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Abstract

Four functions counting the number of subsets of {1, 2, . . . , n} having particular
properties are defined by Nathanson and generalized by many authors. They derive
explicit formulas for all four functions. In this paper, we point out that we need to
compute only one of them as the others will follow as a consequence. Moreover, our
method is simpler and leads to more general results than those in the literature.

1. Introduction

There are a number of articles concerning relatively prime subsets and Euler phi
function for sets. Most of them show the calculation of explicit formulas for certain
functions. Their main tools are the Möbius inversion formula and the inclusion-
exclusion principle. In this paper, we give simpler and shorter calculations which
lead to the results extending those in the literature. To be precise, we cover the
results of Nathanson [12], Nathanson and Orosz [13], El Bachraoui [5], [6], [7], [8],
[9], El Bachraoui and Salim [10], Ayad and Kihel [2], [3], and Shonhiwa [14], [15].
We show how to apply our method to obtain all results mentioned above and their
generalization. Now, let us introduce the following notations and definitions which
will be used throughout this paper.

Unless stated otherwise, we let a, b, k,m, n be positive integers, gcd(a, b) the
greatest common divisor of a and b, [a, b] = {a, a + 1, . . . , b}, A,X finite subsets
of positive integers, |A| the cardinality of the set A, gcd(A) the greatest common
divisor of the elements of A, gcd(A,n) means gcd(A∪{n}), �x� the greatest integer
less than or equal to x, and µ the Möbius function.

A nonempty finite subset A of positive integers is said to be relatively prime if
gcd(A) = 1 and is said to be relatively prime to n if gcd(A,n) = 1. The function
counting the number of relatively prime subsets of {1, 2, . . . , n} and other related
functions are defined by Nathanson [12] and generalized by many authors. We
summarize them in the following definition.
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Definition 1. Let X be a nonempty finite subset of positive integers. Define f(X)
to be the number of relatively prime subsets of X, fk(X) the number of such subsets
with cardinality k, Φ(X,n) the number of subsets A of X which is relatively prime
to n and Φk(X,n) the number of such subsets A with |A| = k.

Nathanson [12] first considered the case X = [1, n]. Using the Möbius inversion
formula for functions of several variables, El Bachraoui [5], [6], Nathanson and
Orosz [13] generalized the formulas to the case X = [m,n] and X = [1,m] (see
details in the table). Then Ayad and Kihel [2], [3] generalized all results mentioned
above to the case of an arithmetic progression X = {a, a + b, . . . , a + (m − 1)b}
by using the inclusion-exclusion principle. In another direction, El Bachraoui and
Salim [10] obtained the formulas for the case X = [�1,m1]∪ [�2,m2]∪ · · ·∪ [�k,mk].
In addition, Shonhiwa [14], [15] and Toth [17] gave results where various constraints
are assumed. We summarize the development in the table below.

Authors Formulas for f(X), fk(X), Φ(X,n), Φk(X,n)
Nathanson [12] X = [1, n]
El Bachraoui [5] X = [m,n]
Nathanson and Orosz [13]
El Bachraoui [6] X = [1,m]

X = {a, a + b, a + (n− 1)b},
Ayad and Kihel [2], [3] X = [�,m],

X = {a, a + b, a + (m− 1)b}
El Bachraoui [7], [9] X = [1,m1] ∪ [�2,m2]
El Bachraoui and Salim [10] X = [�1,m1] ∪ [�2,m2]

X = [�1,m1] ∪ [�2,m2] ∪ · · · ∪ [�k,mk]
Shonhiwa [14], [15] X = [1, n] with various contraints
Ayad and Kihel [4], Different direction such as congruence
El Bachraoui [8], [9] properties, divisor sum types,
Tang [16], Toth [17] combinatorial identities

In this paper, we give shorter and simpler calculations for these formulas. In
Section 3, we show that we need only to derive the formula for Φk(X,n) as the
others will follow as a consequence. This will cover the results in [2], [3], [5], [6],
[12], and [13]. In Section 4, we extend the formulas obtained by Ayad and Kihel
[2], [3], by El Bachraoui [7], [8], [9], and by El Bachraoui and Salim [10]. In Section
5, we show how our method can be used to obtain Shonhiwa’s results [14], [15] in
a simpler and shorter way. We conclude this paper by giving a possible research
related to the work of Ayad and Kihel [4], Tang [16], and Toth [17].
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2. Lemmas

In this section, we give a formula for the number of terms in an arithmetic progres-
sion which are divisible by a fixed positive integer.

