INTERSECTING RATIONAL BEATTY SEQUENCES

Jamie Simpson
Dept. of Mathematics and Statistics, Curtin University, Perth, WA, Australia
Jamie.Simpson@curtin.edu.au

Received: 3/5/12, Revised: 3/24/13, Accepted: 7/6/13, Published: 8/12/13

Abstract

A rational Beatty sequence has the form $\{\lfloor p i / q+b\rfloor: i \in \mathbb{Z}\}$ where $p>q>0$ and $\operatorname{gcd}(p, q)=1$. We call p / q the modulus of the sequence and b the offset. Morikawa gave a condition on the moduli of two Beatty sequences such that they would be disjoint for a suitable choice of offsets. Holzman and Fraenkel showed that the sequence formed by the intersection of two Beatty sequences with moduli p_{1} / q_{1} and $p_{2} / q_{2}, q_{2} \leq q_{1}$, could have as many as $q_{2}+3$ distinct consecutive differences. In this note we show that if the moduli satisfy the Morikawa condition but the sequences do intersect then the consecutive differences take on at most three different values.

1. Introduction

A Beatty sequence has the form $\{\lfloor i \alpha+\beta\rfloor: i \in \mathbb{Z}\}$. We call α the modulus and β the offset of the sequence. The sequences were named for Samuel Beatty [1] who asked for a proof that two Beatty sequences, with offsets equal to 0 and moduli α_{1} and α_{2}, partition the positive integers if both moduli are irrational and $1 / \alpha_{1}+1 / \alpha_{2}=1$. A proof of this pleasing result appeared in [2]. A Beatty sequence is rational or irrational according to whether its modulus is rational or irrational. Covering properties of irrational Beatty sequences are now well understood. See, for instance, [8] and its bibliography. This is not so for coverings by collections of rational Beatty sequences which are the subject of this paper. We write $S(p / q, b)$, where $\operatorname{gcd}(p, q)=1$, for the Beatty Sequence $\{\lfloor p i / q+b\rfloor: i \in \mathbb{Z}\}$. We will assume throughout that b here is an integer - this involves no loss of generality by a result in [9]. The following famous conjecture is due to Aviezri Fraenkel [4].

Conjecture 1. If the collection of Beatty sequences $\left\{S\left(p_{i} / q_{i}, b_{i}\right): i=1, \ldots, t\right\}$ partitions the integers with $t>2$ then $\left\{p_{1} / q_{1}, \ldots, p_{t} / q_{t}\right\}=\left\{\left(2^{t}-1\right) / 2^{t-i}: 1 \leq i \leq\right.$ $t\}$.

This conjecture has generated a considerable literature. The strongest result to
date is by Bark and Varjú [3] who showed that any counterexample must have $t>7$. See also the surveys [8], and Section F14 of [6].

A Beatty sequence may be regarded as an approximation to an arithmetic progression in that its consecutive differences take two values $(\lfloor\alpha\rfloor$ and $\lceil\alpha\rceil)$ rather than one. The intersection properties of arithmetic progressions are given by the Chinese Remainder Theorem which we give, in a long-winded way, here.

Theorem 2. (Chinese Remainder Theorem) Let $a_{1}, a_{2}, b_{1}, b_{2}$ be integers with a_{1} and a_{2} positive.
(a) There exist integers b_{1} and b_{2} such that $S\left(a_{1}, b_{1}\right)$ and $S\left(a_{2}, b_{2}\right)$ are disjoint if and only if $\operatorname{gcd}\left(a_{1}, a_{2}\right)>1$.
(b) If $\operatorname{gcd}\left(a_{1}, a_{2}\right)=1$, then the intersection of $S\left(a_{1}, b_{1}\right)$ and $S\left(a_{2}, b_{2}\right)$ is an arithmetic progression with common difference $a_{1} a_{2}$.
(c) If $\operatorname{gcd}\left(a_{1}, a_{2}\right)>1$, and $S\left(a_{1}, b_{1}\right)$ and $S\left(a_{2}, b_{2}\right)$ do intersect, then their intersection is an arithmetic progression with common difference $\operatorname{lcm}\left(a_{1} a_{2}\right)$.

The situation for Beatty sequences is more complicated. Instead of part (a) we have the following result of Ryozu Morikawa [7], [10].

Theorem 3. (Japanese Remainder Theorem) With $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right)$, $q_{1}=u_{1} q$ and $q_{2}=u_{2} q$, there exist numbers b_{1} and b_{2} such that $S\left(p_{1} / q_{1}, b_{1}\right)$ and $S\left(p_{2} / q_{2}, b_{2}\right)$ are disjoint if and only if there exist positive integers x and y such that

$$
\begin{equation*}
x u_{1}+y u_{2}=p-2 u_{1} u_{2}(q-1) \tag{1}
\end{equation*}
$$

When this is so we say that p_{1} / q_{1} and p_{2} / q_{2} satisfy the Morikawa condition.
Definition 4. If a_{1}, \ldots, a_{n} is an increasing sequence of integers then we say that the differences $a_{i+1}-a_{i}$ are the gap sizes of the sequence. If S is a set of residues modulo p, whose members have been reduced modulo p to integers in the interval [$0, p-1]$, and labeled $g_{1} \leq g_{2} \leq \cdots \leq g_{n}$, then the set of gap sizes of S is $\left\{g_{i+1}-g_{i}\right.$: $i=1, \ldots, n-1\} \cup\left\{p+g_{1}-g_{n}\right\}$.

Instead of part (b) of Theorem 2 we have the following result of Fraenkel and Holzman [5].

Theorem 5. If $S\left(p_{1} / q_{1}, b_{1}\right)$ and $S\left(p_{2} / q_{2}, b_{2}\right)$ are Beatty sequences whose moduli do not satisfy the Morikawa condition, and $q_{1} \geq q_{2} \geq 2$, then the intersection of the two sequences has at most $q_{2}+3$ distinct gap sizes.

