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Abstract
We resolve a conjecture of Hegarty regarding the number of edges in the square of a
regular graph. If G is a connected d-regular graph with n vertices, the graph square
of G is not complete, and G is not a member of two narrow families of graphs, then
the square of G has at least (2− od(1))n more edges than G.

1. Introduction

In this paper, we consider the following problem. Let G be a d-regular graph, and
let G

2 be the graph with the same vertex set as G and an edge uv whenever u and v

are within distance 2 in G. Then find a lower bound on the number of edges of G
2,

or e(G2). With the assumptions that G is connected and that G
2 is not a complete

graph, this question was posed by Hegarty [1, Conjecture 1.8].
In his work, Hegarty discussed general graph powers. Let G

k be the graph with
an edge uv whenever u and v are within distance k in G. Several authors have
considered lower bounds on e(Gk). Hegarty found that e(G3) ≥ (1 + c)dn/2 if G is
a d-regular graph with diameter at least three, with c = 0.087. Pokrovskiy [5] found
a value of c = 1/6, and DeVos and Thomassé [3] improved the value of c to 3/4 and
provided examples to demonstrate that no higher value of c is possible. The latter
authors also weakened the d-regular condition to a minimum degree of d.

DeVos, McDonald, and Scheide [2] considered higher powers of G. They found
that if G has a minimum degree of d ≥ 2 and G has at least 8

3d vertices, then G
4

has an average degree of at least 7
3d. Examples demonstrate that neither the 8/3

nor the 7/3 constants may be improved. They also found that when the diameter
is at least 3k + 3, then the average degree of G

3k+2 is at least (2k + 1)(d + 1) −
k(k + 1)(d + 1)2/n− 1, and examples show that this cannot be improved.

Inspiration for Hegarty’s work comes from the Cauchy-Davenport theorem, which
states that if A is a subset of Zp for a prime p, and kA denotes the set of sums
of collections of k elements of A, then |kA| ≥ min(p, k|A| − (k − 1)). Kneser [4]
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generalized the Cauchy-Davenport theorem to an abelian group H. Now suppose
that A = −A and that A contains the identity element. The connection to graph
theory comes through the Cayley graph. The Cayley graph G(H,A) has vertex set
H and an edge g1g2 whenever g1 − g2 ∈ A. Then (G(H,A))k = G(H, kA), and the
growth in kA is equivalent to the growth in the vertex degrees of (G(H,A))k.

For large values of d and k > 2, e(Gk) exceeds e(G) by at least a constant factor,
so long as G

k is not a complete graph and G is d-regular and connected. This is
not true for k = 2, as examples demonstrate. In that case, Hegarty conjectures the
following [1, Conjecture 1.8].

Conjecture 1.1. Let G be a connected d-regular graph with n vertices such that
G

2 is not a complete graph. Then e(G2)− e(G) ≥ (2− od(1))n.

This conjecture is not true as stated, and we shall see some counterexamples
below, but the counterexamples are confined to narrow families of graphs known as
snake graphs and peanut graphs. The modifcation of Conjecture 1.1 that e(G2)−
e(G) ≥ (3/2− od(1))n is true. However, our main theorem is as follows.

Theorem 1.2. Let G be a connected d-regular graph with n vertices such that G
2

is not a complete graph and d > 6. Also suppose that G is not a snake graph or a
peanut graph. Then

e(G2)− e(G) > 2n
�

1− 2
d + 1

− 3
d− 3

�
.

Our approach is as follows. We define basic terms in Section 2. We rephase the
problem by counting ordered pairs of vertices (u, v) such that u and v are at distance
2. In Section 3, we divide G into what we call regions, and into superregions in
Section 4, and for each superregion R, we associate a collection of pairs of vertices
SR such that |SR| > 4|R|

�
1− 2

d+1 −
3

d−3

�
. A particularly important type of su-

perregion is the class of tails, which we discuss in Section 5. It is necessary to show
that the superregions are a partition of the vertices of G, which we do in Section 6.
In Section 7, we discuss the snake graph and peanut graph in detail. We complete
the proof in Section 8 by showing that SR ∩ SR� = ∅ for distinct superregions SR

and SR� .

2. Definitions

This section contains basic definitions that are used for the rest of the paper.
Let G be a graph without multiple edges or loops. V (G) denotes the vertex set

of G, and e(G) is the edge set of G. If X is a subset of vertices of G, then G[X] is
the induced subgraph on X, or the maximal subgraph of G with vertex set X.
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The distance between two vertices u and v, denoted by d(u, v), is the number of
edges in a shortest path between u and v. Thus d(u, u) = 0, d(u, v) = 1 if there is an
edge uv, and so on. For each i ≥ 1 and vertex v, let Ni(v) be the set of vertices that
are distance i from v. We also say that N(v) := N1(v), and degi(v) := |Ni(v)|. Also,
N
�
2(v) is the set of vertices u ∈ N2(v) such that u ∈ N(w) for some w ∈ N3(v). A

d-regular graph is a graph such that every vertex v satisfies deg(v) := deg1(v) = d.
Let the graph power G

k be the graph with V (Gk) = V (G) and an edge uv

whenever d(u, v) ≤ k in G.
A low degree vertex v is a vertex v satisfying deg2(v) ≤ 3. Note that if v is a low

degree vertex and N
�
2(v) = ∅, then G contains at most d + 4 vertices and thus G

2

is complete when G is d-regular with d > 6.

Lemma 2.1. Let v ∈ V (G) and let u ∈ N
�
2(v). Then deg2(u) ≥ d − deg2(v) + 1.

In particular, if v is low degree, then deg2(u) ≥ d− 2.

Proof. G −N
�
2(v) is disconnected, with one component of G −N

�
2(v) being Gv :=

{v} ∪N(v) ∪ (N2(v)−N
�
2(v)) and another component G

� containing a vertex x
� ∈

N(u) that is distance 3 from v. Since |N �
2(v)| ≤ deg2(v), x

� has degree at least
d− deg2(v) in G

�, and let N
�(x�) be the sets of neighbors of x

� in G
�. Also, choose

x ∈ Gv ∩ N(u). Since N(x) ⊂ {v} ∪ N(v) ∪ N2(v), the sets N(x) ∪ {x} and
N
�(x�) ∪ {x�} are disjoint, and thus |N(x) ∪ N

�(x�) ∪ {x, x
�}| ≥ 2d − deg2(v) + 2.