Lemma 2. For integers d,m ≥ 1 and nonzero integers a and b, let A = {a, a +
b, . . . , a + (m − 1)b} be an m-arithmetic progression, Ad = {x ∈ A : d | x}, and
k = gcd(d, b). Then

(i) If k � a, then |Ad| = 0.

(ii) If k | a, then |Ad| =
�

mk

d

�
+ εd where

εd =






1, if d � mk and −a
k

�
b
k

�−1 mod d
k ∈

�
0, 1, . . . ,m− 1−

�
(m−1)k

d

�
d
k

�

where
�

b
k

�−1 is the multiplication inverse of b
k modulo d

k .
0, otherwise

Proof. From the definition of A and Ad, we see that |Ad| is equal to the number of
x ∈ {0, 1, 2, . . . ,m−1} such that a+xb ≡ 0(mod d). So we consider the congruence

bx ≡ −a(mod d) (1)

If k does not divide a, then there is no x satisfying (1) and thus |Ad| = 0. This
proves (i). Next, we assume that k | a. Then (1) becomes

b

k
x ≡ −a

k

�
mod

d

k

�
(2)

Since k = (d, b),
�

d
k ,

b
k

�
= 1. So (2) has a unique solution mod d

k which is

x ≡ −a

k

�
b

k

�−1 �
mod

d

k

�
(3)

where
�

b
k

�−1 is the multiplication inverse of b
k modulo d

k . So we want to count the
number of elements in the set {0, 1, 2, . . . ,m − 1} which satisfy (3). Each of the
following sets contain a unique element satisfying (3)

�
0, 1, . . . ,

d
k
− 1

�
,

�
d
k

,
d
k

+ 1, . . . ,
2d
k
− 1

�
, . . . ,

���
mk
d

�
− 1

�
d
k

, . . . ,

�
mk
d

�
d
k
− 1

�
.

There are
�

mk
d

�
sets. This implies that |Ad| =

�
mk
d

�
+ εd where εd = 1 if

�
mk
d

�
d
k −

1 < m− 1 and the set
��

mk
d

�
d
k ,

�
mk
d

�
d
k + 1, . . . ,m− 1

�
contains an element satis-

fying (3), otherwise εd = 0.
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It is easy to see that
�

mk
d

�
d
k − 1 < m − 1 if and only if d � mk, we also see that

�
mk
d

�
d
k ,

�
mk
d

�
d
k + 1, . . . ,m − 1 are congruent to 0, 1, 2, . . . ,m − 1 −

�
(m−1)k

d

�
d
k

modulo d
k , respectively. Hence

εd =

�
1, if d � mk and −a

k

�
b
k

�−1 mod d
k ∈

�
0, 1, . . . ,m− 1−

�
(m−1)k

d

�
d
k

�

0, otherwise.

This completes the proof.

If we consider the case gcd(a, b) = 1, we obtain a lemma of Ayad and Kihel as a
corollary. We record it in the next lemma.

Lemma 3. [3] For an integer d,m ≥ 1, and for nonzero integers a and b with
gcd(a, b) = 1, let X = {a, a + b, . . . , a + (m− 1)b} be an m-arithmetic progression,
Ad = {x ∈ X : d | x}, and k = gcd(d, b). Then

i) If k �= 1, then |Ad| = 0.

ii) If k = 1, then |Ad| =
�

m
d

�
+ εd where

εd =






1 if d � m and
�
−ab

−1
�
mod d ∈ {0, . . . ,m−

�
m
d

�
d− 1},

where b
−1 is the multiplication inverse of b modulo d.

0 otherwise.