The bound here is best possible. In this paper we obtain an analogy of part (c) of Theorem 2 by giving a precise description of the intersection of two Beatty sequences whose moduli satisfy the Morikawa condition. In particular, it follows that in this case the intersection has at most three gap sizes.

2. Results

Notation 6. Throughout this section we will use the following notation. We will be considering Beatty sequences $S\left(p_{1} / q_{1}, b_{1}\right)$ and $S\left(p_{2} / q_{2}, b_{2}\right)$. We assume, without loss of generality, that $q_{1} \leq q_{2}$. We put $p=\operatorname{gcd}\left(p_{1}, p_{2}\right), p_{1}=m p$, and $p_{2}=n p$. This implies

$$
\operatorname{gcd}\left(m, q_{1}\right)=\operatorname{gcd}\left(n, q_{2}\right)=1
$$

We set \bar{q}_{1} and \bar{q}_{2} to be the least non-negative residues satisfying $q_{1} \bar{q}_{1} \equiv-1(\bmod p)$ and $q_{2} \bar{q}_{2} \equiv-1(\bmod p)$ respectively. Similarly, \bar{q}_{m} and \bar{q}_{n} are the least non-negative residues satisfying $q_{1} \bar{q}_{m} \equiv-1(\bmod m)$ and $q_{2} \bar{q}_{n} \equiv-1(\bmod n)$, respectively. We set $k_{1}=\left(q_{1} \bar{q}_{1}+1\right) / p$ and $k_{2}=\left(q_{2} \bar{q}_{2}+1\right) / p$.

The argument proceeds in three steps. In Theorem 11 we obtain an expression for the intersection of $S\left(p / q_{1}, b_{1}\right)$ and $S\left(p / q_{2}, b_{2}\right)$. This is used in Theorem 15 to obtain an expression for the intersection of $S\left(p m / q_{1}, b_{1}\right)$ and $S\left(p / q_{2}, b_{2}\right)$, and that result is used in Theorem 16 to obtain an expression for the intersection of $S\left(p m / q_{1}, b_{1}\right)$ and $S\left(p n / q_{2}, b_{2}\right)$.

Definition 7. Let b, n, p, d be positive integers with $n \leq p, \operatorname{gcd}(p, d)=1$ and $S=\{i d+b \bmod p: i=0, \ldots, n-1\}$. Reduce each member of S to an integer in $[0, p-1]$ and label them g_{1}, \ldots, g_{n}, such that $g_{1} \leq g_{2} \leq \cdots \leq g_{n}$. We say that this sequence is a modular arithmetic progression modulo p with additive difference d.

The following is easily derived from the usual Three Gap Theorem, see [11].
Theorem 8 (Three Gap Theorem). The set of gap sizes of a modular arithmetic progression has cardinality at most 3, and if the cardinality equals 3 then the largest member of the set equals the sum of the other two.

The following corollary follows immediately from the preceding theorem and Definition 7.

Corollary 9. If g_{1}, \ldots, g_{n} is a modular arithmetic progression modulo p, then the set of gap sizes in the doubly infinite increasing sequence with range $\left\{g_{i}+j p: 1 \leq\right.$ $i \leq n, j \in \mathbb{Z}\}$ has cardinality at most 3 , and if the cardinality equals 3 then the largest member of the set equals the sum of the other two.

The Beatty sequence $S=S(p / q, b)$ has period p in the sense that $a \in S$ if and only if $a+p \in S$, and so is characterised by a set of residues modulo p. The following is Theorem 3 of [10].

Theorem 10. The sequence $S(p / q, b)$ with $\operatorname{gcd}(p, q)=1$ coincides with the set of integers congruent modulo p to a member of $\{i \bar{q}+b: 0 \leq i \leq q-1\}$, where $q \bar{q} \equiv-1$ $(\bmod p)$.

Thus the set of residues in a Beatty sequence forms a modular arithmetic progression, and the Beatty sequence itself fulfils the conditions of Corollary 9. In fact the Beatty sequence has at most two gap sizes. These are $\lfloor p / q\rfloor$ and $\lceil p / q\rceil$ (which are equal when $q=1$).

Theorem 11. Let p, q_{1} and q_{2} be positive integers with $\operatorname{gcd}\left(p, q_{1}\right)=\operatorname{gcd}\left(p, q_{2}\right)=1$ such that p / q_{1} and p / q_{2} satisfy the Morikawa condition. If b_{1}, b_{2} are integers such that $S\left(p / q_{1}, b_{1}\right)$ and $S\left(p / q_{2}, b_{2}\right)$ intersect then the intersection is the set of residues

$$
\begin{equation*}
\left\{a \bar{q}_{1}+i G_{1} \bar{q}_{1}+b_{1}: 0 \leq i \leq t-1\right\} \tag{2}
\end{equation*}
$$

modulo p for some positive integer t where G_{1} is the smallest gap size in $\left\{-q_{1} i \bar{q}_{2}-\right.$ $\left.q_{1} b_{2}(\bmod p): i=0, \ldots, q_{2}-1\right\}$ if $t>2$, and the second or third smallest gap size if $t=2$, and a is a non-negative integer satisfying

$$
\begin{equation*}
a+G_{1}(t-1)<q_{1} . \tag{3}
\end{equation*}
$$

The ideas of the following proof are illustrated in the accompanying figure.
Proof. Without loss of generality suppose $b_{1}=0$. Let B_{1} be the set of residues modulo p in $S\left(p / q_{1}, b_{1}\right)$ and B_{2} be the set in $S\left(p / q_{2}, b_{2}\right)$. Theorem 10 implies that $B_{1} \equiv\left\{i \bar{q}_{1}: i=0, \ldots, q_{1}-1\right\}(\bmod p)$ and $B_{2} \equiv\left\{i \bar{q}_{2}+b_{2}: i=0 \ldots q_{2}-1\right\}(\bmod p)$. Let

$$
\begin{aligned}
B_{1}^{*} & \equiv\left\{-q_{1} i \bar{q}_{1}: 0 \leq i \leq q_{1}-1\right\} \quad(\bmod p) \\
& \equiv\left\{0, \ldots, q_{1}-1\right\} \quad(\bmod p)
\end{aligned}
$$

and

$$
B_{2}^{*} \equiv\left\{-q_{1} i \bar{q}_{2}-q_{1} b_{2} \bmod p: 0 \leq i \leq q_{2}-1\right\} \quad(\bmod p)
$$