Every vertex of N(x)∪N
�(x�)∪ {x, x

�} is within distance 2 of u, and since at most
d+1 of them are within distance 1 of u, we have that deg2(u) ≥ d−deg2(v)+1. �

For the remainder of this paper, we assume that G is a connected d-regular graph
such that d > 6 and G

2 is not complete.

3. Regions

In this section, we discuss regions, a key tool in the proof of our main theorem.
Let X be the set of vertices x ∈ G that satisfy deg2(x) < 4. Define an equivalence
relation ∼ on X by saying that u ∼ v if there exists a sequence of vertices (u =
v0, v1, . . . , vt = v) such that for 0 ≤ i ≤ t− 1, vi ∈ X and d(vi, vi+1) ≤ 2.

Definition 3.1. Let W be the union of an equivalence class X
� ⊂ X under ∼ and

all neighbors of vertices in X
�. Then G[W ] is a region.

Note that some vertices might not be contained in any region. We prove some
basic properties of regions.

Lemma 3.2. Let X be the set of vertices x of G that satisfy deg2(x) < 4, and let
R be a region that contains v ∈ X. Then
1) R contains at least d + 1 vertices.
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2) R ⊂ {v} ∪N(v) ∪N2(v).
3) Let t := min{deg2(x)|x ∈ R}. Then R contains at most d + t + 1 vertices.
4) R contains at most d + 4 vertices.
5) R is disjoint from any other region R

�.

Proof. Part 1 follows from the fact that, by definition, R contains v and all neighbors
of v.

Note that G − N
�
2(v) is disconnected, and the component of G − N

�
2(v) that

contains v is Gv := {v}∪N(v)∪ (N2(v)−N
�
2(v)). Let G

� be a different component,
if there is one. By Lemma 2.1 and d > 6, no vertex in N

�
2(v) is in X. Consider

u ∈ N
�
2(v). If some w ∈ N(u) ∩ Gv is in X, then no w

� ∈ N(u) ∩ G
� is also in X.

To see this, observe that N2(w) contains N(u) −Gv, and so |N(u) −Gv| < 4 and
|N(u) ∩Gv| > d− 4. Since N2(w�) contains N(u) ∩Gv, deg2(w�) > d− 4 ≥ 3 and
w
� �∈ X.
Suppose by way of contradiction that there exists v

� ∈ R ∩X outside of Gv. By
definition of a region, there is a sequence of vertices {v = v0, v1, . . . , vk = v

�} such
that each vi ∈ X and d(vi, vi+1) ≤ 2 for all 0 ≤ i ≤ k− 1. Let vj be the first vertex
in the sequence that is not in Gv. Since G−N

�
2(v) is disconnected and no vertex in

N
�
2(v) is also in X, d(vj−1, vj) = 2, and there exists a vertex u ∈ N

�
2(v) adjacent to

both vj−1 and vj . This contradicts the previous paragraph. Part 2 follows. There
exists v ∈ R ∩X with deg2(v) = t, and Part 3 follows. Part 4 follows by t < 4.

Now consider x ∈ R ∩ R
� for some region R

�. By definition of a region, there
exist vertices v ∈ R ∩ X and v

� ∈ R
� ∩ X such that d(v, x) ≤ 1 and d(v�, x) ≤ 1.

Then d(v, v
�) ≤ 2 and thus R = R

�. This proves Part 5. �

We define several classes of regions. Let R be a region with a vertex v with
deg2(v) = 1 and N2(v) = {u}. Let Gv be the component of G− u that contains v.
Then Gv contains d+1 vertices, namely {v}∪N(v). In Gv, all neighbors of u have
degree d− 1, and all other vertices have degree d. Hence the complement of Gv is a
matching on the neighbors of u. Let t := |Gv ∩N(u)|, and consider w ∈ Gv ∩N(u).
Since u contains d − t neighbors outside of Gv, deg2(w) = d − t + 1, and w is low
degree if and only if t ≥ d − 2. Then R is either Gv or Gv ∪ {u}, and the latter
holds if and only if t ≥ d− 2. If t �= d− 1, then we say that R is an A region, and if
t = d − 1, we say that R is a B region. Since a B region contains the complement
of a matching on d− 1 vertices, a B region can exist only when d is odd.

Next suppose that R is not an A or B region, but R contains a vertex v with
deg2(v) = 2. If R contains a vertex v

� with deg2(v�) = 2 and |N �
2(v�)| = 1, then we

say that R is a C region. Otherwise, we say that R is a D region.
Now suppose that R is a region such that deg2(v) = 3 for all low degree vertices

v in R. Let k be the minimum size of N
�
2(v) for low degree vertices in R. In the

respective cases that k = 1, 2, or 3, we say that R is an E region, an F region, or a
G region.
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4. Superregions

We now define superregions. We show that the superregions of G are a partition
of V (G) in Section 6. Before we specify the superregions, we first define sets of
vertices associated with G and the superregions.

Let U be the set of vertices u in G that satisfy deg2(u) ≥ d − 2. By Lemma
2.1, if v is a low degree vertex, then N

�
2(v) ⊂ U . In defining superregions, we

will also designate special sets W and N such that if R is a superregion, then
|R ∩ (W ∪N − U)| ≤ 2

d+1 |R|. Let V := V (G)− U −W −N .

Lemma 4.1. Theorem 1.2 holds for G if |U| ≥ 3
d−3n.

Proof. If v �∈ U , then deg2(v) ≥ 1. We then have that

�

v∈V (G)

deg2(v) ≥ 3
d− 3

n(d− 2) +
d− 6
d− 3

n(1) ≥ 4n,

which implies Theorem 1.2. �

We therefore assume that

|U| < |V (G)| 3
d− 3

,

and then, since superregions partition V (G),

|V| = |V (G)|− |W|− |N |− |U| > |V (G)|
�

1− 2
d + 1

− 3
d− 3

�
.

