
#A46 INTEGERS 13 (2013)

FINE-WILF GRAPHS AND THE GENERALIZED FINE-WILF
THEOREM

Stuart A. Rankin
Department of Mathematics, Western University, London, Ontario, Canada

srankin@uwo.ca

Received: 7/3/12, Revised: 5/30/13, Accepted: 6/21/13, Published: 8/12/13

Abstract
The Fine-Wilf theorem was generalized to finite sequences with three periods by M.
G. Castelli, F. Mignosi, and A. Restivo. They introduced a function f from the set
of all ordered triples of nonnegative integers to the set of positive integers which was
critical to their analysis, and they introduced the graphs that we shall refer to as
Fine-Wilf graphs. The work of Castelli et al. was generalized by R. Tijdeman and L.
Zamboni, who introduced a function fw from the set of all sequences of nonnegative
integers to the set of positive integers that was essential to their analysis. In this
paper, we obtain an alternative formulation of f and fw, and we use this formulation
to establish important properties of f and fw, obtaining in particular new upper
and lower bounds for each. We also carry out an investigation of Fine-Wilf graphs
for arbitrary finite sequences, showing how they are related to f and fw.

1. Introduction

A finite sequence w = (a1, a2, . . . , an) is said to have period r ≥ 1, or to be r-
periodic, if for every positive integer i for which i + r ≤ n, ai = ai+r. In 1962, R.
C. Lyndon and M. P. Schützenberger [4] established that for any integers r, s ≥ 1,
if w is both r-periodic and s-periodic and |w| ≥ r + s, then w is gcd(r, s)-periodic.
Shortly thereafter (1965), N. J. Fine and H. S. Wilf [2] proved that for any integers
r, s ≥ 1, if {ai} is an infinite sequence of period r and {bi} is an infinite sequence
of period s such that ai = bi for all i with 1 ≤ i ≤ r + s − gcd(r, s), then ai = bi
for all i. This is equivalent to the following result, which is commonly referred to
as the Fine-Wilf theorem: for any integers r, s ≥ 1, if w is a finite sequence that
is both r-periodic and s-periodic, and |w| ≥ r + s − gcd(r, s), then w is gcd(r, s)-
periodic. It was also shown in [2] that this bound is best possible, in the sense that
for any positive integers r and s (with neither a divisor of the other), there exists
a sequence w of length r + s− gcd(r, s)− 1 that is both r-periodic and s-periodic,
but not gcd(r, s)-periodic. It is known that for such r and s, there is a unique
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(up to relabelling) two-symbol sequence of length r + s− gcd(r, s)− 1 that is both
r-periodic and s-periodic, but not gcd(r, s)-periodic. For example, for r = 2 and
s = 3, the sequence is (0, 1, 0).

Nearly thirty-five years later (1999), the Fine-Wilf theorem was generalized to
finite sequences with three periods by M. G. Castelli, F. Mignosi, and A. Restivo [1].
They introduced a function f from the set of all ordered triples of positive integers
to the set Z+ of positive integers with the property that if w is a finite sequence
with periods p1, p2, and p3, and |w| ≥ f(p), where p = (p1, p2, p3), then w is gcd(p)-
periodic as well. They further established a condition on p under which the bound
f(p) is best possible. The sequences p that met this condition were precisely those
for which the unique (up to relabelling) finite sequence of greatest length and with
the greatest possible number of distinct entries that had periodicity p1, p2, and p3,
but not gcd(p1, p2, p3) had exactly three distinct entries. In support of their work,
they introduced the difference graphs that we shall refer to as Fine-Wilf graphs
Gp(n), where p = (p1, p2, p3) and p1 < p2 < p3 and n are positive integers and
Gp(n) denotes the graph with vertex set {1, 2, . . . , n} and edge set

{{i, j} | |i− j| ∈ {p1, p2, p3}}.

The work of Castelli et al. was followed immediately (2000) by work of J. Justin
[3], who extended the definition of the function f to all finite sequences of positive
integers, with analogous results.

A broader generalization of the work of Castelli et al. was then given by R.
Tijdeman and L. Zamboni [5] (2003). They introduced a function, which we shall
denote as fw, from the set of all finite sequences of positive integers to Z+, and they
proved that for a sequence p = (p1, p2, . . . , pn), a finite sequence w with periods pi,
i = 1, 2, . . . , n and length at least fw(p) must be gcd(p)-periodic as well, and that
there exists a sequence w of length fw(p) − 1 that is pi-periodic for all i, but not
gcd(p)-periodic.

In this paper, we establish new properties of the functions f and fw. In particular,
we introduce new upper and lower bounds for f . We also begin an investigation
of Fine-Wilf graphs for arbitrary p1, p2, . . . , pn, with a view to understanding how
the graph depends on the values p1, p2, . . . , pn, and how the properties of fw are
reflected in the graphs.

2. Generalization of the Fine-Wilf Theorem

Let F denote the set of all strictly increasing finite sequences with entries from Z+.
For p ∈ F , let gcd(p) denote the greatest common divisor of the entries in p, let |p|
denote the length of p, and for i such that 1 ≤ i ≤ |p|, let pi denote the ith entry of
p and let p

i
denote the truncated sequence (p1, p2, . . . , pi). In particular, for p ∈ F
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with |p| > 1, we shall let p− = p |p|−1
. Finally, let max(p) = p|p| and min(p) = p1.

Definition 2.1. For p ∈ F , let p′ = p if |p| = 1, otherwise let p′ denote the
element of F whose entries form the set {min(p), p2−min(p), . . . ,max(p)−min(p)}.
Moreover, define p(i) ∈ F for i ≥ 0 as follows: p(0) = p, and for k ≥ 0, p(k+1) =
(p(k))′. Finally, let ht(p), the height of p, be the least nonnegative integer m for
which |p(m)| = 1, and wt(p), the weight of p, be given by wt(p) =

∑|p|
i=1 pi.

Note that |p′ | = |p|− 1 if pi = 2min(p) for some i; otherwise, |p′ | = |p|. As well,
for any p ∈ F , gcd(p) = gcd(p′), and this is the single entry in p(ht(p)).

Definition 2.2. Define f :F → Z+ by f(p) =
∑ht(p)

i=0 min(p(i)) for p ∈ F . More-
over, the column of sequences whose ith row is p(i), 0 ≤ i ≤ ht(p), shall be called
the tableau for the calculation of f(p).

For example, the tableaux for the calculation of f(p) for p = (4, 7) and p =
(4, 7, 9) are shown below. In each case, ht(p) = 4, and f(p) = 10.

p(0)

p(1)

p(2)

p(3)

p(4)

4,7
3,4
1,3
1,2
1

4,7,9
3,4,5
1,2,3
1,2
1

Note that for any p ∈ F with |p| > 1, f(p) = min(p) + f(p′).

Lemma 2.3. For any p ∈ F , f(p) ≥ max(p); and if |p| > 1, then f(p) ≥ 2min(p).