Clearly

$$
\begin{equation*}
-q_{1}\left(B_{1} \cap B_{2}\right) \equiv B_{1}^{*} \cap B_{2}^{*} \quad(\bmod p) \tag{4}
\end{equation*}
$$

so $\left|B_{1} \cap B_{2}\right|=\left|B_{1}^{*} \cap B_{2}^{*}\right|$. If $\left|B_{1} \cap B_{2}\right|=1$ then we have nothing to prove, and if $\left|B_{1} \cap B_{2}\right|=2$ then a simpler version of the proof applies (but note the comments at the end of the proof), so we assume $\left|B_{1} \cap B_{2}\right| \geq 3$. Consider the set of gaps in the modular arithmetic progression B_{2}^{*}. By Theorem 8 there are at most 3 gap sizes. We will assume there are 3 (if there are less, then a simpler version of the proof applies) and that the gaps are $G_{1}<G_{2}<G_{3}$. Since the moduli of the Beatty sequences satisfy the Morikawa condition there will be some value for b_{2} which makes $\left|B_{1} \cap B_{2}\right|$ empty, and therefore $B_{1}^{*} \cap B_{2}^{*}=\left\{0, \ldots, q_{1}-1\right\} \cap B_{2}^{*}$ empty, which implies $G_{3}>q_{1}$. Now consider a different value of b_{2} for which the sequences do intersect (note that this doesn't change the gap sizes of B_{2}^{*}) and let the intersection be the sequence

$$
\begin{equation*}
0 \leq a_{1}<a_{2}<\cdots<a_{t} \leq q_{1}-1 \tag{5}
\end{equation*}
$$

Figure 1: The diagram on the left shows the set of residues modulo 16 of $B_{1}=$ $S(16 / 5,0)$ in the outer ring and $B_{2}=S(16 / 3,5)$ in the inner ring. The diagram on the right shows $B_{1}^{*} \equiv-5 B_{1}(\bmod 16)$ and $B_{2}^{*} \equiv-5 B_{2}(\bmod 16)$. The Beatty sequences do not intersect. Making a suitable change to the offset of B_{1} will cause the outer rings to rotate so that they do.
where, by the assumption above, $t \geq 3$. We claim that the only gap size in this sequence is G_{1}. Clearly no gap can equal G_{3} since

$$
\begin{equation*}
G_{3}>q_{1}>a_{t}-a_{1} \tag{6}
\end{equation*}
$$

Suppose G_{2} occurs in the sequence. Then, since $t \geq 3$, there is an adjacent gap of size at least G_{1}. This implies $a_{t}-a_{1} \geq G_{1}+G_{2}$, but $G_{1}+G_{2}=G_{3}$ by Theorem 8 and we get a contradiction as in (6). Thus all gaps equal G_{1} and

$$
B_{1}^{*} \cap B_{2}^{*}=\left\{a+i G_{1}: 0 \leq i \leq t-1\right\}
$$

for some integer a. By (5) we have

$$
\begin{equation*}
a+(t-1) G_{1} \leq q_{1}-1 \tag{7}
\end{equation*}
$$

Therefore from (4)

$$
\begin{aligned}
B_{1} \cap B_{2} & \equiv \bar{q}_{1}\left\{a+i G_{1}: 0 \leq i \leq t-1\right\} \quad(\bmod p) \\
& \equiv\left\{a \bar{q}_{1}+i G_{1} \bar{q}_{1}, 0 \leq i \leq t-1\right\} \quad(\bmod p)
\end{aligned}
$$

which is (2). If there are only two elements in the intersection we cannot conclude that $a_{2}-a_{1}<G_{2}$. This observation leads to the anomalous case in the theorem.

This completes the analysis of the case when two Beatty sequences with the same numerator in their moduli intersect. Before progressing to the more general case we prove the following theorem and its corollary.

Theorem 12. Let m and t be positive integers, and a_{1}, a_{2}, b_{1} and b_{2} be integers in the interval $[0, t-1]$. If

$$
\begin{equation*}
\left\{a_{1} i+b_{1}: i=0, \ldots, t-1\right\} \equiv\left\{a_{2} i+b_{2}: i=0, \ldots, t-1\right\} \quad(\bmod m) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
(t+1) \operatorname{gcd}\left(a_{1}, a_{2}, m\right)<m \tag{9}
\end{equation*}
$$

then either $a_{1} \equiv a_{2}(\bmod m)$ and $b_{1} \equiv b_{2}(\bmod m)$, or $a_{1} \equiv-a_{2}(\bmod m)$ and $b_{2} \equiv b_{1}+a_{1}(t-1)(\bmod m)$.

