of (3), moreover they are distinct, since α1, . . . ,αn, γ, δ ∈ {1, 2, . . . , C}
are distinct and pt0 ≥ C.

Finally, let us examine the case when n = 1. By Rado’s theorem for every
r ∈ N there exists some M = M(r) such that for every r-coloring of N the equation
α = γ + δ has a primitive monochromatic solution in {1, . . . ,M}. Suppose that
2M < m and take an arbitrary r-coloring of Zm. Define a coloring of N in the
following way: Let the color of a ∈ N be the color of (2a)m in Zm. Rado’s theorem
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yields that there exist three distinct positive integers α, γ, δ ∈ {1, . . . ,M} having
the same color such that α = γ + δ. Then a = (2α)m, c = (2γ)m, d = (2δ)m is a
primitive monochromatic solution of a = cd in Zm.

Hence, we showed that if m > N = TT , then (3) has a nontrivial monochromatic
solution in Zm.

3. The Equation ab + 1 = cd

In this section equation (2) will be studied. First, we will show that if m has a
small prime divisor, then there is no Ramsey type theorem on the solvability of
ab + 1 = cd in Zm in the classical sense: If we fix the number of colors r and m is
large enough, then a monochromatic solution need not exist.

Example 5. Let p|m and the color of (x)m ∈ Zm be the mod p residue class con-
taining x. If (a)m, (b)m, (c)m, (d)m ∈ Zm have the same color, then ab ≡ cd (mod p),
so ab + 1 �= cd in Zm.

In this example we colored Zm by p colors, where p|m, and there is no monochro-
matic solution of the equation ab+1 = cd, which shows that the least prime divisor
of m, denoted by p(m), has to be greater than the number of colors. To exclude
counterexamples of this kind we reformulate the problem in the following way:

Problem 6. Are there Ramsey type results on the solvability of ab+1 = cd in Zm

if r, the number of colors is fixed and p(m) is large enough in terms of r?

We give a partial positive answer to this question, namely we show that the
answer is affirmative, if m is squarefree and

r
�

p|m

1
p1/4

≤ 1√
10

.

To prove this result the following theorem of Sárközy is needed:

Theorem B (Sárközy, [11]). If p is a prime, A,B, C,D ⊆ Zp, |A||B||C||D| >
100p3

, then the equation ab + 1 = cd has a solution in Zp satisfying a ∈ A, b ∈
B, c ∈ C, d ∈ D.

Now we are ready to solve Problem 6 under a certain condition.

Theorem 7. Let m = p1 . . . ps be the product of s different primes. Let A ⊆ Zm

and α = |A|
m . If

s�

j=1

1

p1/4
j

≤ α√
10

, then there exist a, b, c, d ∈ A satisfying the

equation ab + 1 = cd.
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Proof. The main idea of the proof is to solve the congruence system ab + 1 ≡
cd (mod pi) (for 1 ≤ i ≤ s) step by step. Our aim is to obtain a solution finally where
(a)m, (b)m, (c)m, (d)m lie in A. As the first step we show that the following statement
holds: Let m = m1m2 . . .ms, where m1,m2, . . . ,ms are pairwise coprime. Let A ⊆
Zm = Zm1×· · ·×Zms , α = |A|

m and α1, . . . ,αs ≥ 0 satisfying α1+· · ·+αs ≤ α. Then
there exist sets A1 ⊆ Zm1 , Aj(a1, . . . , aj−1) ⊆ Zmj (for every a1 ∈ A1, a2 ∈ A2(a1),
and so on, aj−1 ∈ Aj−1(a1, . . . , aj−2)) satisfying the following conditions:

• |A1| ≥ α1m1

• For every 2 ≤ j ≤ r, for every a1 ∈ A1, for every a2 ∈ A2(a1), for ev-
ery a3 ∈ A3(a1, a2) and so on, for every aj−1 ∈ Aj−1(a1, . . . , aj−2) the set
Aj(a1, . . . , aj−1) has at least αjmj elements.

• If a1 ∈ A1, a2 ∈ A2(a1), . . . , as ∈ As(a1, . . . , as−1), then (a1, . . . , as) ∈ A.

So Aj(a1, . . . , aj−1) ⊆ Zmj contains at least αjmj possible continuations of the
vector (a1, . . . , aj−1) ∈ Zm1 × · · · × Zmj−1 . More precisely, we could add at least
αjmj elements aj ∈ Zmj as the j-th coordinate to the vector (a1, . . . , aj−1) such
that after the s-th step we have vectors belonging to A ⊆ Zm1 × · · ·× Zms .

We prove this assertion by induction on s. For s = 1 the statement holds trivially.
Let s = 2. Let A2(a1) = {a2 ∈ Zm2 : (a1, a2) ∈ A}. Then let A1 = {a1 ∈ Zm1 :
|A2(a1)| ≥ α2m2}. As A =

�

a1∈A1

{a1}×A2(a1)∪
�

a1∈Zm1\A1

{a1}×A2(a1), we have

αm1m2 = |A| ≤ |A1|m2 + (m1 − |A1|)α2m2 ≤ |A1|m2 + α2m1m2.