Proof. We use induction on ht(p). If p ∈ F has ht(p) = 0, then |p| = 1 and
max(p) = min(p) = f(p). Suppose now that p ∈ F has ht(p) > 0, and the result
holds for lower sequences. Note that |p| > 1 since ht(p) > 0. Thus min(p) < max(p)
and f(p) = min(p)+f(p′). Since ht(p′) = ht(p)−1, the inductive hypothesis applies
to p′ and we obtain f(p′) ≥ max(p′). If max(p)−min(p) > min(p), then max(p′) =
max(p) −min(p) and then f(p) = min(p) + f(p′)) ≥ min(p) + max(p) −min(p) =
max(p) > 2min(p). Otherwise, max(p) − min(p) ≤ min(p), so max(p′) = min(p)
and thus f(p) = min(p) + f(p′) ≥ min(p) + max(p′) = 2min(p) ≥ max(p). The
result follows now by induction.

Definition 2.4. Define fw :F → Z+ as follows. For p ∈ F ,

fw(p) =

{
fw(p−) if |p| > 1, gcd(p−) = gcd(p), and max(p) ≥ f(p−)

f(p) otherwise.

We shall show later (see Proposition 3.12) that if p ∈ F satisfies |p| > 1 and
gcd(p−) = gcd(p), then fw(p) ≤ fw(p−).

The following lemma can be easily proven by induction on max(p).



INTEGERS: 13 (2013) 4

Lemma 2.5. Let c ∈ Z+, and p ∈ F , say p = (p1, p2, . . . , pn). Let cp =
(cp1, cp2, . . . ,
cpn). Then cp ∈ F and f(cp) = c f(p) and fw(cp) = c fw(p).

Proposition 2.6. Let p ∈ F . If min(p) = gcd(p), then fw(p) = min(p) and
f(p) = max(p), while if min(p) &= gcd(p), then fw(p) ≥ 2min(p).

Proof. First, we prove by induction on ht(p) that if min(p) = gcd(p), then f(p) =
max(p). The base case of ht(p) = 0 is immediate, so suppose that ht(p) > 1 with
min(p) = gcd(p), and the assertion holds for all elements of F of lower height. Then
f(p) = min(p) + f(p′) and ht(p′) < ht(p). Since every element of p is a multiple
of gcd(p) = min(p), it follows that min(p′) = min(p) = gcd(p) = gcd(p′), and so
we may apply the induction hypothesis to p′ to obtain that f(p′) = max(p′) =
max(p)−min(p). Thus f(p) = max(p), as required.

Next, we prove by induction on |p| that if min(p) = gcd(p), then fw(p) = gcd(p),
while if min(p) > gcd(p), then fw(p) ≥ 2min(p). The base case |p| = 1 is immediate,
so suppose that p ∈ F has |p| > 1, and the assertion holds for all shorter sequences.
Consider first the case when min(p) = gcd(p). Then gcd(p) = gcd(p−) and so
min(p−) = min(p) = gcd(p−). Since |p− | < |p|, we may apply the induction
hypothesis to p− to obtain that fw(p−) = gcd(p−). Since gcd(p) = gcd(p−), and
by the preceding part, f(p−) = max(p−) < max(p), the definition of fw yields
fw(p) = fw(p−) = gcd(p). Now suppose that min(p) > gcd(p). If fw(p) = f(p),
the result follows from Lemma 2.3, so we may suppose that fw(p) &= f(p). Then by
definition of fw, |p| > 1 and gcd(p−) = gcd(p), and fw(p) = fw(p−). We thereby
obtain that min(p−) = min(p) > gcd(p) = gcd(p−), and so upon application of the
induction hypothesis to p−, we obtain fw(p) = fw(p−) ≥ 2min(p−) = 2min(p).
The result follows now by induction.

The next result gives an important lower bound for f(p), and this result can be
viewed as one generalization of the Fine-Wilf theorem. We will later obtain an upper
bound (see Proposition 2.14, also Proposition 4.11) for f(p) and the combination
of these upper and lower bounds, when applied in the case of |p| = 2, yields the
classical Fine-Wilf theorem.

Theorem 2.7. Let p ∈ F . If |p| > 1, then f(p) ≥ − gcd(p) + wt(p)

|p|− 1
, and if equality

holds and i is such that pi = 2min(p), then i = |p| and f(p) = 2min(p) = max(p).

Proof. The proof is by induction on ht(p). If p ∈ F has ht(p) = 0, then |p| = 1, and
the assertion is vacuously true. Suppose now that p ∈ F has ht(p) > 0, so |p| > 1,
and that the assertion holds for all elements of F of lower height. In particular,
the assertion holds for p′, since ht(p′) = ht(p)− 1.
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Case 1: |p′ | = |p| > 1. Then

wt(p′) = min(p) +

|p|∑

i=2

(pi −min(p)) = wt(p)− (|p|− 1)min(p),

and by the induction hypothesis and the facts |p′ | = |p| and gcd(p′) = gcd(p), we

have f(p) = min(p)+f(p′) ≥ min(p)+ − gcd(p′)+wt(p′)
|p′ |−1 = − gcd(p)+wt(p)

|p|−1 . In this case,
there is no value of i such that pi = 2min(p).

Case 2: |p′ | = |p|− 1. Then there exists i with 1 ≤ i ≤ |p| such that pi = 2min(p),
and wt(p′) =

∑|p|
j=2(pj −min(p)) = wt(p)− |p|min(p).

If |p′ | = 1, then p = (min(p), 2min(p)) and the result holds. Suppose that

|p′ | ≥ 2. Then f(p′) ≥ − gcd(p′)+wt(p′)
|p′ |−1 = − gcd(p)+wt(p)−|p|min(p)

|p|−2 by the induc-

tion hypothesis applied to p′, and so f(p) ≥ min(p) + − gcd(p)+wt(p)−|p|min(p)
|p|−2 =

−2min(p)−gcd(p)+wt(p)
|p|−2 .

Consider first the possibility that −2min(p)−gcd(p)+wt(p)
|p|−2 ≥ − gcd(p)+wt(p)

|p|−1 , in which

case f(p) ≥ − gcd(p)+wt(p)
|p|−1 , as required. If as well, f(p) = − gcd(p)+wt(p)

|p|−1 , then
−2min(p)−gcd(p)+wt(p)

|p|−2 = − gcd(p)+wt(p)
|p|−1 , and thus − gcd(p)+wt(p) = (|p|−1)2min(p),

yielding f(p) = 2min(p). Then by Lemma 2.3, 2min(p) = f(p) ≥ max(p) ≥ pi =
2min(p) and thus pi = max(p).

Now suppose that −2min(p)−gcd(p)+wt(p)
|p|−2 < − gcd(p)+wt(p)

|p|−1 . Then − gcd(p)+wt(p)

is less than (|p|−1)2min(p) and so − gcd(p)+wt(p)
|p|−1 < 2min(p) = pi ≤ max(p) ≤ f(p).

This completes the proof of the inductive step, and so the result follows.

Proposition 2.8. For any p ∈ F , the following hold.

1. If |p| > 1, gcd(p) = gcd(p−), and max(p) ≥ f(p−), then f(p) = max(p).

2. f(p) ≥ fw(p).