Proof. Let $S=\left\{a_{1} i+b_{1}: i=0, \ldots, t-1\right\}$. We first show that neither $a_{1} t+b_{1}$ nor $a_{1}(t+1)+b_{1}$ is congruent modulo m to a member of S. Suppose otherwise. If $a_{1} t+b_{1}$ is congruent modulo m to a member of S, then

$$
\begin{aligned}
& a_{1} t+b_{1} \equiv a_{1} i+b_{1} \quad(\bmod m) \text { for some } i \in[0, t-1] \\
\Rightarrow & a_{1}(t-i) \equiv 0 \quad(\bmod m)
\end{aligned}
$$

which implies $i=0$ else the members of S would not be distinct. Hence m divides $a_{1} t$ but m does not divide $a_{1} i$ for any $i \in[1, t-1]$. Hence t divides m and m / t divides a_{1}. Thus $a_{1}=A m / t$ for some integer A where $\operatorname{gcd}(A, m)=1$ and

$$
S \equiv\left\{(A m / t) i+b_{1}: i=0, \ldots, t-1\right\} \quad(\bmod m)
$$

Clearly

$$
\left\{(A m / t) i+b_{1}: i=0, \ldots, t-1\right\} \equiv\left\{(m / t) i+b_{1}: i=0, \ldots, t-1\right\} \quad(\bmod m)
$$

so $S \equiv\left\{m i / t+b_{1}: i=0, \ldots, t-1\right\}(\bmod m)$. It follows that m / t divides a_{2}. In fact we have

$$
m \mid \operatorname{gcd}\left(a_{1}, m\right) t \text { and } m \mid \operatorname{gcd}\left(a_{2}, m\right) t
$$

and thus m divides $\operatorname{gcd}\left(a_{1}, a_{2}, m\right) t$ which implies $t \operatorname{gcd}\left(a_{1}, a_{2}, m\right) \geq m$, contradicting (9). We conclude $a_{1} t+b_{1}$ is not congruent modulo m to any member of S.

Now suppose $a_{1}(t+1)+b_{1}$ is congruent modulo m to a member of S. As above this leads to

$$
a_{1}(t+1-i) \equiv 0 \quad(\bmod m)
$$

for some i in $[0, t-1]$. In order for the members of S to be distinct this implies $i=0$ or $i=1$. If $i=1$ we get $a_{1} t \equiv 0(\bmod m)$ which is impossible as in the previous case. Using similar reasoning to the previous case we see that if $i=0$ which implies that m divides $a_{1}(t+1), t+1$ divides m, and

$$
S \cup\left\{a_{1} t+b_{1}\right\} \equiv\left\{m i /(t+1)+b_{1}: i=0, \ldots, t\right\} \quad(\bmod m)
$$

Then $m /(t+1)$ divides a_{2} which leads to

$$
m \mid \operatorname{gcd}\left(a_{1}, a_{2}, m\right)(t+1)
$$

implying that $(t+1) \operatorname{gcd}\left(a_{1}, a_{2}, m\right) \geq m$, again contradicting (9). We conclude that $a_{1}(t+1)+b_{1}$ is not congruent modulo m to any member of S.

By similar reasoning we conclude that neither $a_{2} t+b_{2}$ nor $a_{2}(t+1)+b_{2}$ is congruent modulo m to a member of S.

Now consider the set $S^{\prime}=\left\{a_{2} i+b_{2}: i=1, \ldots, t\right\}$ modulo m. That is, S^{\prime} is formed by adding a_{2} to each member of S. Note that $\left|S \cap S^{\prime}\right|=t-1$ since $a_{2}(t+1)+b_{2}$ is not congruent modulo m to any member of S. Hence

$$
\begin{equation*}
S \cap S^{\prime}=\left\{a_{1} i+b_{1}: i=0, \ldots, t-1, i \neq j\right\} \tag{10}
\end{equation*}
$$

for some $j \in[0, t-1]$. We will show that j equals 0 or $t-1$. Suppose, for the sake of contradiction, that $0<j<t-1$. Since $j>0, a_{1}(j-1)+b_{1}$ belongs to $S \cap S^{\prime}$. Then,

$$
\begin{equation*}
a_{1}(j-1)+b_{1} \equiv a_{1}(t-1)+b_{1}+a_{2} \quad(\bmod m) \tag{11}
\end{equation*}
$$

since if $t-1$ were replaced by k with $0 \leq k<t-1$, then $a_{1} j+b_{1}$ would be congruent modulo m to $a_{1}(k+1)+b_{1}+a_{2}$ and so belong to S^{\prime}. From (11) we therefore get

$$
a_{2} \equiv(j-t) a_{1} \quad(\bmod m)
$$

Now from our assumption that $j<t-1$ we have $a_{1}(j+1)+b_{1}$ congruent to a member of S, and by (11) congruent to $a_{1}(t+1)+b_{1}+a_{2}$ modulo m. So $a_{1}(t+1)+b_{1}+a_{2}$ is congruent modulo m to a member of S^{\prime}, which implies that $a_{1}(t+1)+b_{1}$ is congruent to a member of S which we showed earlier to be impossible. We conclude that $j=0$ or $j=t-1$.

If $j=0$ then (10) gives

$$
S^{\prime} \cap S \equiv\left\{a_{1} i+b_{1}: i=1, \ldots, t-1\right\} \quad(\bmod m)
$$

so that no member is congruent modulo m to b_{1}, and $a_{1}+b_{1} \equiv a_{1} k+b_{1}+a_{2}$ for some k in $\{0, \ldots, t-1\}$. We must have $k=0$, else $S^{\prime} \cap S$ would include an element congruent to $a_{1}(k-1)+b_{1}+a_{2} \equiv b_{1}(\bmod m)$. Hence we get $a_{1} \equiv a_{2}(\bmod m)$, and from (8) we see that $b_{1}=b_{2}$.