Proof. Since gcd(a, b) = 1, we see that k = 1 if and only if k | a. So if k �= 1,
then |Ad| = 0 and if k = 1, then |Ad| =

�
m
d

�
+ εd, by Lemma 2. Notice also that�

m
d

�
=

�
m
d − 1

d

�
if and only if d � m. So the conditions determining εd in Lemma 2

and Lemma 3 are the same. This completes the proof.

The next lemma will be used throughout this paper.

Lemma 4.

�

d|n

µ(d) =

�
1 if n = 1
0 if n > 1.

Proof. This is a well-known result. For the proof see, for example, ([1], p.25).

3. Only One Formula is Enough

In this section, we give a simple proof of the formula for Φ(a,b)
k (m,n) and show

that the formulas for Φ(a,b)(m,n), f
(a,b)
k (m), and f

(a,b)(m) can be obtained as a
consequence. In the notation used in [2], [3], f

(a,b)(m), f
(a,b)
k (m), Φ(a,b)(m,n)

and Φ(a,b)
k (m,n) are f(X), fk(X), Φ(X), and Φk(X), respectively, where X =

{a, a + b, . . . , a + (m − 1)b}. The following are the results obtained by Ayad and
Kihel in [2] and [3].
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Theorem 5. [3] For all positive integers m, a and b, let f
(a,b)(m) denote the number

of relatively prime subsets of {a, a + b, . . . , a + (m − 1)b} and f
(a,b)
k (m) denote of

the number of relatively prime subsets of {a, a + b, . . . , a + (m− 1)b} of cardinality
k. Suppose that gcd(a, b) = 1. Then

f
(a,b)(m) =

a+(m−1)b�

d=1
gcd(d,b)=1

µ(d)
�
2�m/d�+εd − 1

�
and

f
(a,b)
k (m) =

a+(m−1)b�

d=1
gcd(d,b)=1

µ(d)
�
�m/d�+ εd

k

�

where εd is the function defined in Lemma 3. If gcd(a, b) �= 1, then f
(a,b)(m) =

f
(a,b)
k (m) = 0.

Theorem 6. [2] For positive integers m,a, and b, let Φ(a,b)(m,n) be the number
of nonempty subsets of {a+, a + b, . . . , a + (m− 1)b} which are relatively prime to
n and let Φ(a,b)

k (m,n) be the number of such subsets of cardinality k. Suppose that
gcd(a, b) = 1. Then

Φ(a,b)(m,n) =
�

d|n
gcd(b,d)=1

µ(d)
�
2�

m
d �+εd − 1

�
and

Φ(a,b)
k (m,n) =

�

d|n
gcd(b,d)=1

µ(d)
��

m
d

�
+ εd

k

�

where εd is the function defined in Lemma 3

Corollary 7. ([2], [3]) The formulas for f(m,k), fk(m, �), Φ(m, �), Φk(m, �)
Φ([1,m], n), and Φk([1,m], n) obtained in [12], [5], [13], and [6] are consequences
of Theorem 5 and Theorem 6.

Now we will give a proof of the formula for Φ(a,b)
k (m,n) and show that the other

formulas follow as a consequence.

Proof. Let X = {a, a + b, . . . , a + (m − 1)b} and for each d, we let Ad = {x ∈ X :
d | x}. Then the definition of Φ(a,b)

k (m,n) can be written as

Φ(a,b)
k (m,n) =

�

∅�=A⊆X
|A|=k

gcd(A,n)=1

1.
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Now we capture the condition gcd(A,n) = 1 by Lemma 4 and write

Φ(a,b)
k (m,n) =

�

∅�=A⊆X
|A|=k

�

d|gcd(A,n)

µ(d) =
�

∅�=A⊆X
|A|=k

�

d|gcd(A)
d|n

µ(d) .

Changing the order of summation, the above sum becomes
�

d|n

µ(d)
�

∅�=A⊆X
|A|=k

d|gcd(A)

1.

Now, d | gcd(A) if and only if d divides all elements of A. So the condition ∅ �= A ⊆
X and d | gcd(A) is equivalent to ∅ �= A ⊆ Ad. Hence the above sum is equal to

�

d|n

µ(d)
�

∅�=A⊆Ad
|A|=k

1.