Proof. We prove (1) by induction on ht(p), with trivial base case of ht(p) = 0.
Suppose now that p ∈ F has ht(p) > 0 with gcd(p) = gcd(p−) and max(p) ≥
f(p−), and that the result holds for all sequences of lower height. If |p| = 2, then
min(p) = gcd(p), and so by Proposition 2.6, f(p) = max(p). Suppose that |p| > 2.
Then by Lemma 2.3, we have f(p−) ≥ 2min(p), so max(p) ≥ 2min(p) and thus
max(p′) = max(p) − min(p). Suppose first that max(p) > 2min(p). Then we
have (p′)− = (p−)′, so gcd((p′)−) = gcd((p−)′) = gcd(p−) = gcd(p) = gcd(p′)
and max(p′) = max(p) − min(p) ≥ f(p−) − min(p) = f((p−)′) = f((p′)−). Since
ht(p′) < ht(p), we may apply the induction hypothesis to p′ to obtain that f(p′) =
max(p′) = max(p) − min(p), and thus f(p) = max(p) in this case. Otherwise,
max(p) = 2min(p) and then p′ = (p−)′ and from max(p) ≥ f(p−) ≥ 2min(p) it
follows that f(p−) = 2min(p). We have f(p′) = f((p−)′) = f(p−) − min(p−) =
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2min(p)−min(p) = min(p) and so f(p) = min(p) + f(p′) = 2min(p) = max(p), as
required. Statement (1) of the theorem follows now by induction.

Next, we prove (2) by induction on |p|, with obvious base case |p| = 1. Suppose
now that p ∈ F has |p| > 1, and that the result holds for all shorter sequences.
Suppose that f(p) &= fw(p), so gcd(p) = gcd(p−) and max(p) ≥ f(p−). Then by (1)
and the induction hypothesis, we have f(p) = max(p) ≥ f(p−) ≥ fw(p−) = fw(p).
The result follows now by induction.

Definition 2.9. p ∈ F is said to be trim if either |p| = 1 or else |p| > 1 and either
gcd(p) &= gcd(p−) or gcd(p) = gcd(p−) but max(p) < f(p−). For any p ∈ F , there
exists i with 1 ≤ i ≤ |p| such that p

i
is trim. The trimmed form of p, denoted by

pt, is p
i
, where i is maximal with respect to the property p

i
is trim.

Note that p is not trim if and only if |p| > 1, gcd(p) = gcd(p−), and max(p) ≥
f(p−). We remark that even if p is trim, there may exist i with 1 < i < |p| such
that p

i
is not trim. We shall examine such situations in the final section.

By Definition 2.4, we have

fw(p) =

{
fw(p−) if p is not trim

f(p) if p is trim.

Corollary 2.10. Let p ∈ F . If p is not trim, then f(p(i)) = max(p(i)) for every i,
0 ≤ i ≤ ht(p).

Proof. Since p is not trim, we have |p| > 1, gcd(p) = gcd(p−), and max(p) ≥ f(p−),
so we may apply Proposition 2.8 to obtain f(p) = max(p). We now prove by
induction on ht(p) that if f(p) = max(p), then f(p(i)) = max(p(i)) for every i,
0 ≤ i ≤ ht(p). The base case of ht(p) = 0 is true by definition, so suppose that
p ∈ F has ht(p) > 0 and f(p) = max(p), and that the result holds for all sequences
of lower height. By Lemma 2.3, f(p) ≥ 2min(p) and so we have max(p) = f(p) ≥
2min(p). Hence max(p)−min(p) ≥ min(p) and so max(p′) = max(p)−min(p). Now,
f(p′) = f(p)−min(p) = max(p) −min(p) = max(p′), and since ht(p′) < ht(p), we
may apply the inductive hypothesis to p′ to obtain that f((p′)(i)) = max((p′)(i)) for
every i with 0 ≤ i ≤ ht(p′), and so f(p(i)) = max(p(i)) for every i with 0 ≤ i ≤ ht(p).
The result follows now by induction.

If p ∈ F is not trim, then |p| > 1, pt = (p−)t, and fw(p) = fw(p−). We shall say
that p− is obtained by trimming p. Evidently, for any p ∈ F , we may iteratively
apply the trimming operation to obtain pt, and it follows that fw(p) = fw(pt).

Proposition 2.11. Let p ∈ F . Then fw(p) = fw(pt) = f(pt), and gcd(p) =
gcd(pt). Furthermore, if |pt | > 1, then min(p) > gcd(pt).
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Proof. If p is trim, then by definition of fw, fw(p) = f(p). Otherwise, fw(p) =
fw(p−), and so the first assertion follows by induction on |p|. Next, note that
min(p) = min(pt) ≥ gcd(p−). Suppose that |pt | > 1. If min(pt) = gcd(pt), then by
Proposition 2.6, fw(pt) = min(pt) < max(pt) = f(pt), which is not the case, and
so min(p) > gcd(pt). That gcd(p) = gcd(pt) is immediate from the definition of
pt.

Corollary 2.12. Let p ∈ F . If p is not trim, then p|pt |+1 ≥ fw(p).

Proof. Suppose that p is not trim. Then by Definition 2.9, p|pt |+1 ≥ fw(pt), and by
Proposition 2.11, fw(pt) = fw(p).

Proposition 2.13. Let p ∈ F . If p is trim and |p| > 1, then f(p) > max(p). In
addition, if p′ is not trim, then f(p) = 2min(p).

Proof. The proof is by induction on ht(p), with vacuous base case. Suppose that
p ∈ F is trim with ht(p) > 1, and the implication holds for every sequence of lower
height. Since ht(p) > 1, we have |p| > 1, and so f(p) = min(p) + f(p′). Consider
first the situation when p′ is trim. If |p′ | = 1, then max(p) −min(p) = min(p) and
p = (min(p), 2min(p)), which is not possible since p is trim. Thus |p′ | > 1, and
then by the inductive hypothesis, we have f(p′) > max(p′) ≥ max(p)−min(p), and
so f(p) > max(p).

Now suppose that p′ is not trim, in which case |p′ | > 1, gcd(p′) = gcd((p′)−), and
max(p′) ≥ f((p′)−), and by Corollary 2.10, f(p′) = max(p′). Thus f(p) = min(p)+
max(p′). If max(p) < 2min(p), then max(p′) = min(p), and so f(p) = 2min(p) >
max(p), as required. The proof of the inductive step will be complete once we prove
that max(p) ≥ 2min(p) is not possible. Indeed, suppose that max(p) ≥ 2min(p).
Then max(p′) = max(p) −min(p). If max(p) −min(p) = min(p), then p′ = (p−)′,
while if max(p) − min(p) > min(p), then (p′)− = (p−)′. In the first case, we
have gcd(p−) = gcd((p−)′) = gcd(p′) = gcd(p), while in the second case, we have
gcd(p−) = gcd((p−)′) = gcd((p′)−) = gcd(p′) = gcd(p). In either case therefore,
we have gcd(p−) = gcd(p). Since p is trim, this implies that |p| > 2 and max(p) <
f(p−) = min(p−) + f((p−)′) = min(p) + f((p−)′). Now, (p−)′ = p′ or (p′)−, so
either f((p−)′) = f(p′) = max(p′), or else f((p−)′) = f((p′)−) ≤ max(p′). Thus
max(p) < min(p) + max(p′) = max(p), which is impossible.

The following result gives an upper bound for f that is reminiscent of the Fine-
Wilf theorem. Later (see Proposition 4.11), we shall establish a generalization of
this which for p trim with |p| ≥ 3 offers a slightly improved upper bound for fw.

Proposition 2.14. For p ∈ F , f(p) ≤ min(p) + max(p)− gcd(p).