Similarly, if $j=t-1$ then (10) gives $a_{1}(t-2)+b_{1} \equiv a_{1} k+b_{1}+a_{2}(\bmod m)$ for some k in $\{0, \ldots, t-1\}$, and this k must equal $t-1$ else $a_{1}(t-1)+b_{1}$ would be congruent modulo m to a member of S^{\prime} and we get $a_{1} \equiv-a_{2}(\bmod m)$. In this case (8) then gives

$$
\begin{aligned}
& \left\{a_{1} i+b_{1}: 0 \leq i \leq t-1\right\} \\
\equiv & \left\{a_{1} i+b_{2}: 0 \leq i \leq t-1\right\} \quad(\bmod m) \\
\equiv & \left\{a_{1}(t-1-i)+b_{2}-a_{1}(t-1): 0 \leq i \leq t-1\right\} \quad(\bmod m) \\
\equiv & \left\{a_{1} j+b_{2}-a_{1}(t-1): 0 \leq j \leq t-1\right\} \quad(\bmod m),
\end{aligned}
$$

which implies

$$
b_{1} \equiv b_{2}-a_{1}(t-1) \quad(\bmod m)
$$

as required.
Corollary 13. Using Notation 6 we have either

$$
a_{2} \bar{q}_{2}+b_{2} \equiv a \bar{q}_{1}+b_{1} \quad(\bmod p)
$$

or

$$
a_{2} \bar{q}_{2}+b_{2} \equiv \bar{q}_{1}\left(a+\left(q_{2}-1\right) G_{1}\right)+b_{1} \quad(\bmod p)
$$

Proof. Let H be the smallest gap size in $\left\{-q_{2} i \bar{q}_{1}-q_{2} b_{1} \bmod p: 0 \leq i \leq q_{1}-1\right\}$. By swapping the roles of $S\left(p / q_{1}, b_{1}\right)$ and $S\left(p / q_{2}, b_{2}\right)$ in Theorem 11 we can rewrite (2) as follows. The set of residues modulo p in the intersection of $S\left(p / q_{1}, b_{1}\right)$ and $S\left(p / q_{2}, b_{2}\right)$ is

$$
\left\{a_{2} \bar{q}_{2}+i H \bar{q}_{2}+b_{2}: 0 \leq i \leq t-1\right\}
$$

where a_{2} satisfies $0 \leq a_{2}+H(t-1) \leq q_{2}$. Note that we don't need a different t value as the size of the intersection doesn't change. We thus have, using the notation of the theorem,

$$
\begin{equation*}
\left\{a \bar{q}_{1}+i G_{1} \bar{q}_{1}+b_{1}: 0 \leq i \leq t-1\right\} \equiv\left\{a_{2} \bar{q}_{2}+i H \bar{q}_{2}+b_{2}: 0 \leq i \leq t-1\right\} \tag{12}
\end{equation*}
$$

modulo p. We will show that either $H \bar{q}_{2} \equiv G_{1} \bar{q}_{1}$ or $H \bar{q}_{2} \equiv-G_{1} \bar{q}_{1}$ modulo p. This is immediate if $t=1$ or $t=2$, so we assume $t \geq 3$. In Notation 6 we assumed that $q_{1} \leq q_{2}$. Since the moduli of our Beatty sequences satisfy the Morikawa condition (so the sequences would be disjoint for suitable offsets) we must have $q_{1}+q_{2} \leq p$, and so $q_{1} \leq p / 2$. Then from (7) $(t-1) G_{1}<q_{1} \leq p / 2$, so that, for $t \geq 3$,

$$
\begin{equation*}
G_{1}(t+1)<p \tag{13}
\end{equation*}
$$

We now apply the theorem with (12) in the role of (8). Since \bar{q}_{1} and \bar{q}_{2} are relatively prime to p,

$$
\operatorname{gcd}\left(G_{1} \bar{q}_{1}, H \bar{q}_{2}, p\right)=\operatorname{gcd}\left(G_{1}, H, p\right) \leq G_{1}
$$

So with (13) we have $\operatorname{gcd}\left(G_{1} \bar{q}_{1}, H \bar{q}_{2}, p\right)(t+1)<p$, which plays the role of (9). We conclude that either $H \bar{q}_{2} \equiv G_{1} \bar{q}_{1}$ and

$$
a_{2} \bar{q}_{2}+b_{2} \equiv a \bar{q}_{1}+b_{1} \quad(\bmod p)
$$

or $H \bar{q}_{2} \equiv-G_{1} \bar{q}_{1}$ modulo p and

$$
\begin{aligned}
a_{2} \bar{q}_{2}+b_{2} & \equiv a_{1} \bar{q}_{1}+b_{1}+G_{1} \bar{q}_{1}(t-1) \quad(\bmod p) \\
& \equiv \bar{q}_{1}\left(a_{1}+G_{1}(t-1)\right)+b_{1} \quad(\bmod p)
\end{aligned}
$$

as required.

We now analyse the intersection $S\left(p_{1} / q_{1}, b_{1}\right) \cap S\left(p / q_{2}, b_{2}\right)$.
Lemma 14. The set of residues modulo $p m$ in $S\left(p m / q_{1}, b\right)$ is

$$
\left\{i\left(\bar{q}_{1}+p \bar{q}_{m} k_{1}\right)+b_{1}: 0 \leq j \leq q_{1}-1\right\}
$$

Proof. By Theorem 10 the set of residues modulo $p m$ in $S\left(p m / q_{1}, b_{1}\right)$ is $\left\{i \bar{Q}+b_{1}\right.$: $\left.0 \leq i \leq q_{1}-1\right\}$, where \bar{Q} is the least non-negative residue modulo $p m$ satisfying $q_{1} \bar{Q} \equiv-1(\bmod p m)$. Using Notation 6 we then have $\bar{Q} \equiv \bar{q}_{1}(\bmod p)$ so that $\bar{Q}=\bar{q}_{1}+l p$ for some integer l. Then

$$
\begin{aligned}
\bar{Q} q_{1} & =\left(\bar{q}_{1}+l p\right) q_{1} \\
& =-1+k_{1} p+l p q_{1}
\end{aligned}
$$

But $\bar{Q} q_{1} \equiv-1(\bmod p m)$ so $k_{1}+l q_{1} \equiv 0(\bmod m)$, which implies that $l \equiv \bar{q}_{m} k_{1}$ $(\bmod m)$, and the result follows.