For every superregion R, we associate a collection SR of at least 4|R∩V| ordered
pairs of vertices of the form (x, y) such that d(x, y) = 2. Since the superregions
partition V (G), we have that

�
R |SR| ≥ 4|V|. This proves Theorem 1.2 as long

as the SR are disjoint, a matter that is partially addressed below and addressed
more fully in Section 8. By the following constructions, SR may be partitioned into
subsets SRi, for 1 ≤ i ≤ 4, as follows. For each pair (x, y) ∈ SR,

• if x and y are both in R, then (x, y) ∈ SR1;

• if x ∈ V ∩R and y �∈ R, then (x, y) ∈ SR2;

• if y ∈ V ∩R, y is low degree, and x ∈ N
�
2(y)−R, then (x, y) ∈ SR3;

• if x ∈W ∩R and y �∈ R, then (x, y) ∈ SR4.

Lemma 4.2. Suppose that (x, y) ∈ SR ∩ SR� for distinct superregions R and R
�.

Then either (x, y) ∈ SR4 ∩ SR�3 or (x, y) ∈ SR3 ∩ SR�4.
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Proof. By definition of the SRi, one of x or y is in R and the other is in R
�. Without

loss of generality, assume that x ∈ R and y ∈ R
�. Then (x, y) ∈ SR�3. Then x �∈ V,

and so (x, y) ∈ SR4. �
As we specify the superregions and the sets SR over the rest of this section and

Section 5, observe that the following holds by construction.

Lemma 4.3. Let v be a low degree vertex of a superregion R. Then there are at
most 4− deg2(v) vertices u such that (u, v) ∈ SR3.

4.1. Single Vertex Superregions

If v is a vertex that is not contained in any region, then say that {v} is a superregion
R. Since v is not in a region, deg2(v) ≥ 4. If v �∈ V, then SR = ∅. Otherwise, let
SR = SR2 be {(v, u) : u ∈ N2(v)}.

4.2. D, E, F, G Regions

If R is a region that is not contained in any other superregion, then R is a super-
region. If R is a D, E, F, or G region, for all v ∈ R ∩ V, deg2(v) + |N �

2(v)| ≥ 4.
Choose Av ⊆ N

�
2(v) so that Av = N

�
2(v) if deg2(v) = 2, |Av| = 1 if deg2(v) = 3,

and otherwise Av = ∅. Set

Sv := {(v, a)}a∈N2(v) ∪ {(a, v)}a∈Av .

Then set SR := ∪v∈R∩VSv. The pairs (v, a) are either in SR1 or SR2, and the
pairs (a, v) are either in SR1 or SR3. Since Av ∩ V = ∅, the Sv are disjoint, and
thus |SR| ≥ 4|R∩ V|. The sets Av are not chosen arbitrarily, but the choice will be
made strategically in order to insure that SR ∩SR� = ∅ for all superregions R

� �= R.
This matter is discussed more fully below.

4.3. A Regions

Next, suppose that R is an A region and a superregion. Let V be the set of vertices
v ∈ R with deg2(v) = 1, let u be the unique vertex in N2(v) for each vertex in
v ∈ V , and let X be the set of remaining vertices of R. Choose distinct w1, w2 ∈ X

and set R ∩ W = {w1, w2}. By definition of an A region, |V | ≥ 3. Note that
deg2(x) = |V | for x ∈ X. Let SR be the the union of the following sets of pairs:

• if |V | < d− 2 (so that X ∩ U = ∅), all (|X|− 2)(|V |) pairs of the form (x, y)
for x ∈ X −W and y ∈ N2(x) (these pairs are either in SR1 or SR2);

• (|X| − 2)max(0, 4 − |V |) pairs of the form (y, x) for x ∈ X −W and y ∈
N2(x)−R (call this set S

�
R);

• all |V | pairs (v, u) for v ∈ V (these pairs are either in SR1 or SR2);
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• all |V | pairs (u, v) for v ∈ V (these pairs are either in SR1 or SR3);

• and all 2|V | pairs of the form (w, y) for w ∈ {w1, w2} and y ∈ N2(w) (these
pairs are in SR4 if y �∈ R and in SR1 otherwise).

Then |SR| ≥ 4(|V |+ |X|− 2) ≥ 4|R ∩ V|.
Observe that S

�
R ⊆ SR3. To see this, if (|X| − 2)max(0, 4 − |V |) �= 0, which

happens only if |V | = 3, then for x ∈ X −W, deg2(x) = 3. Let N2(x) = {x�, y, y
�}

for x
� ∈ R and y, y

� �∈ R. The only possible neighbors of y in N1(x) ∪N2(x) are u

and y
�, and thus y is adjacent to some vertex that is distance 3 from x. The same

is true for y
�. Thus {y, y

�} ⊂ N
�
2(x), showing that (y, x), (y�, x) ∈ SR3.

4.4. C Regions

Suppose that R is a C region. Let v be a vertex in R with deg2(v) = 2 and N
�
2(v) =

{u}. Let Gv be the component of G − {u} that contains v and V := N2(u) ∩ Gv.
Choose a vertex w in R ∩ N(u) and set R ∩W = {w}, and let X be the set of
remaining vertices in R ∩ N(u). We prove several lemmas on the structure of C
regions.

Lemma 4.4. With all quantities as above, V (R) ⊆ V ∪X ∪ {w, u}.

Proof. By Lemma 3.2, V (R) ⊂ Gv ∪ {u}. It suffices to show that if v
� ∈ R, then

d(v�, u) ≤ 2. Since Gv = {v} ∪ N(v) ∪ N2(v) − {u}, |Gv| = d + 2. Suppose by
way of contradiction that d(v�, u) ≥ 3. Then {v�} ∪N(v�) ∪N2(v�) ⊆ Gv, and thus
deg2(v�) ≤ 1, a contradiction to the definition of a C region. �

Lemma 4.5. Let all quantities be as above. Then Gv = R.