Proof. The proof is by induction on ht(p), with immediate base case. Suppose
now that p ∈ F has ht(p) > 0, and the result holds for all lower elements of F .



INTEGERS: 13 (2013) 8

Since ht(p) > 0, the induction hypothesis applies to p′, and since ht(p) > 0 implies
that |p| > 1, we have f(p) = min(p) + f(p′) ≤ min(p) + min(p′) + max(p′) −
gcd(p′) = min(p) + min(p′) + max(p′) − gcd(p). It therefore suffices to prove that
min(p′) + max(p′) ≤ max(p). We consider three cases. The first occurs when
min(p) ≤ p2 − min(p), in which case min(p′) = min(p) and max(p′) = max(p) −
min(p), so min(p′)+max(p′) = max(p). Next, suppose that p2−min(p) < min(p) ≤
max(p) − min(p). Then min(p′) = p2 − min(p) and max(p′) = max(p) − min(p),
so min(p′) + max(p′) = max(p) + p2 − 2min(p) < max(p). Finally, suppose that
max(p)−min(p) < min(p), so that min(p′) = p2−min(p) and max(p′) = min(p) and
thus min(p′) + max(p′) = p2 ≤ max(p). This completes the proof of the inductive
step.

Theorem 2.15 (Fine-Wilf). Let p ∈ F with |p| = 2. Then f(p) = min(p) +
max(p) − gcd(p). Furthermore, fw(p) = min(p) + max(p) − gcd(p) if p is trim,
otherwise fw(p) = min(p) < f(p).

Proof. By Theorem 2.7, f(p) ≥ min(p) + max(p) − gcd(p), while by Proposition
2.14, f(p) ≤ min(p) + max(p) − gcd(p). If p is trim, then fw(p) = f(p), while if p
is not trim, then fw(p) = fw(p−) = min(p), while f(p) = max(p).

3. The Fine-Wilf Graphs Gp(k)

Definition 3.1. Let p ∈ F . For any k ∈ Z+, Gp(k) denotes the simple graph with
vertex set {1, . . . , k} and edge set {{i, j} | |i − j| = pt for some t = 1, 2, . . . , |p|}.
The values k = fw(p) and k = fw(p)− 1 feature prominently in the development of
the theory, and we shall let Gp = Gp(fw(p)) and G−

p = Gp(fw(p) − 1).

Proposition 3.2. Let p ∈ F . Then for any k ≤ fw(p), Gp(k) = Gpt(k).

Proof. We need only consider p not trim. In such a case, by Corollary 2.12, fw(pt) ≤
p|pt |+1. Thus for any i, j, k such that 1 ≤ i < j ≤ k ≤ fw(p) = fw(pt), j − i ≤
fw(pt)− 1 < p|pt |+1. It follows that if {i, j} is an edge of Gp(k), then it is an edge
Gpt(k) (the converse is obvious) and so Gp(k) = Gpt(k).

Our first goal in this section is to establish that for p ∈ F , the graph Gp has
exactly d = gcd(p) connected components, each isomorphic to Gp/d. For exam-
ple, for p = (6, 8, 10), fw(p) = 12, gcd(p) = 2, and Gp has two connected com-
ponents, each isomorphic to the connected graph G(3,4,5), where by Lemma 2.5,
fw((3, 4, 5)) = fw((6, 8, 10))/2 = 6.

4 1 6 3

5 2

7 1 11 5

9 3

8 2 12 6

10 4

G(3,4,5) G(6,8,10)
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The second major objective of the section is to establish that κ(G−
p ) > d.

Proposition 3.3. Let p ∈ F with |p| > 1, and let k ≥ 1. Then for any i and j
with 1 ≤ i < j ≤ k, i and j belong to the same connected component of Gp′(k) if
and only if i + min(p) and j + min(p) belong to the same connected component of
Gp(k +min(p)).

Proof. Let i and j be such that 1 ≤ i < j ≤ k. For the first implication, it suffices to
show that if {i, j} is an edge in Gp′ (k), then i+min(p) and j+min(p) are connected
in Gp(k + min(p)). Suppose that {i, j} is an edge in Gp′(k). If j − i = min(p),
then {j, i}, {i, i + min(p)} and {j, j + min(p)} are edges in Gp(k + min(p)), and
so i+min(p) and j +min(p) are connected in Gp(k +min(p)). Otherwise, j − i =
pr −min(p) for some r, and then {j + min(p), i} and {i, i + min(p)} are edges in
Gp(k +min(p)), so i+min(p) and j +min(p) are connected in Gp(min(p) + k).

We prove the converse by induction on path length. Our hypothesis is that if
i+min(p) and j +min(p) are connected by a path of length n in Gp(k +min(p)),
then i and j are connected in Gp′(k). We consider first the case n = 1; that is, {i+
min(p), j+min(p)} is an edge inGp(k+min(p)). Then (j+min(p))−(i+min(p)) = pr
for some r, and so j− i = pr ≥ min(p). But then (j−min(p))− i = pr−min(p) ≥ 0.
Thus either j −min(p) = i or {j −min(p), i} is an edge in Gp′(k). In either case,
since {j, j−min(p)} is an edge in Gp′(k), i and j are connected in Gp′(k). Suppose
now that n ≥ 1 is an integer and the hypothesis holds for all smaller integers. We
consider i and j with 1 ≤ i < j ≤ k such that i+min(p) and j +min(p) are joined
by a path of length n+1 in Gp(k+min(p)), say i+min(p), i1, . . . , in+1 = j+min(p).

Case 1: i1 > min(p). Since i1 ≤ k+min(p), we have i′ = i1−min(p) ≤ k. But then
1 ≤ i′, j ≤ k and i′ +min(p) = i1 and j +min(p) are connected in Gp(k +min(p))
by a path of length n, so by hypothesis, i′ and j are connected in Gp′ (k). We
prove now that i and i′ are connected in Gp′(k). We have |i + min(p) − i1| = pr
for some r. If i ≥ i1 − min(p), then i = i1 + pr − min(p) ≥ i1 > min(p), which
means that (i − min(p)) − (i1 − min(p)) = pr − min(p), and i1 − min(p) ≤ k, so
{i1 − min(p), i − min(p)} and {i − min(p), i} are edges in Gp′(k), whence i and
i′ = i1 − min(p) are connected in Gp′(k). Otherwise, i < i1 − min(p), and so
i1 − min(p) − i = pr ≥ min(p). Then i1 − 2min(p) − i = pr − min(p), and so
{i1−min(p), i1 − 2min(p)} is an edge in Gp′(k) and either i1 − 2min(p) = i or else
{i1 − 2min(p), i} is an edge in Gp′(k). Thus i and i′ are connected in Gp′ (k), and
so i and j are connected in Gp′(k).

Case 2: i1 ≤ min(p). Then i + min(p) − i1 = pr for some r, and so i − i1 =
pr−min(p) ≥ 0. Thus k ≥ i ≥ i1. As well, we have |i2− i1| = pt ≥ min(p) for some
t, which means that i2 − i1 = pt since i1 − i2 < min(p). Thus (i2 −min(p))− i1 =
pt−min(p), which means that {i2−min(p), i1} is an edge in Gp′(k). By hypothesis,
since (i2 −min(p)) +min(p) = i2, . . . , in+1 = j+min(p) is a path of length n− 1 in
Gp(k +min(p)), i2 −min(p) and j are connected in Gp′(k). Since {i2 −min(p), i1}
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and {i, i1} are edges in Gp′(k) (possibly i = i1 or i2 − min(p) = i1), i and j are
connected in Gp′(k).