Theorem 15. We use Notation 6, recalling that $p_{1}=p m$. If p_{1} / q_{1} and p / q_{2} satisfy the Morikawa condition then $S\left(p_{1} / q_{1}, b_{1}\right) \cap S\left(p / q_{2}, b_{2}\right)$ equals

$$
\left\{\left(a+i G_{1}\right)\left(\bar{q}_{1}+p \bar{q}_{m} k_{1}\right)+b_{1}+\mu m p: 0 \leq i \leq t-1, \mu \in \mathbb{Z}\right\}
$$

where a, G_{1} and t have the same meaning as in Theorem 11.
Proof. We write S_{1}, S_{2}, and S_{m} for $S\left(p / q_{1}, b_{1}\right), S\left(p / q_{2}, b_{2}\right)$, and $S\left(p m / q_{1}, b_{1}\right)$ respectively. Since $S_{m} \subseteq S_{1}$ we have

$$
S_{m} \cap S_{2}=\left(S_{1} \cap S_{2}\right) \cap S_{m}
$$

By Theorem 11

$$
S_{1} \cap S_{2} \equiv\left\{a \bar{q}_{1}+i G_{1} \bar{q}_{1}+b_{1}: 0 \leq i \leq t-1\right\} \quad(\bmod p)
$$

where a and t are positive integers satisfying $0<a+G_{1}(t-1) \leq q_{1}$. By Lemma 14

$$
S_{m} \equiv\left\{j\left(\bar{q}_{1}+p \bar{q}_{m} k_{1}\right)+b_{1}: 0 \leq j \leq q_{1}-1\right\} \quad(\bmod p m)
$$

Suppose $x \in S_{2} \cap S_{m}$. Since $x \in S_{1} \cap S_{2}$ we have

$$
x=a \bar{q}_{1}+i_{1} G_{1} \bar{q}_{1}+b_{1}+l p
$$

for some i_{1} in $\{0, \ldots, t-1\}$ and $l \in \mathbb{Z}$. Then, since $x \in S_{m}$,

$$
\begin{equation*}
a \bar{q}_{1}+i_{1} G_{1} \bar{q}_{1}+b_{1}+l p=j_{1}\left(\bar{q}_{1}+p \bar{q}_{m} k_{1}\right)+b_{1}+\mu p m \tag{14}
\end{equation*}
$$

for some $\mu \in \mathbb{Z}$ and j_{1} in $\left\{0, \ldots, q_{1}\right\}$. It follows that

$$
\left(a+i_{1} G_{1}\right) \bar{q}_{1} \equiv j_{1} \bar{q}_{1} \quad(\bmod p)
$$

Since $0<a+G_{1}(t-1) \leq q_{1}<p$ and $\operatorname{gcd}\left(\bar{q}_{1}, p\right)=1$, we have $a+i_{1} G_{1}=j_{1}$. Then (14) gives

$$
l=\left(a+i_{1} G_{1}\right) \bar{q}_{m} k_{1}+\mu m .
$$

The implications here can be reversed, so that $S_{m} \cap S_{2}$ equals

$$
\left\{\left(a+i G_{1}\right)\left(\bar{q}_{1}+p \bar{q}_{m} k_{1}\right)+b_{1}+\mu m p: 0 \leq i \leq t-1, \mu \in \mathbb{Z}\right\},
$$

as required.
Now we obtain our main result.
Theorem 16. We use Notation 6 recalling that $p_{1}=p m$ and $p_{2}=p n$. If p_{1} / q_{1} and p_{2} / q_{2} satisfy the Morikawa condition then the intersection of the Beatty sequences $S_{m}=S\left(p m / q_{1}, b_{1}\right)$ and $S_{n}=S\left(p n / q_{2}, b_{2}\right)$ is the modular arithmetic progression given below, where a, G_{1} and t have the same meaning as in Theorem 11:

$$
\left\{a\left(\bar{q}_{1}+p k_{1} \bar{q}_{m}\right)+b_{1}+\mu_{0} m p+i\left(G_{1}\left(\bar{q}_{1}+p k_{1} \bar{q}_{m}\right)+\mu_{1} m p\right): 0 \leq i \leq t-1\right\}
$$

modulo mnp, and one of the following cases holds.
Case 1 In this case μ_{0} is the least non-negative residue satisfying

$$
\mu_{0} m \equiv \frac{a_{2} \bar{q}_{2}+b_{2}-a_{1} \bar{q}_{1}-b_{1}}{p}+a_{2} k_{2} \bar{q}_{n}-a_{1} k_{1} \bar{q}_{m} \quad(\bmod n),
$$

and μ_{1} is the least non-negative residue satisfying

$$
\mu_{1} m \equiv \frac{G_{2} \bar{q}_{2}-G_{1} \bar{q}_{1}}{p}+G_{2} k_{2} \bar{q}_{n}-G_{1} k_{1} \bar{q}_{m} \quad(\bmod n)
$$

Case 2 In this case μ_{0} is the least non-negative residue satisfying

$$
\mu_{0} m \equiv \frac{a_{1} \bar{q}_{1}+b_{1}-a_{2} \bar{q}_{2}-b_{2}}{p}+G_{2}\left(\bar{q}_{2}+p k_{2} \bar{q}_{n}\right)-a_{1} k_{1} \bar{q}_{m}+a_{2} k_{2} \bar{q}_{n} \quad(\bmod n)
$$

and μ_{1} is the least non-negative residue satisfying

$$
\mu_{1} m \equiv-\frac{G_{1} \bar{q}_{1}+G_{2} \bar{q}_{2}}{p}-G_{1} k_{1} \bar{q}_{m}-G_{2} k_{2} \bar{q}_{n} \quad(\bmod n) .
$$