By Lemma 3, |Ad| = 0 if gcd(d, b) �= 1. So for nonzero contribution, we can restrict
our attention to the case gcd(d, b) = 1. Therefore the above sum is equal to

�

d|n
gcd(d,b)=1

µ(d)
�

∅�=A⊆Ad
|A|=k

1 =
�

d|n
gcd(d,b)=1

µ(d)
�
|Ad|
k

�
. (4)

Applying Lemma 3 again, we substitute |Ad| =
�

m
d

�
+ εd to get

Φ(a,b)
k (m,n) =

�

d|n
gcd(d,b)=1

µ(d)
�
�m/d�+ εd

k

�
.

To obtain the formula of Φ(a,b)(m,n), we use the well-known identity

n�

k=1

�
n

k

�
= 2n − 1.

This can also be written as
∞�

k=1

�
n

k

�
= 2n − 1 since

�n
k

�
= 0 when k > n. Now by

the definition of Φ(a,b)(m,n), we have
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Φ(a,b)(m,n) =
m�

k=1

Φ(a,b)
k (m,n) =

m�

k=1

�

d|n
gcd(d,b)=1

µ(d)
�
|Ad|
k

�

=
�

d|n
gcd(d,b)=1

µ(d)
m�

k=1

�
|Ad|
k

�

=
�

d|n
gcd(d,b)=1

µ(d)
�
2|Ad| − 1

�

=
�

d|n
gcd(d,b)=1

µ(d)
�
2�m/d�+εd − 1

�
, as required.

Next, we put n = (a + (m − 1)b)! in the formula of Φ(a,b)
k (m,n). For a nonempty

subset A of {a, a + b, . . . , a + (m − 1)b}, we have gcd(A,n) = 1 if and only if
gcd(A) = 1. Therefore by the definition of Φ(a,b)

k (m,n) and f
(a,b)
k (m), we have

Φ(a,b)
k (m,n) = f

(a,b)
k (m). (5)

On the other hand, we have from (4) that

Φ(a,b)
k (m,n) =

�

d|n
gcd(d,b)=1

µ(d)
�
|Ad|
k

�
.

Notice that d = 1, 2, . . . , a+(m− 1)b are divisors of n and if d > a+(m− 1)b, then
d is larger than all elements of A and thus |Ad| = 0. Therefore the above sum is

Φ(a,b)
k (m,n) =

a+(m−1)b�

d=1
gcd(d,b)=1

µ(d)
�
|Ad|
k

�
(6)

From (5), (6) and Lemma 3, we obtain

f
(a,b)
k (m) =

a+(m−1)b�

d=1
gcd(d,b)=1

µ(d)
�
|Ad|
k

�
=

a+(m−1)b�

d=1
gcd(d,b)=1

µ(d)
�
�m/d�+ εd

k

�
.

Similar to the proof of Φ(a,b)(m,n), we sum f
(a,b)
k (m) over all k to get f

(a,b)(m).
This completes the proof.
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Remark 8. As noted by Ayad and Kihel in [3] that we can easily deduced from
Theorem 6 the results for the case when a and b are integers not necessary positive,
or the case ((a, b), n) �= 1 or (a, b) �= 1 but ((a, b), n) = 1. For the details, see Remark
11 and Remark 12 in [3]. Combining this with Corollary 7, we see that we cover the
results given by Ayad and Kihel ([2], [3]), El Bachraoui ([5], [6]), Nathanson ([12])
and Nathanson and Orosz ([13]).

4. Extending the Formulas to Finite Union of Arithmetic Progressions

In this section, we will give formulas for f(X), fk(X),Φ(X,n),Φk(X,n) when

X = [a1, b1] ∪ [a2, b2] ∪ . . . ∪ [a�, b�] or
X = {a1, a1 + b1, . . . , a1 + (m1 − 1)b1} ∪ {a2, a2 + b2, . . . , a2 + (m2 − 1)b2}

∪ . . . ∪ {a�, a� + b�, . . . , a� + (m� − 1)b�}.