This completes the proof of the inductive step, and so the result follows.

Definition 3.4. Let p ∈ F with |p| > 1. For any k ≥ 1, define the function
αp :Gp′(k) → Gp(min(p) + k) by αp(i) = min(p) + i.

We remark that in general, αp is not a graph homomorphism. However, the
preceding proposition establishes that if C is a connected component of Gp′(k),
then αp(C) is contained in a component of Gp(min(p) + k), and more generally,
αp induces an injective map from the set of components of Gp′(k) into the set of
components of Gp(k +min(p)).

Our next objective is to show that for any p ∈ F with gcd(p) = 1, Gp is
connected. For this, the following lemma will be useful.

Lemma 3.5. Let p ∈ F and k ∈ Z+ be such that min(p) ≤ k. If the interval
{1, 2, . . . ,min(p)} is contained within a component of Gp(k), then Gp(k) is con-
nected.

Proof. Every i > min(p) is connected to j ≤ min(p) by a path of length q, where
i = qmin(p) + j and 0 < j ≤ min(p).

Proposition 3.6. Let p ∈ F and k ≥ fw(p). If gcd(p) = 1, then Gp(k) is con-
nected.

Proof. The proof is by induction on max(p). The base case occurs when max(p) = 1,
in which case p = (1) and Gp(k) is the chain graph on k vertices. Suppose now
that max(p) > 1 and gcd(p) = 1, and the result holds for all sequences with smaller
maximum entry. Note that gcd(p) = 1 and max(p) > 1 imply that |p| > 1.

We consider first the case when p is not trim. Then 1 = gcd(p) = gcd(p−)
and fw(p−) = fw(p) ≤ f(p) = max(p), so Gp = Gp(fw(p−)) = Gp− . As well,
max(p−) < max(p), so by hypothesis, Gp = Gp− is connected. Suppose now that
k ≥ fw(p). Then Gp is a connected subgraph of Gp(k), and since fw(p) ≥ min(p),
Lemma 3.5 implies that Gp(k) is connected.

Now suppose that p is trim. Since |p| > 1, we have fw(p) = f(p) = min(p)+f(p′),
so Gp = Gp(min(p) + f(p′)). Now, since 1 = gcd(p) = gcd(p′) and max(p′) <
max(p), we may apply the induction hypothesis to p′ to obtain that Gp′ (f(p′)) is
connected since f(p′) ≥ fw(p′). Thus {i + min(p) | 1 ≤ i ≤ f(p′)}, the image of
Gp′(f(p′)) under αp, is contained within a connected component of Gp(f(p)). Since
f(p′) ≥ min(p), it follows that {1, 2, . . . ,min(p)} is contained within a connected
component of Gp(f(p)), and thus by Lemma 3.5, Gp is connected. But then for any
k ≥ fw(p), Gp is a connected subgraph of Gp(k) and thus by Lemma 3.5, Gp(k) is
connected.
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Lemma 3.7. Let p ∈ F , and i, j, k ∈ Z+. If i and j belong to the same connected
component of Gp(k), then gcd(p) divides i − j. Moreover, if k ≥ gcd(p), then
κ(Gp(k)) ≥ gcd(p).

Proof. It suffices to observe that if i and j are adjacent in Gp(k), then |i− j| = pr
for some r with 1 ≤ r ≤ |p|. Thus if 1 ≤ i < j ≤ gcd(p), it follows that i and j
cannot be in the same connected component of Gp(k).

Proposition 3.8. Let p ∈ F , and let d = gcd(p). Then for each i = 1, 2, . . . , d,
the map γi :Gp/d → Gp defined by γi(j) = i + (j − 1)d for 1 ≤ j ≤ fw(p/d) is a
graph isomorphism from Gp/d onto the subgraph γi(Gp/d) of Gp. Moreover, Gp has
exactly d components, whose vertex sets are the images of γi, i = 1, 2, . . . , d; that
is, the congruence classes of the interval { 1, 2, . . . , fw(p) } modulo d.

Proof. It is immediate from Lemma 3.7 that each component of Gp is contained in
the image of γi for some i with 1 ≤ i ≤ d, and by Proposition 3.6, Gp/d is connected.
Let j, k be vertices of Gp/d. Since |γi(j)− γi(k)| = |(j − 1)d− (k − 1)d| = |j − k|d,
it follows that |j − k| = pt/d if and only if |γi(j) − γi(k)| = pt. Thus γi is a graph
isomorphism from Gp/d onto the subgraph γi(Gp/d) of Gp.

Corollary 3.9. Let p ∈ F and let k ≥ fw(p). Then Gp(k) has exactly gcd(p)
components, the congruence classes of the interval { 1, 2, . . . , k } modulo gcd(p).

Proof. Gp is a subgraph of Gp(k), and by Proposition 3.8, κ(Gp) = gcd(p). More-
over, by Lemma 3.7, κ(Gp(k)) ≥ gcd(p), and since each vertex i of Gp(k) for which
fw(p) < i ≤ k is connected to a vertex in the subgraph Gp, the result follows.

Proposition 3.10. Let p ∈ F . If gcd(p) < min(p) ≤ k < fw(p), then κ(Gp(k)) >
gcd(p).

Proof. Suppose that gcd(p) < min(p). Then by Proposition 2.6, min(p) < fw(p).
Since for any k with min(p) ≤ k < fw(p), κ(Gp(k)) ≥ κ(Gp(k + 1)) (since k ≥
min(p), in Gp(k), any i > min(p) is connected to either min(p) if i is a multiple
of min(p), or some r < min(p) if i is not a multiple of p), it suffices to prove
that κ(G−

p ) > gcd(p). The proof will be by induction on max(p), and the result
is vacuously true for max(p) = 1. Suppose now that p ∈ F has max(p) > 1
and the result holds for all elements of F with smaller maximum entry. Suppose
further that gcd(p) < min(p). We first consider the case when p is not trim.
Since max(p) > max(p−), we may apply the induction hypothesis to p−. Since
p is not trim, we have gcd(p) = gcd(p−), and fw(p) = fw(p−), so min(p−) =
min(p) > gcd(p) = gcd(p−). Thus κ(G−

p−) > gcd(p−) = gcd(p). By Corollary 2.10,

max(p) = f(p) > f(p) − 1 ≥ fw(p) − 1 = fw(p−) − 1, and so G−
p− = G−

p . Thus
κ(G−

p ) > gcd(p).
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Suppose now that p is trim. There are two possibilities, p′ trim or not. Suppose
first that p′ is trim. By Proposition 2.11, either min(p′) > gcd(p′) or |p′ | = 1. If
|p′ | = 1, then gcd(p′) = min(p′) = min(p) > gcd(p) = gcd(p′), which is not possible.
Thus min(p′) > gcd(p′). Now since max(p′) < max(p), we may apply the induction
hypothesis to p′ to obtain that G−

p′ = Gp′(fw(p′)−1) has more than gcd(p′) = gcd(p)
components. By Proposition 3.3, this implies that Gp(min(p) + fw(p′) − 1)) =
Gp(fw(p) − 1) = G−

p has more than gcd(p) components, as required.