Proof. First we show that Gv ⊂ R. As in the proof of Lemma 4.4, Gv has d + 2
vertices. Since N(v) ⊂ Gv, there exists one vertex z ∈ Gv that is not adjacent to
v. By definition of a region, all vertices of Gv − {z} are in R. Each v

� ∈ V is in
R since v

� is within distance 2 of v and is low degree. Since u must have at least
one neighbor outside of Gv, u has at most d − 1 neighbors in Gv. Some vertex
z
� ∈ {z} ∪ N(z) is not in {u} ∪ N(u) and thus z

� ∈ V , and therefore z ∈ R by
definition of a region.

Finally, we must show that u �∈ R. Note that |V | = 3 is impossible, since then Gv

would contain d− 1 vertices of degree d− 1 and 3 vertices of degree d, and the sum
of the degrees of all vertices would be odd. Thus |V | ≥ 4, and since u has d+2− |V |
neighbors in Gv, u has |V |− 2 ≥ 2 neighbors outside of Gv. If x ∈ R ∩N(u), then
N2(x) contains 2 vertices in Gv and |V | − 2 ≥ 2 outside of Gv, and thus x is not
low degree. By construction of a region, u �∈ R. �

Lemma 4.6. With all quantities as above, |R ∩N(u)| ≥ 2.
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Proof. Suppose by way of contradiction that R ∩ N(u) = {w}. By Lemma 4.5,
R = {v} ∪ N(v) ∪ N2(v) − N

�
2(v). Thus some vertex x of R is not adjacent to w,

and d(x, u) ≥ 3. This contradicts Lemma 4.4. �

Let y1 and y2 be two distinct neighbors of u outside of R, which exist as in the
proof of Lemma 4.5. Also observe that u ∈ U . Let SR be the union of the following
sets:

• the |V |+2|X| pairs of the form (x, y) for x ∈ V ∪X and y ∈ R∩N2(x). These
pairs are each in SR1, and they exist since every vertex in V and X have,
respectively 1 and 2 non-neighbors in Gv. Furthermore, (Gv)2 is complete
since in Gv, every vertex has degree at least d− 1 and there are d+2 vertices
in total;

• the |V | pairs (v�, u) for v
� ∈ V (these pairs are in SR2);

• the |V | pairs (u, v
�) for v

� ∈ V (these pairs are in SR3);

• the |V | pairs of the form (w, y) for y ∈ N2(w) (these pairs are either in SR1

or SR4);

• and if |V | < d− 2, the 2|X| pairs (x, y1), (x, y2) for each x ∈ X (call this set
of pairs S

�
R).

As in the proof of Lemma 4.5, deg2(x) = |V | for all x ∈ R∩N(u), and the condition
that |V | < d − 2 is equivalent to x �∈ U for each x ∈ R ∩N(u), and so S

�
R ⊂ SR2.

We have that |SR| ≥ 4|R ∩ V|.
B regions are discussed in the context of tails in the next section.

5. Tails and Superregions

In this section we define several types of superregions that are based on a tail
subgraph. Every superregion described in this section contains a B region, and thus
these superregions exist only when d is odd.

5.1. Tails

The following construction, a tail, is a subgraph of all superregions defined in this
section. A tail itself is a superregion unless it is contained in a larger superregion.

Definition 5.1. Let R1 be a B region, and for 2 ≤ i ≤ k, let Ri be a clique on
d + 1 vertices with the edge viv

�
i removed. Let v be the degree d− 1 vertex of R1.

Suppose that there are edges vv2 and v
�
ivi+1 for 2 ≤ i ≤ k−1. Then G[R1∪ . . .∪Rk]

is a tail. See Figure 1.
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The Ri are the segments of T . We may have k = 1, in which case the tail is a B
region. An improper tail is contained in a larger tail, and otherwise a tail is proper.
If T is a tail, let uT be the unique vertex that is adjacent to a vertex in T but not
itself in T , and let wT be the unique vertex in T that is adjacent to uT .

Figure 1: Tail. Note that uT is not part of the tail.

Let T be a tail. Let N ∩ T be {y1, y2} = R1 ∩ N2(v). Associate the following
sets of pairs of vertices with T :

• ST1 is the set of (4k − 3)(d − 1) pairs of vertices (x, y) and (y, x) such that
x, y ∈ T , d(x, y) = 2, and deg2(x) = 2;

• ST2 (resp. ST3) is the set of d− 1 pairs of vertices of the form (x, uT ) (resp.
(uT , x)) such that x ∈ T and d(x, uT ) = 2.

In the event that T is a superregion, let Y be the set of d − 1 neighbors of uT

that are not in T and set T ∩W = {wT }. Then say that

• ST4 is the set of d− 1 pairs (wT , y) for y ∈ Y .

Then T ∩V contains d−1 vertices in each segment of T , and |ST | = |ST1|+ |ST2|+
|ST3|+ |ST4| = 4|T ∩ V|.

We now define a snake graph, our first exception to Conjecture 1.1. See Figure
2 for an illustration.

Definition 5.2. A snake graph G is the union of tails T ∪ T
� with uT = wT � .

The two superregions of G above are G−R1 and G−R
�
1, where R1 and R

�
1 are

the two B regions. These superregions intersect if either T or T
� contain more than

1 segment.
We prove an important lemma on tails.

Lemma 5.3. Let T and T
� be tails with nonempty intersection. Then either G is

a snake graph or one of T or T
� is contained in the other.
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Figure 2: Snake graph

Proof. Let the segments of T and T
� be R1, R2, . . . , Rk and R

�
1, . . . , R

�
j respectively,

and without loss of generality, k ≥ j. Also suppose that R1 and R
�
1 are B regions,

and that Ri and Ri+1 are joined by an edge for 1 ≤ i ≤ k − 1, as are R
�
i and R

�
i+1

for 1 ≤ i ≤ j− 1. Since a tail is a union of regions, T ∩T
� is also a union of regions.

First suppose that R1 = R
�
1, and we show by induction that T

� ⊂ T . By
construction of a B region, there is only one vertex outside of R1 that is adjacent to
a vertex in R1, and thus R2 and R

�
2 intersect and are thus equal. Now suppose that

Ri−1 = R
�
i−1 for some 3 ≤ i ≤ j. By construction, there are two vertices outside

of Ri−1 that are adjacent to a vertex in Ri−1, one of which is in Ri−2 = R
�
i−2.