Thus the size of A1 is at least α1m1, as needed. Applying this repeatedly we get
that the statement is true for every s > 2 as well.

This implies that in Zm1 × · · · × Zms at least α1m1 first coordinates can be
chosen, the set A1 contains them. For every a1 ∈ A1, α2m2 second coordinates
can be chosen, the set A2(a1) contains them. And so on. Finally, αsms s-th
coordinates can be chosen in such a way that all of the elements (a1, a2, . . . , as)
obtained in Zm1 × · · ·× Zms lie in A.

As the second step let m = p1 . . . ps. As Zm = Zp1 × · · · × Zps by the Chinese
Remainder theorem, the modulo m residue class of a can be identified by an ordered
s-tuple where the jth coordinate is the mod pj residue of the residue class of a:
a ↔ (a1, . . . , as), where (a)pj = (aj)pj for every 1 ≤ j ≤ s. Solving the equation
ab+1 = cd in A ⊆ Zm is equivalent to solve the system of equations aibi +1 = cidi

in Zpi (where 1 ≤ i ≤ s) in such a way that (a1, . . . , as), (b1, . . . , bs), (c1, . . . , cs),
(d1, . . . , ds) ∈ A. We have just proved that for every α1, . . . ,αs ≥ 0 satisfying
α1 + · · · + αs ≤ α subsets Aj(a1, . . . , aj−1) ⊆ Zpj can be chosen which satisfy the
following conditions:
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• |A1| ≥ α1p1.

• For every 2 ≤ j ≤ s, for every a1 ∈ A1, for every a2 ∈ A2(a1), for ev-
ery a3 ∈ A3(a1, a2) and so on, for every aj−1 ∈ Aj−1(a1, . . . , aj−2) the set
Aj(a1, . . . , aj−1) has at least αjpj elements,

• If a1 ∈ A1, a2 ∈ A2(a1), . . . , as ∈ As(a1, . . . , as−1), then (a1, . . . , as) ∈ A.

As a next step we are going to apply Theorem B repeatedly. In order to do this
the inequalities (αjpj)4 ≥ 100p3

j (1 ≤ j ≤ s) have to hold. Therefore, let αj =
√

10

p1/4
j

(for every 1 ≤ j ≤ s). Now note that
s�

j=1
αj =

√
10

s�
j=1

1

p1/4
j

≤ α, so the previ-

ous statement can be applied, and the sets Aj(a1, . . . , aj−1) can be chosen. As
|A1| ≥ α1p1, Theorem B yields that the equation a1b1 + 1 = c1d1 (in Zp1) can be
solved in A1. Fix this solution. Since each of the sets A2(a1),A2(b1),A2(c1),A2(d1)
has cardinality at least α2p2, the equation a2b2 + 1 = c2d2 (in Zp2) has a solution
such that a2 ∈ A2(a1), b2 ∈ A2(b1), c2 ∈ A2(c1), d2 ∈ A2(d1). In the general step
a1, . . . , aj , b1, . . . , bj , c1, . . . , cj , d1, . . . , dj are already fixed. Since each of the sets
Aj+1(a1, . . . , aj), Aj+1(b1, . . . , bj), Aj+1(c1, . . . , cj), Aj+1(d1, . . . , dj) has cardinal-
ity at least αj+1pj+1, the equation aj+1bj+1+1 = cj+1dj+1 (in Zpj+1) has a solution
such that aj+1 ∈ Aj+1(a1, . . . , aj), bj+1 ∈ Aj+1(b1, . . . , bj), cj+1 ∈ Aj+1(c1, . . . , cj),
dj+1 ∈ Aj+1(d1, . . . , dj). At the end, since each of the sets As(a1, . . . , as−1),
As(b1, . . . , bs−1), As(c1, . . . , cs−1), As(d1, . . . , ds−1) has cardinality at least αsps,
the equation asbs+1 = csds (in Zps) has a solution such that as ∈ As(a1, . . . , as−1),
bs ∈ As(b1, . . . , bs−1), cs ∈ As(c1, . . . , cs−1), ds ∈ As(d1, . . . , ds−1).

Therefore, for a = (a1, . . . , as), b = (b1, . . . , bs), c = (c1, . . . , cs), d = (d1, . . . , ds) ∈
A we have ab + 1 = cd (in Zm).

Corollary 8. Let m = p1 . . . ps be the product of s different primes. If r
s�

j=1

1

p1/4
j

≤

1√
10

, then for every r-coloring of Zm the equation ab+1 = cd has a monochromatic

solution.
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[4] K. Gyarmati, A. Sárközy: Equations in finite fields with restricted solution sets, I. (Char-

acter sums), Acta Math. Hungar. 118 (2008), 129-148.
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