Now consider the case when p is trim but p′ is not trim. By Proposition 2.13,
f(p) = 2min(p). Since p is trim, we have fw(p) = f(p) = 2min(p), and so it follows
that G−

p = Gp(fw(p) − 1) = Gp(2min(p) − 1) has {min(p)} as a component. By
Proposition 3.3, the map αp :Gp′(min(p) − 1) = Gp′(fw(p) − min(p) − 1) → G−

p

induces an injective map on components. Since min(p) is not in the image of
αp, κ(G−

p ) ≥ 1 + κ(Gp′(min(p) − 1)). We have min(p) = f(p′) ≥ fw(p′). By
Corollary 3.9, if fw(p′) < min(p), then κ(Gp′ (min(p) − 1)) = gcd(p′) = gcd(p),
which then implies that κ(G−

p ) > gcd(p). Suppose now that fw(p′) = min(p). Then
Gp′(min(p) − 1) = G−

p′ . If min(p′) = gcd(p′), then by Proposition 2.6, fw(p′) =
min(p′) and so min(p) = fw(p′) = min(p′) = gcd(p′) = gcd(p), which is not the
case. Thus min(p′) > gcd(p′). Again by Proposition 2.6, fw(p′) ≥ 2min(p′) >
min(p′), and so we may apply the induction hypothesis to p′ to obtain that G−

p′ =
Gp′(fw(p′) − 1) has more than gcd(p′) = gcd(p) components. By Proposition 3.3,
this implies that κ(Gp(min(p) + fw(p′) − 1)) > gcd(p). Since fw(p′) = min(p),
min(p)+fw(p′)−1 = 2min(p)−1 = fw(p)−1, and so Gp(min(p)+fw(p′)−1) = G−

p .
Thus κ(G−

p ) > gcd(p) in this case was well, and this completes the proof of the
inductive step.

Corollary 3.11. For p ∈ F , fw(p) = min{k | k ≥ min(p), κ(Gp(k)) = gcd(p)}.

Proof. If min(p) > gcd(p), the result follows from Proposition 3.10 and Corollary
3.9. Suppose that min(p) = gcd(p). Then fw(p) = gcd(p), and for k < gcd(p) =
min(p), Gp(k) is a null graph, so has k components, while for k ≥ gcd(p) = fw(p),
Corollary 3.9 asserts that κ(Gp(k)) = gcd(p).

Proposition 3.12. If p ∈ F has |p| > 1 and gcd(p−) = gcd(p), then fw(p−) ≥
fw(p).

Proof. By Lemma 2.5, we need only consider p ∈ F for which gcd(p) = 1. Note
that by Proposition 2.6, the result holds if min(p) = 1. Suppose that p ∈ F is
such that |p| > 1, gcd(p−) = gcd(p) = 1 < min(p), and, contrary to our claim,
fw(p−) < fw(p). Then Gp− is a subgraph of G−

p , and by Corollary 3.9, Gp− is
connected. Thus {1, 2, . . . ,min(p−)} is contained within a component of G−

p , and
since min(p−) = min(p), G−

p is connected by Lemma 3.5. However, by Corollary
3.11, G−

p is not connected, and so we have obtained a contradiction.
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We remark that if gcd(p−) = gcd(p) and max(p) ≥ fw(p−), then p is not trim
and so fw(p) = fw(p−). However, when gcd(p−) = gcd(p) and max(p) < fw(p−),
it is possible that we may actually have fw(p−) > fw(p). The lexically first such
example is p = (5, 7, 8), where fw(p) = 10, while fw((5, 7)) = 11.

It might be tempting to believe that fw grows monotonically with respect to the
product order on sequences of a given length and greatest common divisor 1, and,
as the Fine-Wilf theorem tells us, this is indeed the case for sequences of length
2. However, this observation does not hold even for sequences of length 3. For
example, fw((7, 9, 11)) = 15, while fw((7, 9, 13)) = 14.

Our next observation relates κ(Gp(f(p)− 1)) to the tableau for the computation
of f(p). Let p ∈ F with gcd(p) = 1 and |p| > 1, and consider the tableau for the
computation of f(p). Let m = ht(p). Then p(m) = (1), and p(m−1) = (1, 2). For
each i with 0 ≤ i ≤ m, we shall call p(i) a jump if f(p(i)) = 2min(p(i)), and in the
tableau for the computation of f(p), we shall prefix each jump with a plus sign (+).
Furthermore, let J(p) denote the number of jumps in the tableau for the calculation
of f(p). For example, p = (6, 10, 13) has tableau

6,10,13
+ 4,6,7
+ 2,3,4
+ 1,2

1

and so J(p) = 3. We observe that p(m) is never a jump, while p(m−1) is always a
jump. For each i = 0, . . . ,m, let Gi = Gp(m−i)(f(p(m−i))− 1), so that G0 is the null
graph on a single vertex, and Gm = Gp(f(p) − 1). Now for each i = 1, . . . ,m, let
αi :Gi−1 → Gi denote αp(m−(i−1)) , so that for a vertex j, αi(j) = min(p(m−i))+j. By
Proposition 3.3, for each i, αi induces an injective map from the set of components
of Gi−1 into the set of components of Gi, and G0 has a single component. Moreover,
the image of αi is the set {min(p(m−i)) + 1, . . . ,min(p(m−i)) + f(p(m−i+1)) − 1},
which is equal to {min(p(m−i))+1, . . . , f(p(m−i))−1}. If f(p(m−i)) > 2min(p(m−i)),
then for each k ∈ {1, 2, . . . ,min(p(m−i))}, k + min(p(m−i)) ≤ 2min(p(m−i)) ≤
f(p(m−i)) − 1, and thus {k, k + min(p(m−i))} is an edge in Gi joining k to a ver-
tex in the image of αi. Consequently, κ(Gi) = κ(Gi−1). On the other hand, if
f(p(m−i)) = 2min(p(m−i)), then min(p(m−i)) has degree 0 in Gi, so {min(p(m−i))}
is a component of Gi that is not contained in the image of αi. For any k with
1 ≤ k < min(p(m−i)), {k, k+min(p(m−i))} is an edge in Gi joining k to a vertex in
the image of αi, and so κ(Gi) = 1 + κ(Gi−1). This proves the following result.

Proposition 3.13. If p ∈ F has |p| > 1 and gcd(p) = 1, then κ(Gp(f(p)− 1)) =
J(p), the number of jumps in the tableau for the computation of f(p).

Note that for p trim, fw(p) = f(p) and so G−
p = Gp(f(p) − 1), and the finite

sequence a of length fw(p) − 1 formed by labelling the components of G−
p , then
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setting ai equal to the label of the component containing vertex i of G−
p , is the

unique sequence (up to labelling) of length fw(p) − 1 with the greatest number of
distinct entries that has periods the entries of p, but not gcd(p). By Proposition
3.13, the number of distinct entries in a is equal to J(p). We observe as well that a
can be calculated from the tableau for the calculation of f(p). Let m = ht(p). We
begin at row p(m−1) with sequence 0. Then at stage p(i), shift the preceding word
min(p(i)) spaces to the right. If p(i) is not a jump, then the preceding sequence
has length at least min(p(i)) and we fill in the first min(p(i)) locations of the new
sequence with the first min(p(i)) entries in the preceding sequence, while if p(i) is a
jump, then the preceding sequence has length min(p(i))− 1, and we fill in the first
min(p(i))− 1 spaces with the entries of the preceding sequence and then introduce
a new symbol for the vertex at position min(p(i)).