Proof. By Theorem $15 S_{m} \cap S_{2}$ equals

$$
\begin{equation*}
\left\{\left(a_{1}+i G_{1}\right)\left(\bar{q}_{1}+p k_{1} \bar{q}_{m}\right)+b_{1}+\mu m p: 0 \leq i \leq t-1, \mu \in \mathbb{Z}\right\}, \tag{15}
\end{equation*}
$$

and $S_{n} \cap S_{1}$ equals

$$
\begin{equation*}
\left\{\left(a_{2}+i G_{2}\right)\left(\bar{q}_{2}+p k_{2} \bar{q}_{n}\right)+b_{2}+\nu n p: 0 \leq i \leq t-1, \nu \in \mathbb{Z}\right\} . \tag{16}
\end{equation*}
$$

Since $S_{m} \subseteq S_{1}$ and $S_{n} \subseteq S_{2}$ we can obtain $S_{m} \cap S_{n}$ by evaluating $\left(S_{m} \cap S_{2}\right) \cap\left(S_{n} \cap S_{1}\right)$. Suppose $x \in S_{m} \cap S_{n}$. Then there exist integers $i_{1}, i_{2} \in\{1, \ldots, t\}$ and $\mu, \nu \in \mathbb{Z}$ such that

$$
\begin{align*}
x & =i_{1} G_{1}\left(\bar{q}_{1}+p k_{1} \bar{q}_{m}\right)+a_{1}\left(\bar{q}_{1}+p k_{1} \bar{q}_{m}\right)+b_{1}+\mu m p \tag{17}\\
& =i_{2} G_{2}\left(\bar{q}_{2}+p k_{2} \bar{q}_{n}\right)+a_{2}\left(\bar{q}_{2}+p k_{2} \bar{q}_{n}\right)+b_{2}+\nu n p
\end{align*}
$$

Considering this modulo p we get

$$
\begin{equation*}
i_{1} G_{1} \bar{q}_{1}+a_{1} \bar{q}_{1}+b_{1} \equiv i_{2} G_{2} \bar{q}_{2}+a_{2} \bar{q}_{2}+b_{2} \quad(\bmod p) \tag{18}
\end{equation*}
$$

This is the congruence considered in Corollary 13. We therefore have either $i_{2}=i_{1}$ or $i_{2}=p-i_{1}$. We suppose the first of these holds and return to the other case at the end of the proof. Then (17) gives

$$
\begin{align*}
& i_{1}\left(G_{1}\left(\bar{q}_{1}+p k_{1} \bar{q}_{m}\right)-G_{2}\left(\bar{q}_{2}+p k_{2} \bar{q}_{n}\right)\right)+a_{1}\left(\bar{q}_{1}+p k_{1} \bar{q}_{m}\right) \tag{19}\\
& -a_{2}\left(\bar{q}_{2}+p k_{2} \bar{q}_{n}\right)+b_{1}-b_{2}=\nu n p-\mu m p
\end{align*}
$$

for some integers μ and ν. Using Corollary 13 again we may divide through by p getting

$$
\begin{aligned}
& i_{1}\left(\frac{G_{1} \bar{q}_{1}-G_{2} \bar{q}_{2}}{p}+G_{1} k_{1} \bar{q}_{m}-G_{2} k_{2} \bar{q}_{n}\right)+\frac{a_{1} \bar{q}_{1}+b_{1}-a_{2} \bar{q}_{2}-b_{2}}{p} \\
& +a_{1} k_{1} \bar{q}_{m}-a_{2} k_{2} \bar{q}_{n}=\nu n-\mu m
\end{aligned}
$$

Since m and n are relatively prime, we can find μ and ν satisfying this for any i_{1}. Consider the case $i_{1}=0$, and let μ_{0} and ν_{0} be the unique values of $\mu \in\{0, \ldots, n-1\}$ and $\nu \in\{0, \ldots, m-1\}$ satisfying,

$$
\begin{equation*}
\nu_{0} n-\mu_{0} m \equiv \frac{a_{1} \bar{q}_{1}+b_{1}-a_{2} \bar{q}_{2}-b_{2}}{p}+a_{1} k_{1} \bar{q}_{m}-a_{2} k_{2} \bar{q}_{n} \quad(\bmod m n) \tag{20}
\end{equation*}
$$

and let μ_{1} and ν_{1} be the unique values of $\mu \in\{0, \ldots, n-1\}$ and $\nu \in\{0, \ldots, m-1\}$ satisfying,

$$
\begin{equation*}
\nu_{1} n-\mu_{1} m \equiv \frac{G_{1} \bar{q}_{1}-G_{2} \bar{q}_{2}}{p}+G_{1} k_{1} \bar{q}_{m}-G_{2} k_{2} \bar{q}_{n} \quad(\bmod m n) \tag{21}
\end{equation*}
$$

We see that (19) will be satisfied for any $i_{1} \in\{0, \ldots, t-1\}$ if we set

$$
\begin{aligned}
\mu & =\mu_{0}+i_{1} \mu_{1}+s n \\
\nu & =\nu_{0}+i_{1} \nu_{1}+s m
\end{aligned}
$$

where s is any integer. Substituting in (15) and replacing i_{1} with i we get,

$$
\begin{aligned}
S_{m} \cap S_{n}= & \left\{\left(a_{1}+i G_{1}\right)\left(\bar{q}_{1}+p k_{1} \bar{q}_{m}\right)+b_{1}+\left(\mu_{0}+i \mu_{1}+s n\right) m p\right. \\
& : 0 \leq i \leq t-1, s \in \mathbb{Z}\} \\
= & \left\{a_{1}\left(\bar{q}_{1}+p k_{1} \bar{q}_{m}\right)+b_{1}+\mu_{0} m p+i\left(G_{1}\left(\bar{q}_{1}+p k_{1} \bar{q}_{m}\right)+\mu_{1} m p\right)\right. \\
& +\operatorname{smnp}: 0 \leq i \leq t-1, s \in \mathbb{Z}\}
\end{aligned}
$$

as required.
If we put $i_{2}=p-i_{1}$ instead of $i_{2}=i_{1}$ as a consequence of (18) then (17) gives the values of μ_{0} and μ_{1} in Case 2.