Thus the other must be in both Ri and R
�
i, and we conclude that Ri = R

�
i. Thus if

R1 = R
�
1, then T

� ⊆ T .
Now consider the case that R1 �= R

�
1. Choose k

� and j
� so that Rk� = R

�
j� and the

sum j
�+k

� is minimized. Let T1 be R1 ∪ . . .∪Rk�−1, and let T2 be R
�
1 ∪ . . .∪R

�
j�−1.

Let v and v
� be the two vertices of Rk� = R

�
j� that are adjacent to vertices outside

of Rk� . Since T1 and T2 are disjoint, wT1 �= wT2 . Then either v or v
� is adjacent

to wT1 ; assume without loss of generality an edge vwT1 . Either vwT2 or v
�
wT2 is

an edge, and since v is adjacent to only one vertex outside of Rk, there is an edge
v
�
wT2 . There can be no other vertices or edges in G, as the above establishes a

d-regular graph. Thus G is a snake graph. �

5.2. Multitails

Let {T1, . . . , Tm} be a maximal collection of tails such that uT1 = · · · = uTm . If
m ≥ 2, then R = T1∪· · ·∪Tm is an m-multitail, and multitails are superregions. Let
SR, each SRi for 1 ≤ i ≤ 4, R ∩N , and R ∩W be the unions of the corresponding
sets over the Tj . Then |SR| = 4|R ∩ V|.
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5.3. α-Tails

We define our next superregion R, an α-tail, as follows. See Figure 3 for an illus-
tration.

Definition 5.4. Let T be a tail with k segments. Let H
� be a subgraph of G

consisting of the following vertices:

• uT ,

• a vertex z,

• a set X with |X| = d− 2,

• a subset X
� ⊂ X of even cardinality less than d− 3, and

• vertices y1 and y2.

Let the edge set of H
� be as follows:

• uT z,

• uT x for all x ∈ X,

• a complete subgraph on X with a matching on X
� removed,

• xy1 and xy2 for all x ∈ X,

• y1y2,

• zy1 and zy2, and

• xz for all x ∈ X
�.

All vertices x ∈ X −X
� are low degree and are all in the same region H. Then we

say that T ∪H is an α-tail.

Either H = H
� or H = H

� − {z}; this follows from Lemma 3.2 and the obser-
vations that N(x) = H

� − {z} for x ∈ X − X
�, and N2(x) = {wT , z}, whereas

wT �∈ H since wT ∈ T . Let R := T ∪H. We call H the head region of R. Note that
G − {z} is disconnected with R − {z} a component. Also note that if we were to
allow |X �| = d − 3, then z would have d neighbors in R, and G would be a snake
graph.

Take R∩N to be the two vertices v1, v2 ∈ T that satisfy deg2(v1) = deg(v2) = 1,
together with y1 and y2. We take R∩W = {uT }. Note that z ∈ U . Also, X−X

� ⊂
V, whereas X

� might or might not be a subset of V. Then |R∩V| = k(d−1)+|X∩V|.
Let Z be the set of vertices adjacent to z and not in R; |Z| = d− |X �|− 3 ≥ 2 by
|X �| < d− 3, |X �| even, and d odd. Let b1 and b2 be two distinct vertices of Z.

Now we let SR be the following sets of pairs:
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Figure 3: α-tail

• the (4k − 1)(d− 1) elements of ST1 ∪ ST2 ∪ ST3 (these are in SR1);

• the 2 pairs (uT , y1) and (uT , y2) (these are in SR1);

• the |X −X
�|− 1 pairs (uT , s) for all s ∈ Z (these are in SR4);

• the |X �| pairs (x, x
�) for x, x

� ∈ X
� (these are in SR1);

• the 2|X −X
�| pairs (x,wT ), (wT , x) for x ∈ X −X

� (these are in SR1);

• the |X − X
�| pairs (x, z) for x ∈ X − X

� (these are in SR1 if z ∈ R and
otherwise in SR2);

• the |X − X
�| pairs (z, x) for x ∈ X − X

� (these are in SR1 if z ∈ R and
otherwise in SR3);

• the 2|X � ∩ V| pairs (x,wT ), (wT , x) for x ∈ X
� ∩ V (these are in SR1);

• and the 2|X � ∩ V| pairs (x, b1), (x, b2) for x ∈ X
� ∩ V (these are in SR2).

Then |SR| = 4|V ∩R|.

5.4. β-Tails

Our final superregion is a β-tail, defined as follows. See Figure 4 for an illustration.

Definition 5.5. Let T be a tail with k segments, and let H
� be a subgraph of G

with the following vertices:

• X with |X| = d− 1;

• X
� ⊂ X such that |X �| is even and not equal to 0 or d− 1;

• a vertex w;
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Figure 4: β-tail

• a vertex z;

• and uT .

Suppose that H
� consists of the following edges:

• a complete graph on X with a matching on X
� removed;

• all edges uT x for x ∈ X;

• all edges wx for x ∈ X;

• all edges zx for x ∈ X
�;

• and wz.

Each x ∈ X−X
� is low degree and is contained in a common region H. Then T ∪H

is a β-tail.

For x ∈ X −X
�, N2(x) = N

�
2(x) = {z, wT }. Since wT ∈ T , wT �∈ H. Also, since

d is odd, |X �| ≤ d − 3 and z has |X −X
�| ≥ 2 neighbors outside of R. Therefore,

no vertex of X
� is low degree, and w is low degree if and only if |X �| = d − 3. We

conclude that H = H
� exactly when |X �| = d−3, and otherwise H = H

�−{z}. We
say that H is the head region of R. Note that G−{z} is disconnected with R−{z}
a component. Also note that if we were to allow |X �| = d − 1, then R would be a
snake graph, whereas if |X �| = 0, then R would be an ordinary tail.