4. Reduction

In this final section, we show that the reduction concept first introduced with the
trimming operation can be developed further.

Definition 4.1. For p ∈ F and j such that 2 ≤ j ≤ |p| and gcd(p
j
) = gcd(p

j−1
),

we shall say that pj is type I redundant in p if pj is a multiple of pi for some i with
1 ≤ i < j, or type II redundant in p if pj ≥ f(p

j−1
). If pj is either type I or type

II redundant in p, we shall say that pj is redundant in p.

Definition 4.2. For p ∈ F and j such that 1 ≤ j ≤ |p|, let p − pj denote the
element of F that is formed by deleting pj from p.

Proposition 4.3. Let p ∈ F and pj be type I redundant in p. Then

1. For every k ∈ Z+, the vertex sets of the components of Gp(k) are identical to
those of Gp−pj (k).

2. fw(p) = fw(p− pj).

Proof. Let i be such that 1 ≤ i < j and pj = tpi for some integer t. Then every
edge of Gp(k) that is determined by pj has its endpoints joined by a path of length t
with edges determined by pi, so the edges of Gp(k) that are determined by pj can be
deleted (thereby forming Gp−pj (k)) with no change in component vertex sets. Thus
the vertex sets of the components of Gp(k) are identical to those of Gp−pj (k). By
Corollary 3.11, since gcd(p) = gcd(p− pj), fw(p) = min{k | κ(Gp(k)) = gcd(p)} =
min{k | κ(Gp−pj (k)) = gcd(p− pj)} = fw(p − pj).

One might suspect that if pj is type I redundant in p, then pj is type II redundant
as well, but this is not necessarily the case. For example, if p = (5, 13, 15), then
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f(p) = 17 = f(p−) > max(p), while gcd(p) = 1 = gcd(p−), so p is trim; that is,
max(p) is type I redundant but not type II redundant.

Lemma 4.4. If p ∈ F and j is such that 1 < j < |p| and pj is type II redundant
in p, then f(p) = f(p− pj).

Proof. Let q = p
j
. Since pj is type II redundant in p, q is not trim. By Lemma

2.10 and Lemma 2.3, max(q(i)) = f(q(i)) ≥ 2min(q(i)) for every i, 0 ≤ i < ht(q),
and so for each i = 0, 1, . . . , ht(q) − 1, max(q(i)) − min(q(i)) ≥ min(q(i)). Thus in
the formation of the tableau for the calculation of f(q), if min(q(i)) needed to be
inserted in the formation of q(i+1), it would be inserted prior to the last entry of
q(i). Let n = ht(q), and let d = gcd(q). Then q(n) = (d), and q(n−1) = (d, 2d).
Since pj < pj+1, there exists e ∈ Z+ such that the tableau for the calculation of
f(p) looks like

p
...
p(n−1) = d, 2d, e, . . .
p(n) = d, e− d, . . .
...

where the entry 2d in p(n−1) is derived from pj in p, while the entry e is derived
from pj+1. Thus for each i ≥ n, p(i) = (p − pj)(i), while for each i with 1 ≤ i ≤
n, min(p(i)) = min((p − pj)(i)). It follows that ht(p) = ht(p − pj) and f(p) =
∑ht(p)

i=1 min(p(i)) =
∑ht(p−pj)

i=1 min((p− pj)(i)) = f(p− pj).

We note that the requirement j < |p| in the preceding lemma is essential, as the
example discussed prior to Lemma 3.5 illustrates.

Proposition 4.5. If p ∈ F and pj is redundant in p, then fw(p) = fw(p− pj).

Proof. If pj is type I redundant, then the result follows from Proposition 4.3, so
we may assume that pj is type II redundant and thus gcd(p

j
) = gcd(p

j−1
) and

pj ≥ f(p
j−1

). If j ≥ |pt |, then by Lemma 4.4, f(p
i
) = f(p

i
−pj) for all i > j, and

thus pt = (p − pj)t, in which case by Proposition 2.11, we have fw(p) = fw(pt) =
fw((p − pj)t) = fw(p − pj). Thus we may further assume that p is trim (and thus
j < |p|).

Suppose that fw(p − pj) > fw(p). Then by Proposition 3.10, Gp−pj (fw(p)) is
not connected, and by Proposition 2.13, pj < max(p) < f(p) = fw(p). Thus
fw(p

j−1
) ≤ f(p

j−1
) ≤ pj < fw(p), and so Gp

j−1
(fw(p

j−1
)) is a connected sub-

graph of Gp−pj (fw(p)). Since fw(p
j−1

) ≥ min(p), the interval {1, 2, . . . ,min(p)} is

contained within a component of Gp−pj (fw(p)), and so by Lemma 3.5, Gp−pj (fw(p))
is connected. This contradiction implies that fw(p−pj) ≤ fw(p). Suppose now that
fw(p − pj) < fw(p). Then Gp−pj (fw(p − pj)) is a connected subgraph of G−

p . By
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Proposition 2.6 applied to p− pj , fw(p− pj) ≥ 2min(p) > min(p) and so the inter-
val {1, 2, . . . ,min(p)} is contained within a component of G−

p . But then by Lemma
3.5, G−

p is connected, which is not the case. This last contradiction implies that
fw(p) = fw(p − pj), as required.

Definition 4.6. For p ∈ F , let pr denote the sequence obtained from p by deleting
all type I redundant entries of p. Then pr shall be called the reduced form of p, and
is said to be obtained by reducing p. If p = pr, we say that p is reduced.

The next result is an immediate consequence of Proposition 4.5, since it is clear
that we may form pr by removing type I redundant entries one after the other in
any order (that is, no new type I redundant entry can be formed nor can an existing
type I redundant entry be made non-redundant by the deletion of an existing type
I redundant entry).

Corollary 4.7. For p ∈ F , fw(p) = fw(pr).

Proposition 4.8. Let p ∈ F and pj be type II redundant in p, where 1 < j < |p|.
Then for any i &= j with 1 ≤ i ≤ |p|, pi is type II redundant in p if and only if pi is
type II redundant in p− pj.

Proof. We have gcd(p
j
) = gcd(p

j−1
) and pj ≥ f(p

j−1
). The result is obvious

for i < j, so we consider the case when i > j. Suppose first of all that pi is
type II redundant in p. Then gcd(p

i
) = gcd(p

i−1
), and pi ≥ f(p

i−1
). Note

that the index of pi in p − pj is i − 1. Since i > j, we have gcd((p − pj) i−1
) =

gcd(p
i
− pj) = gcd(p

i
) = gcd(p

i−1
) = gcd(p

i−1
− pj) = gcd((p − pj) i−2

). If
i = j+1, then (p−pj)i−1 = pi > pj ≥ f(p

j−1
) = f((p−pj) j−1

) = f((p−pj) i−2
),

while if i > j + 1, then we have (p − pj)i−1 = pi ≥ f(p
i−1

) and by Lemma
4.4 (since j < i − 1 = |p

i−1
|), f(p

i−1
) = f(p

i−1
− pj) = f((p − pj) i−2

), so
(p− pj)i−1 ≥ f((p − pj) i−2

). Thus in either case, pi is a type II redundant entry
of p− pj .