Corollary 17. If p_{1} / q_{1} and p_{2} / q_{2} satisfy the Morikawa condition then the intersection of $S_{1}=S\left(p m / q_{1}, b_{1}\right)$ and $S_{2}=S\left(p n / q_{2}, b_{2}\right)$ contains at most 3 distinct gap sizes.

Proof. Immediate from Theorem 16 and Corollary 9.
We end with an example. Consider the pair of Beatty Sequences $S(737 / 10,0)$, and $S(469 / 15,2)$. This gives $p=67, m=11, n=7, q_{1}=10, q_{2}=15, b_{1}=0$, $b_{2}=2, \bar{q}_{1}=20, \bar{q}_{2}=58, \bar{q}_{m}=1, \bar{q}_{n}=6, k_{1}=3, k_{2}=13, G_{1}=2, G_{2}=$ 3 , and $t=4$. By Theorem 11 the intersection of $S(67 / 10,0)$ and $S(67 / 15,2)$ is $\left\{20 a_{1}+40 i: 0 \leq i \leq t-1\right\}(\bmod 67)$. With $a_{1}=3$ this gives the intersection $\{6,33,46,6\}$. We similarly have $a_{2}=1$. Now consider Theorem 16. We have μ_{0} being the least non-negative residue satisfying

$$
\begin{aligned}
\mu_{0} m & \equiv \frac{a_{2} \bar{q}_{2}+b_{2}-a_{1} \bar{q}_{1}-b_{1}}{p}+a_{2} k_{2} \bar{q}_{n}-a_{1} k_{1} \bar{q}_{m} \quad(\bmod n) \\
\Longrightarrow 11 \mu_{0} & \equiv 69 \quad(\bmod 7) \\
\Longrightarrow \quad \mu_{0} & \equiv 5 \quad(\bmod 7),
\end{aligned}
$$

and μ_{1} is the least non-negative residue satisfying

$$
\begin{aligned}
\mu_{1} m & \equiv \frac{G_{2} \bar{q}_{2}-G_{1} \bar{q}_{1}}{p}+G_{2} k_{2} \bar{q}_{n}-G_{1} k_{1} \bar{q}_{m} \quad(\bmod n) \\
\Longrightarrow \quad 11 \mu_{1} & \equiv 230 \quad(\bmod 7) \\
\Longrightarrow \quad \mu_{1} & \equiv 5 \quad(\bmod 7)
\end{aligned}
$$

Then $S_{m} \cap S_{n}$ is

$$
\begin{aligned}
& \left\{a_{1}\left(\bar{q}_{1}+p k_{1} \bar{q}_{m}\right)+b_{1}+\mu_{0} m p+i\left(G_{1}\left(\bar{q}_{1}+p k_{1} \bar{q}_{m}\right)\right.\right. \\
& \left.\left.+\mu_{1} m p\right): 0 \leq i \leq t-1\right\} \quad(\bmod p m n) \\
\equiv & \{4384+4127 i: 0 \leq i \leq 3\} \quad(\bmod 5159) \\
\equiv & \{1252,2284,3316,4384\} \quad(\bmod 5159) .
\end{aligned}
$$

Acknowledgements: Thanks to Julie Caddy, Aviezri Fraenkel, Greg Gamble and Amy Glen for advice and assistance, and to the referee for very careful reading.

References

[1] Samuel Beatty, Problem 3173, Amer. Math. Monthly 33 (1926),159.
[2] S. Beatty, A. Ostrowski, J. Hyslop, A. C. Aitken, Solutions to Problem 3173, Amer. Math. Monthly 34 (1927), 159-160.
[3] J. Bark, P.P. Varjú, Partitioning the positive integers to seven Beatty sequences, Indag. Math. 14 (2003), 149-161.
[4] A.S. Fraenkel, Complementing and exactly covering sequences, J. Comb. Th. Series A 14 (1973), 8-20.
[5] A.S. Fraenkel, R. Holzman, Gap problems for integer part and fractional part sequences, J. Number Theory 50 (1995), 66-86.
[6] Richard K. Guy, Unsolved Problems in Number Theory, Springer, Berlin, 2004.
[7] R. Morikawa, Disjoint sequences generated by the bracket function, Bull. Fac. Liberal Arts, Nagasaki Univ. 26 (1985), 1-13.
[8] Š. Porubský and J. Schönheim, Covering systems of Paul Erdős: Past, present and future, in: Paul Erdős and his Mathematics (edited by G. Halász, L. Lovász, M. Simonvits, S.T. Sós), Bolyai Soc. Math. Studies 11, Budapest, 2002, Vol. I, 581-627.
[9] R.J. Simpson, Disjoint covering systems of rational Beatty sequences, Discrete Math. 92 (1991), 361-369.
[10] R.J. Simpson, Disjoint Beatty sequences, Integers 4 (2004), A12, 10pp. (electronic).
[11] Tony Van Ravenstein, The Three Gap Theorem (Steinhaus Conjecture), J. Austral. Math. Soc. Series A 45 (1988), 360-370.