We take R∩W = {w} and R∩N to be the two vertices v1 and v2 of T such that
deg2(v1) = deg2(v2) = 1. Also, X −X

� ⊂ V, whereas X
� might or might not be a

subset of V. Note that |R∩V| = k(d− 1)+ |X ∩V|. Also, z has |X −X
�| neighbors

outside of R, and since |X −X
�| ≥ 2, consider distinct b1, b2 ∈ N(z)−R. Then we

define SR as the union of the following sets:

• the (4k − 1)(d− 1) elements of ST1 ∪ ST2 ∪ ST3 (these are in SR1);
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• the |X −X
�| pairs (w, s) for s ∈ N(z)−R (these are in SR4);

• the |X �| pairs (x, x
�) for x, x

� ∈ X
� and xx

� not an edge (these are in SR1);

• the 2|X| pairs (x,wT ), (wT , x) for x ∈ X (these are in SR1);

• the |X −X
�| pairs (x, z) for each x ∈ X −X

� (these are in SR1 if z ∈ H and
otherwise in SR2);

• the |X −X
�| pairs (z, x) for each x ∈ X −X

� (these are in SR1 if z ∈ H and
otherwise in SR3);

• the 2|X � ∩ V| pairs (x, b1), (x, b2) for x ∈ X
� ∩ V (these are in SR2).

Then |SR| = 4k(d− 1) + 4|X −X
�|+ 2|X �|+ 2|X � ∩ V| ≥ 4|V ∩R|.

5.5. Identifying α- and β-Tails

In this section we prove an important lemma on the structure of α- and β-tails.

Lemma 5.6. A region H is the head region of at most one α- or β-tail.

Proof. We show that an α- or β-tail R = T∪H containing H is uniquely determined,
given H. By construction, H contains a set of vertices M , |M | ≥ 2, such that each
m ∈ M is adjacent to some vertex outside of H. First consider the case that
M = {a, b}. Then, by construction, one of a or b, say a, is adjacent to exactly one
vertex outside of H, and b is adjacent to at least 2 vertices outside of H. Then
a must be uT , and T and R are uniquely determined since wT is the only vertex
outside of H adjacent to a and by Lemma 5.3.

Now suppose |M | ≥ 3. By construction, R is an α-tail, and there exists a unique
vertex w �∈ H such that w is adjacent to exactly one vertex in H. Thus w = wT ,
and by Lemma 5.3, T and R are uniquely determined. �

6. Superregions as a Partition

In this section, we show that the superregions of G partition V (G) unless G is a
snake graph.

Theorem 6.1. Suppose that G is not a snake graph. Then V (G) is partitioned by
the superregions of G.

Proof. First, every vertex is contained in a superregion, since singleton sets are
superregions if not contained in any larger superregion. We need only to show that
R∩R

� = ∅ if R and R
� are distinct superregions. If either R or R

�, say R, is a single
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vertex, then either R ⊂ R
� or R ∩ R

� = ∅. The former is impossible by definition.
Now we assume that R and R

� each consist of multiple vertices.
By construction, all superregions with multiple vertices are unions of regions.

Therefore, if R is both a region and a superregion, then either R ⊂ R
� or R∩R

� = ∅.
Again, the former is impossible by definition, and now we assume that R and R

�

each consist of multiple regions. By construction, both R and R
� contain tails.

Next, suppose that R and R
� are both either a tail or a multitail, and suppose

that R∩R
� �= ∅. By Lemma 5.3, R∩R

� is a collection of proper tails, and let T be
a proper tail in R ∩R

�. By T ⊂ R ∩R
�, for all proper tails T

� ⊂ R ∪R
�, uT = uT � .

Thus R ∪R
� = R = R

�.
Now let R be an α- or β-tail with proper tail T and head H, and let R

� be
either a tail or multitail. Write R

� = T
�
1 ∪ · · · ∪ T

�
k as a union of disjoint tails. The

head region of an α- or β-tail is not isomorphic to any segment of a tail. Thus, if
R ∩ R

� �= ∅, then H ∩ R
� = ∅ and T ∩ R

� �= ∅. By Lemma 5.3, T = Ti for some
1 ≤ i ≤ k. Furthermore, H ∪ T

�
j is also an α- or β-tail for each 1 ≤ j ≤ k by

uT1 = uT = uTj , which implies that k = 1 by Lemma 5.6. Then T = R
� and R

� is
not a superregion, a contradiction.

Finally, if R and R
� are both α- or β-tails such that R ∩ R

� �= ∅, then we show
that R = R

�. Let T and T
� be the respective tails of R and R

�, and let H and H
�

be the respective head regions. By Lemma 5.3, if T ∩ T
� �= ∅, then T = T

�. Since
only one vertex outside of T is adjacent to T , then H = H

� and thus R = R
�. Next,

we have that H ∩ T
� = H

� ∩ T = ∅ by the fact that H and H
� are not isomorphic

to any segment of a tail. Finally, if H = H
�, then R = R

� by Lemma 5.6.
This establishes that superregions partition V (G). �

7. Exceptions

There are two families of graphs that are exceptions to Conjecture 1.1. In this
section we discuss these exceptions in more detail.

7.1. Snake Graphs

A snake graph G consisting of k ≥ 2 regions, as described above, has n = k(d+1)+2
vertices. Since a snake graph contains a B region, a snake graph exists only if d is
odd. A snake graph is determined, to isomorphism, by d and k.

By construction, we may calculate that
�

v∈V (G)

deg2(v) = (4k − 2)(d− 1) + 8 =
(4k − 2)(d− 1) + 8

k(d + 1) + 2
n.

For large d, this quantity is approximately (4− 2/k)n.
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7.2. Peanut Graphs

A peanut graph G is defined as follows. Partition V (G) into sets R1 and R2 with
d + 1 and d + 2 vertices respectively. The only edge in the complement of G[R1] is
w1w2. The only edges in the complement of G[R2] are uv1, uv2, uv3 and a matching
on the remaining vertices. The only edges between R1 and R2 are uw1 and uw2.
Note that R1 and R2 are both A regions. A peanut graph exists only when d is even,
due to the matching in the complement of R2, and is determined up to isomorphism
by d. See Figure 5 for an illustration.

Figure 5: Peanut graph

One may check that n = 2d + 3 and

�

v∈V (G)

deg2(v) = 7d− 4 =
7d− 4
2d + 3

n.

For large d, this quantity is approximately (7/2)n.