Conversely, suppose that pi is type II redundant in p−pj. Then pi = (p−pj)i−1 ≥
f((p − pj) i−2

) and gcd((p − pj) i−1
) = gcd((p − pj) i−2

). We have gcd(p
i
) =

gcd(p
i
−pj) = gcd((p−pj) i−1

) = gcd((p−pj) i−2
) = gcd(p

i−1
−pj) = gcd(p

i−1
).

As well, if i > j + 1, then by Proposition 4.4, we have f(p
i−1

) = f(p
i−1

− pj),
and so pi ≥ f((p− pj) i−2

) = f(p
i−1

− pj) = f(p
i−1

), while if i = j + 1, then by
Proposition 2.8 applied to p

j
, pi > pj = f(p

j
) = f(p

i−1
). In either case, pi is a

type II redundant entry of p.

Definition 4.9. For p ∈ F , let p̂ denote the totally reduced form of p; namely the
sequence obtained from pr by deleting all type II redundant entries of pr, and let
r(p) = |p|− |p̂|. If p = p̂, we say that p is totally reduced.
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Note that p̂ contains no redundant entries and is thus totally reduced. As well,
note that as a result of Proposition 4.8, we may form p̂ by deleting the type II
redundant elements of pr one by one, in any order whatsoever, and so induction on
r(p) proves the next result.

Proposition 4.10. Let p ∈ F . Then fw(p) = fw(p̂).

We are now in a position to give an upper bound for fw(p) that is an improvement
over that given in Proposition 2.14 (provided that r(p) < |p| − 1, its maximum
possible value).

Theorem 4.11. For p ∈ F , fw(p) ≤ min(p) + max(p)− gcd(p)(|p|− 1− r(p)).

Proof. Let d = gcd(p). By Lemma 2.5, r(p) = r(p/d), d fw(p/d) = fw(p), while by
definition of p/d,min(p) = d min(p/d), max(p) = d max(p/d) and |p| = |p/d|. It
suffices therefore to prove the result for p ∈ F with gcd(p) = 1, and this we shall
do by induction on max(p). If gcd(p) = 1 and max(p) = 1, then p = (1) and the
result holds.

Suppose now that gcd(p) = 1, max(p) > 1, and the result holds for all elements of
F with greatest common divisor 1 and smaller maximum entry. Since |p| = 1 would
imply that 1 = gcd(p) = max(p) > 1, it follows that |p| > 1. Consider p̂, the totally
reduced form of p. Since min(p̂) = min(p) and max(p̂) ≤ max(p), it follows that if
we are able to prove that fw(p̂) ≤ min(p̂) +max(p̂)− (|p̂|− 1), then by Proposition
4.10, fw(p) = fw(p̂) ≤ min(p̂)+max(p̂)−(|p̂|−1) ≤ min(p)+max(p)−(|p|−r(p)−1),
as required. Thus we may assume that p is totally reduced, and we are to prove
that fw(p) ≤ min(p) + max(p) − (|p| − 1). Since p is totally reduced, it is in
particular trim, and so fw(p) = f(p) = min(p) + f(p′). If p′ is not trim, then by
Proposition 2.13, f(p) = 2min(p), and since max(p) − min(p) ≥ |p| − 1, fw(p) =
f(p) = 2min(p) ≤ min(p) + max(p) − (|p| − 1), as required. Thus we may assume
that p′ is trim, so fw(p′) = f(p′). Furthermore, by Proposition 4.3, the fact that
p is totally reduced means in particular that no entry of p is a multiple of min(p).
Thus min(p) &= pj−min(p) for every j with 2 ≤ j ≤ |p|, and so |p′| = |p|. Apply the
induction hypothesis to p′ to obtain fw(p) = min(p) + f(p′) = min(p) + fw(p′) ≤
min(p) + min(p′) + max(p′) − (|p′| − 1 − r(p′)) = min(p) + min(p′) + max(p′) −
(|p| − 1 − r(p′)). It will suffice to prove that min(p′) + max(p′) + r(p′) ≤ max(p).
Let us first treat the case when p′ is totally reduced; that is, r(p′) = 0. There
are three subcases to consider. If min(p) ≤ p2 − min(p), then min(p′) = min(p)
and max(p′) = max(p) −min(p), so min(p′) + max(p′) + r(p′) = max(p). Suppose
now that p2 −min(p) < min(p) ≤ max(p)−min(p), so that min(p′) = p2 −min(p)
and max(p′) = max(p) −min(p). Then min(p′) + max(p′) + r(p′) = p2 −min(p) +
max(p)−min(p) = max(p)+p2−2min(p). But from p2−min(p) < min(p), we have
p2 − 2min(p) < 0 and so max(p) + p2 − 2min(p) < max(p). Finally, suppose that
max(p) −min(p) < min(p), so that min(p′) = p2 −min(p) and max(p′) = min(p),
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which implies that min(p′)+max(p′)+r(p′) = p2−min(p)+min(p) = p2 ≤ max(p),
as required.

We now treat the case when p′ is not totally reduced, so that r(p′) > 0. Let j be
such that pj−min(p) is redundant in p′. Since p is totally reduced and therefore re-
duced, min(p) &= pi−min(p) for every i, and so in particular, min(p) &= pj −min(p).
Consider first the possibility that min(p) < pj−min(p). Then (p

j
)′ = p′

j
has max-

imum entry pj −min(p) and is not trim, so by Proposition 2.13, f(p
j
) = 2min(p).

As p is totally reduced, p
j
is trim, and since j > 1, Proposition 2.13 implies that

f(p
j
) > max(p

j
) = pj . Thus 2min(p) > pj , contradicting our assumption that

pj −min(p) > min(p). Hence pj −min(p) < min(p) (which implies that j > 2 since
p2 −min(p) = min(p′)), and so we have established that if j is any index such that
pj − min(p) is redundant in p′, then p2 < pj < 2min(p). Thus r(p′) ≤ |{j | p2 <
pj < 2min(p)}|+ 1, where we have added 1 to acknowledge that min(p) might be
redundant in p′. Thus 0 < r(p′) ≤ (2min(p) − p2 − 1) + 1 = 2min(p) − p2, and so
p2 < 2min(p), which means that p2 −min(p) = min(p′). There are two subcases to
consider.

Subcase 1: min(p) < max(p)−min(p). Then max(p′) = max(p)−min(p), and so
min(p′)+max(p′)+r(p′) ≤ p2−min(p)+max(p)−min(p)+2min(p)−p2 = max(p).

Subcase 2: min(p) > max(p) −min(p). Then max(p′) = min(p), and max(p) <
2min(p). Since p′ is trim, max(p′) is not type II redundant in p′ and thus in this case,
we have r(p′) ≤ |{j | p2 < pj < 2min(p)}| = |{j | p2 < pj ≤ max(p)}| = |p|− 2 and
so min(p′)+max(p′)+r(p′) ≤ p2−min(p)+min(p)+ |p|−2 = p2+ |p|−2 ≤ max(p).
This completes the proof of the inductive step.

Corollary 4.12. Let p ∈ F be totally reduced. Then fw(p) ≤ min(p) + max(p) −
gcd(p)(|p|− 1).
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