Considering our method carefully, we see that it can be applied in any situation
where the number of elements divisible by a fixed positive integer can be calculated.
We illustrate this idea explicitly below.
Let X be a nonempty finite subset of integers and for each d, let Xd = {x ∈ X :
d | x}. By applying Lemma 4 and changing the order of summation, we have

Φk(X,n) =
�

∅�=A⊆X
|A|=k

gcd(A,n)=1

1 =
�

∅�=A⊆X
|A|=k

�

d|gcd(A,n)

µ(d) =
�

d|n

µ(d)
�

∅�=A⊆X
|A|=k

d|gcd(A)

1

=
�

d|n

µ(d)
�

∅�=A⊆Xd
|A|=k

1

=
�

d|n

µ(d)
�
|Xd|
k

�
. (7)

Summing over all k, we see that

Φ(X,n) =
|X|�

k=1

Φk(X,n) =
�

d|n

µ(d)
|X|�

k=1

�
|Xd|
k

�
=

�

d|n

µ(d)
�
2|Xd| − 1

�
. (8)
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Again, applying Lemma 4 and changing the order of summation, we have

fk(X) =
�

∅�=A⊆X
|A|=k

�

d|gcd(A)

µ(d) =
max X�

d=1

µ(d)
�

∅�=A⊆X
|A|=k

d|gcd(A)

1

=
max X�

d=1

µ(d)
�

∅�=A⊆Xd
|A|=k

1 =
max X�

d=1

µ(d)
�
|Xd|
k

�
. (9)

Summing fk(X) over all k, we obtain

f(X) =
max X�

d=1

µ(d)
�
2|Xd| − 1

�
(10)

Remark 9. 1) If n > 1, by Lemma 4, the formula in (8) can be reduced to

Φ(X,n) =
�

d|n

µ(d)2|Xd|
.

2) From (7), (8), (9), and (10), we see that explicit formulas for Φk(X,n),Φ(X,n),
fk(X) and f(X) can be obtained whenever we can compute |Xd| for all d.

With equations (7), (8), (9), and (10), we obtain the following theorem.

Theorem 10. Let X = [a1, b1] ∪ [a2, b2] ∪ . . . ∪ [a�, b�] where a1 ≤ b1 < a2 ≤ b2 <

. . . < a� ≤ b�. Assume that [ai, bi] ∩ [aj , bj ] = ∅ for i �= j. Then

(i) Φk(X,n) =
�

d|n

µ(d)
���

i=1

�
bi
d

�
−

�
ai−1

d

�

k

�

(ii) Φ(X,n) =
�

d|n

µ(d)
�

2
� �

i=1

�
bi
d

�
−� ai−1

d � − 1
�

(iii) fk(X) =
b��

d=1

µ(d)
���

i=1

�
bi
d

�
−

�
ai−1

d

�

k

�

(iv) f(X) =
b��

d=1

µ(d)
�

2
� �

i=1

�
bi
d

�
−� ai−1

d � − 1
�

.

Proof. The number of integers x ∈ [1, n] divisible by d is equal to
�

n
d

�
. So the

number of integers x ∈ [a, b] such that d | x is equal to
�

b
d

�
−

�
a−1

d

�
. This implies

that

|Xd| =
��

i=1

�
bi

d

�
−

�
ai − 1

d

�
.

Substituting this in (7), (8), (9), and (10), we obtain the desired result.
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Note that the formulas in Theorem 10 are also obtained by El Bachraoui [8], [9]
in a different form but his proof does not seem to be applicable in more general
situations such as [14], [15]. However, our method still works well in this case (see
section 5).

Theorem 11. Let X =
��

i=1

Ii where Ii = {ai, ai + bi, . . . , ai + (mi − 1)bi} be an

mi-arithmetic progression. Assume that (ai, bi) = 1 for all i and Ii ∩ Ij = ∅ for all
i �= j. Then

(i) Φk(X,n) =
�

d|n

µ(d)
���

i=1 |Iid|
k

�

(ii) Φ(X,n) =
�

d|n

µ(d)
�
2

� �
i=1 |Iid| − 1

�

(iii) fk(X) =
max X�

d=1

µ(d)
���

i=1 |Iid|
k

�

(iv) f(X) =
max X�

d=1

µ(d)
�
2

� �
i=1 |Iid| − 1

�

where for each i and d, |Iid| = 0 if (d, bi) �= 1 and if (d, bi) = 1, then |Iid| =�
mi
d

�
+ εid where

εid =






1 if d � mi and − aib
−1
i mod d ∈ {0, . . . ,mi − 1−

�
mi
d

�
d},

where b
−1
i is the multiplication inverse of bi modulo d.