8. Proof of Theorem 1.2

In this section, we conclude the proof of Theorem 1.2. We need to show that the
SR are disjoint over all superregions R. By Lemma 4.2, we need only to consider
(x, y) ∈ SR4 for a superregion R and show that, for each superregion R

�, that
(x, y) �∈ SR�3, assuming that SR� is properly chosen. Now suppose that (x, y) ∈ SR�3.
Note that x ∈ R∩W, and y is a low degree vertex of R

� with x ∈ N
�
2(y). We consider

several cases on R.

8.1. R is a Single Vertex, or a D, E, F, or G Region

This case is trivial, since by construction, W ∩R = ∅ and SR4 = ∅.
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8.2. R is an A Region

Let X = R ∩N2(y). Since the complement of G[X] is a matching, |X| is even, and
since y is low degree, |X| = 2. We must have deg2(y) = 3; otherwise, let u be the
one vertex adjacent to both x and y, and let Y := N(y)− {u} so that |Y | = d− 1.
No vertex of Y may have a neighbor outside of Y ∪ {y, u} if deg2(y) = 2, and thus
for y

� ∈ Y , N(y�) = Y − {y�} ∪ {u, y}. But then X ∪ Y ⊂ N(u) is a contradiction
to deg(u) = d.

Let z be the unique element of N2(y) − X. By construction, since y is a low-
degree vertex with |N2(y)−R

�| ≥ 2 and SR�3 contains a pair of the form (−, y), R
�

must be a A, D, E, F, or G region.
Consider the case that z ∈ N2(y) −N

�
2(y). Then V (G) = V (R) ∪ Y ∪ {u, y, z}.

Counting degrees on G[Y ∪ {u, y, z}], which has d + 2 vertices, we see that u has
degree d − 2 and all other vertices have degree d. Let a, b, c be the three vertices
of G[Y ∪ {u, y, z}] that are not adjacent to u. Then by degree considerations, the
complement of G[Y ∪{u, y, z}] contains edges ua, ub, uc and a matching on all other
vertices. Thus G is a peanut graph. If R

� is an A region, then z ∈ N2(y) −N
�
2(y)

and G is a peanut graph. Then suppose that R
� is a D, E, F, or G region.

In SR� , we may replace (x, y) with (z, y), unless, by Lemma 4.2, (z, y) ∈ SR��4 for
some superregion R

��. Then z ∈ W, and since z is the only vertex in R
�� ∩N2(y),

by the choice of W for the various classes of superregions, R
�� must be a tail with

z = wR�� . It must be that uR�� �= u; otherwise, since X ⊂ N(u), at most d − 2
vertices of Y = N(y)− {u} are adjacent to u, and so let y

� ∈ Y be not adjacent to
u. Then N(y�) ⊆ Y − {y�} ∪ {y} by deg2(y) = 3, but then y

� has degree at most
d−1, a contradiction. Now, H := G[{y}∪N(y)] has d+1 vertices. By deg2(y) = 3,
all vertices of H have degree d in H, except that u has degree d − 2 and uR�� has
degree d− 1. This would imply an odd degree sum on H, which is impossible.

8.3. R is an m-Multitail

First suppose that m ≥ 3. Then y is distance 2 from each vertex in R∩W, and since
y is a low degree vertex, m = 3. Let u be the vertex adjacent to both x and y, and
let Y := N(y)−{u}. Since u is adjacent to y and 3 vertices in R, u has at most d−4
neighbors in Y . Choose y

� ∈ Y −N(u). Since deg2(y) = 3, N(y�) ⊂ Y − {y�}∪ {y}.
Then y

� has degree at most d− 1, a contradiction. We conclude that m = 2.
With m = 2, we may perform the same analysis as in Section 8.2 and conclude

that R
� is the complement of a graph with d+2 vertices containing edges ua, ub, uc

and a matching on all other vertices. This implies that d is even, and the existence
of a tail implies that d is odd, and so R cannot be a multitail.
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8.4. R is a C Region

Let u be the unique vertex that is adjacent to both x and y. By Lemma 4.6,
R contains a vertex x

� �= x in N(u), and {x, x
�} ⊆ N2(y). Suppose, by way of

contradiction, that deg2(y) = 2. Let Y := N(y) − {u}. For each y
� ∈ Y , N(y�) ⊂

Y − {y�} ∪ {u, y}, and since deg2(y�) = d, then N(y�) = Y − {y�} ∪ {u, y}. Then
Y ∪ {x, x

�} ⊂ N(u), a contradiction to deg2(u) = d. We conclude that deg2(y) = 3.
Note that x

� �∈W. By Lemma 4.3 and the fact that deg2(y) = 3, if (x̃, y) ∈ SR3,
then x̃ = x. Then in SR�3, we may replace (x, y) by (x�, y), and since x

� �∈ W,
(x, y) �∈ SR��4 for any superregion R

��.

8.5. R is an α-Tail or a β-Tail

Let u be the unique vertex that is adjacent to both x and y. By construction, there
are at least three vertices x, x

�
, x

�� in R ∩N2(y). Let Y := N(y) − {u}. Since y is
low degree, for each y

� ∈ Y , N(y�) ⊆ Y − {y�} ∪ {u, y}. Since deg(y�) = d, N(y�) =
Y − {y�} ∪ {u, y}. Then Y ∪ {x, x

�
, x

��} ⊂ N(u), a contradiction to deg2(u) = d.

8.6. R is a Tail

For the final case, that R is a tail, we consider several cases on R
�. Let u be the

one vertex that is adjacent to both x and y.

8.6.1. R� is an A Region or a Tail

If R
� is an A region, then let Y := N(u) ∩ R

�. By definition of an A region,
|Y | < d− 1. Also |Y | must be even, and d must be odd by the existence of a tail R,
and so |Y | ≤ d − 3. Then N(u) consists of at least 3 vertices outside of R

�. Also,
N(u) − R

� ⊂ N2(y), and N2(y) consists of at least one vertex in R
�, contradicting

the definition of a low degree vertex. Thus R
� is not an A region. If R

� is a tail,
then G is a snake graph.

8.6.2. R� is a C Region

By construction, deg2(y) = 2 and |N �
2(y)| = 1. Let y

� be the one vertex in N2(y)−
N
�
2(y). Since u has d − 2 neighbors outside of R, excluding y, and y has d − 1

neighbors excluding u, y has a neighbor z that is not adjacent to u. Then N(z) ⊆
N(y) ∪ {y, y

�}− {z, u}, and since deg(z) = d, N(z) = N(y) ∪ {y, y
�}− {z, u}. The

only vertices in the component of G− {u} that contains y are N(y)− {u}∪ {y, y
�},

and thus N2(z) = {u}, which implies that R
� is an A or B region, a contradiction.
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8.6.3. deg2(y) = 2 and |N �
2(y)| = 2

Let N
�
2(y) = {x, z}. We consider two cases: if z and u are neighbors, and if they

are not neighbors.
If z and u are neighbors, then u has a set Y of d − 3 neighbors outside of

{x, y, z}, and y has d− 1 neighbors, excluding u. Let w and w
� be distinct vertices

in N(y) − N(u) − {u}. Every vertex in Y is within distance 2 of y, and since
N2(y) ∩ Y = ∅, Y ⊂ N(y). Thus Y ⊂ R

�. Also, w and w
� are adjacent to each

vertex in Y ∪ {y, z} as well as each other, since neither is adjacent to u, x, or any
vertex of distance 3 or more from y. Similarly, every vertex in Y can only have
neighbors among Y ∪ {y,w,w

�
, z, u}, a set of size d + 2, and so y

� ∈ Y is adjacent
to all but possibly one other vertex in Y . The complement of G[Y ] has no edges
except a (possibly empty) matching, and let Y

� be the set of such vertices that are
in such a matching. Every vertex in Y

� is adjacent to z. If y
� ∈ Y − Y

�, then
y
� is not adjacent to z since y

� has been established to be adjacent to every other
vertex in Y ∪ {y,w,w

�
, z, u} besides itself. We conclude that R ∪R

� is an α-tail, a
contradiction to the assumption that R is a superregion.

Now, if u and z are not neighbors, let Y := N(y) ∩ N(u). Since {x, y} ⊆
N(u) − N(y), |Y | ≤ d − 2. Since (N(u) − N(y) − {y}) � {z} ⊆ N2(y), in fact
N(u) − N(y) = {x, y} and |Y | = d − 2. Choose u

� so that N(y) = Y ∪ {u, u
�}.

By deg2(y) = 2, u
� can have no neighbors outside of Y ∪ {y, z}, and so N(u�) =

Y ∪ {y, z}. For y
� ∈ Y , the only possible neighbors of y

� are in Y ∪ {u, y, u
�
, z},

since y
� is not adjacent to x or any vertex of distance 3 or more from y. Of the

vertices of Y ∪ {u, y, u
�
, z}− {y�}, y

� is adjacent to all but 1. Let Y
� := Y ∩N(z).

Each y
� ∈ Y

� is adjacent to u, u
�
, y, z and thus all but 1 other vertex of Y − {y�}. If

y
� ∈ Y −Y

�, then y
� is adjacent to every vertex of Y − {y�}, and so the complement

of G[Y ] is a matching on Y
�. If Y

� �= ∅, then R ∪ R
� is a β-tail, a contradiction to

the assumption that R is a superregion, and if Y = ∅, then R ∪ R
� is a tail, also a

contradiction.

8.6.4. deg2(y) = 3 and |N �
2(y)| = 1

Let Gy be the component of G − x that contains y. Then Gy has d + 3 vertices,
namely y, all neighbors of y, and N2(y) − {x}. Each vertex in Gy has degree d,
except that u has degree d − 1. This is impossible since the degree sum would be
odd.

8.6.5. deg2(y) = 3 and |N �
2(y)| = 2

Let N
�
2(y) = {x, z}. By construction, R

� is not a tail, multitail, or α- or β-tail.
Assume that R

� is a D, E, F, or G region. By Lemma 4.3, in SR� , we may replace
(x, y) with (z, y), unless (z, x) ∈ SR��4 for some superregion R

��. In this case, since
z ∈W, and R

�� has no vertex besides z in N2(y), R
�� is a tail. Let u

� be the unique
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that is adjacent to both y and z. Then u �= u
�, since otherwise R is a multitail. Let

Gy be the component of G − {x, z} that contains y. Then Gy has d + 2 vertices,
namely y, N(y), and the one vertex of N2(y)−N

�
2(y). In Gy, all vertices have degree

d except for u and u
�, which each have degree d− 1. This requires d to be even, so

that sum of the degrees of all vertices in Gy is even. However, the existence of a
tail R requires d to be odd. We conclude that (z, x) �∈ SR��4 as desired.

8.6.6. deg2(y) = 3 and |N �
2(y)| = 3

As above, we may assume that R
� is a D, E, F, or G region. Let N2(y) = N

�
2(y) =

{x, z, z
�}. By Lemma 4.3, if z �∈W, then in SR� , we may replace (x, y) with (z, y).

Likewise, if z
� �∈ W, then in SR�3, we may replace (x, y) with (z�, y). Now suppose

that both z and z
� are in W. If z and z

� are in the same region R
��, then R

�� is
either an A region or a multitail. In that case, let u

� be the unique vertex adjacent
to each of y, z, z

�. Then in G[{y} ∪ N(y)], all vertices have degree d except for u

and u
�. If u = u

�, then deg(u) = d− 3 in G[{y}∪N(y)], while if u �= u
�, then u and

u
� have degrees d− 1 and d− 2 respectively in G[{y} ∪N(y)]. Both of these cases

are impossible since the degree sum would be odd.
Now suppose that x, z, and z

� are all in different regions. Since the regions that
contain x, z, z

� respectively each have exactly one vertex in N2(y), they must all be
tails. Let u, u1, u2 be the vertices adjacent to y and respectively x, z, z

�. Since each
of x, z, z

� are contained in tails and not multitails, u, u1, u2 are distinct. Then Gy,
the induced subgraph consisting of y and its neighbors, has d + 1 vertices, and all
vertices have degree d except for u, u1, u2, which each have degree d − 1. This is
also impossible, since the sum of the degrees would be odd.

This enumerates all cases.
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