0 otherwise.

Proof. We have |Xd| =
��

i=1

|Iid| and |Iid| can be obtained by Lemma 3. This

completes the proof.

Remark 12. 1) If (ai, bi) > 1 for some i, we can apply Lemma 2 to obtain the
corresponding result to Theorem 11.
2) Theorem 11 extends Ayad and Kihel’s results [2], [3] to the case of finite union
of arithmetic progressions. Replacing � = 1 and X = {a, a + b, . . . , a + (m − 1)b},
we obtain their result in [2] and [3].

5. Cover Shonhiwa’s Theorems

Shonhiwa considers the case X = [1, n] with various constraints. He [14], [15] uses
the Möbius inversion formula, the inclusion-exclusion principle, generating func-
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tions, and standard formulas in enumerative combinatorics. In this section, we
illustrate again how our method can be used to obtain Shonhiwa’s results in a
faster and simpler way. So let us recall his theorems in [14], [15].

Theorem 13. ([14], [15]) Let

(i) S
m
k (n) =

�

1≤a1,a2,...,ak≤n
(a1,a2,...,ak,m)=1

1; ∀n ≥ k ≥ 1,m ≥ 1

(ii) Gk(n) =
�

1≤a1,a2,...,ak≤n
(a1,a2,...,ak)=1

1; ∀n ≥ k ≥ 1

(iii) L
m
k (n) =

�

1≤a1≤a2≤...≤ak≤n
(a1,a2,...,ak,m)=1

1; ∀n ≥ k ≥ 1,m ≥ 1

(iv) Hk(n) =
�

1≤a1≤a2≤...≤ak≤n
(a1,a2,...,ak)=1

1; ∀n ≥ k ≥ 1

(v) T
m
k (n) =

�

1≤a1<a2<...<ak≤n
(a1,a2,...,ak,m)=1

1; ∀n ≥ k ≥ 1,m ≥ 1.

Then

S
m
k (n) =

�

d|m

µ(d)
�
n

d

�k
,

Gk(n) =
�

d≤n

µ(d)
�
n

d

�k
,

L
m
k (n) =

�

d|m

µ(d)
��

n
d

�
+ k − 1
k

�

Hk(n) =
�

d≤n

µ(d)
��

n
d

�
+ k − 1
k

�

T
m
k (n) =

�

d|m

µ(d)
��

n
d

�

k

�
.

Proof. Throughout the proof, we let

A = {1, 2, . . . , n} and

Ad = {a ∈ A : d | a} = {d, 2d, 3d, . . . ,

�
n

d

�
d}.
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For (i), we apply Lemma 4 and change the order of summation to obtain

S
m
k (n) =

�

1≤a1,a2,...,ak≤n

�

d|(a1,a2,...,ak,m)

µ(d)

=
�

d|m

µ(d)
�

1≤a1,a2,...,ak≤n
d|a1,d|a2,...,d|ak

1.

The condition 1 ≤ a ≤ n and d | a is the same as a ∈ Ad. Therefore the number of
choices for a is |Ad| =

�
n
d

�
. So we have

S
m
k (n) =

�

d|m

µ(d)
�

a1,a2,...,ak∈Ad

1 =
�

d|m

µ(d)|Ad|k =
�

d|m

µ(d)
�
n

d

�k
.

For (ii) we put m = n! in S
m
k (n) and argue as in the proof of Φ(a,b)(m,n) in the

previous section. We see that

Gk(n) = S
m
k (n) =

�

d|m

µ(d)
�
n

d

�k
=

�

d|n!

µ(d)
�
n

d

�k
=

n�

d=1

µ(d)
�
n

d

�k
.

Before giving the proof of (iii), let us recall an elementary formula in enumeration.
The number of ways to select k objects from n different objects with repetition
allowed is equal to ([11], p.47)

�
k + n− 1

k

�
. (11)

Now similar to (i), we apply Lemma 4 and change the order of summation to obtain

L
m
k (n) =

�

d|m

µ(d)
�

1≤a1≤a2≤...≤ak≤n
d|a1,d|a2,...,d|ak

1 =
�

d|m

µ(d)
�

a1,a2,...,ak∈Ad
a1≤a2≤...≤ak

1.

The inner sum is equal to the number of ways to select k objects from |Ad| =
�

n
d

�

different objects with repetition allowed. So it is equal to
�k+�n

d �−1
k

�
by (11). Thus

L
m
k (n) =

�

d|m

µ(d)
�

k +
�

n
d

�
− 1

k

�
. (12)

For (iv), we put m = n! in (12) and argue as before to get Hk(n).
Similar to (i) and (iii), we have

T
m
k (n) =

�

d|m

µ(d)
�

1≤a1<a2<...<ak≤n
d|a1,d|a2,...,d|ak

1 =
�

d|m

µ(d)
�

a1,a2,...,ak∈Ad
a1<a2<...<ak

1.

The inner sum is the same as k-combinations of |Ad| =
�

n
d

�
distinct objects, which

equals
��n

d �
k

�
. This gives (v). Hence the proof is complete.
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6. Possible Research Questions

There are some interesting problems that can be investigated further. For example,
combinatorial identities given by Bachraoui and Salim in [8], divisor-type functions
by Toth [17], arithmetic properties of the sequence f(n) = f([1, n]), and Φ(n) =
Φ([1, n]) by Ayad and Kihel [4] and Min Tang [16] can be developed more. The
possible research questions are the following:

(i) Is f(n) a cube, a fourth power, or a perfect power for some n ≥ 2? (Ayad and
Kihel [4] proved that f(n) is never a square for n ≥ 2.) We conjecture that
f(n) is never a perfect power for any n ≥ 2.

(ii) What are congruence relations for f(n), fk(n),Φ(n), and Φk(n)? (Ayad and
Kihel [4] showed that Φ(n) ≡ 0(mod 3) for n ≥ 3.)

(iii) Does the sequence f(n) contain infinitely many primes?

(iv) What are the solutions of f(n) = Φ(m) ? We conjecture that all solutions are
(m,n) = (1, 1) or (2, 2).

(v) What are the properties of the divisor sums D(n) =
�

d|n f(d) ? Currently,
we obtain a combinatorial and a congruence property of D(n) but there are
some questions that we do not have a complete answer. Looking at the values
of D(n) and Φ(n), we see that D(n) > Φ(n) for all even integers 2 ≤ n ≤ 30
and D(n) < Φ(n) for all odd integers 5 ≤ n ≤ 30. This pattern might hold
for all larger values of n or at least for infinitely many n but we do not have
a proof yet.
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Seq. 13 (2010), no. 8, Article 10.8.6, 7 pp.

[11] C. Chuan-Chong, K. Khee-Meng, Principles and Techniques in Combinatorics, World Scien-

tific, River Edge, New Jersey, 1992.

[12] M.B. Nathanson, Affine invariants, relatively prime sets, and a phi function for subsets of

{1, 2, . . . , n}, Integers 7 (2007), A1, 7 pp.

[13] M.B. Nathanson and B. Orosz, Asymptotic estimates for phi functions for subsets of {m +

1, m + 2, . . . , n}, Integers 7 (2007), A54, 5 pp.

[14] T. Shonhiwa, On relatively prime sets counting functions, Integers 10 (2010), A39, 465 - 476.

[15] T. Shonhiwa, A generalization of the Euler and Jordan totient functions. Fibonacci Quart.

37 (1999), no. 1, 67-76.

[16] M.Tang, Relatively prime sets and a phi function for subsets of {1, 2, . . . , n}, J. Integers Seq.

13 (2010), Article 10.7.6, 5pp.

[17] L. Toth, On the number of certain relatively prime subsets of {1, 2, . . . , n}, Integers 10 (2010),

A35, 407-421.


