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Abstract

A rational Beatty sequence has the form {�pi/q + b� : i ∈ Z} where p > q > 0 and

gcd(p, q) = 1. We call p/q the modulus of the sequence and b the offset. Morikawa

gave a condition on the moduli of two Beatty sequences such that they would be

disjoint for a suitable choice of offsets. Holzman and Fraenkel showed that the

sequence formed by the intersection of two Beatty sequences with moduli p1/q1 and

p2/q2, q2 ≤ q1, could have as many as q2 +3 distinct consecutive differences. In this

note we show that if the moduli satisfy the Morikawa condition but the sequences

do intersect then the consecutive differences take on at most three different values.

1. Introduction

A Beatty sequence has the form {�iα + β� : i ∈ Z}. We call α the modulus
and β the offset of the sequence. The sequences were named for Samuel Beatty

[1] who asked for a proof that two Beatty sequences, with offsets equal to 0 and

moduli α1 and α2, partition the positive integers if both moduli are irrational and

1/α1 +1/α2 = 1. A proof of this pleasing result appeared in [2]. A Beatty sequence

is rational or irrational according to whether its modulus is rational or irrational.

Covering properties of irrational Beatty sequences are now well understood. See,

for instance, [8] and its bibliography. This is not so for coverings by collections of

rational Beatty sequences which are the subject of this paper. We write S(p/q, b),

where gcd(p, q) = 1, for the Beatty Sequence {�pi/q + b� : i ∈ Z}. We will assume

throughout that b here is an integer – this involves no loss of generality by a result

in [9]. The following famous conjecture is due to Aviezri Fraenkel [4].

Conjecture 1. If the collection of Beatty sequences {S(pi/qi, bi) : i = 1, . . . , t}
partitions the integers with t > 2 then {p1/q1, . . . , pt/qt} = {(2t − 1)/2

t−i
: 1 ≤ i ≤

t}.

This conjecture has generated a considerable literature. The strongest result to
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date is by Bark and Varjú [3] who showed that any counterexample must have t > 7.

See also the surveys [8], and Section F14 of [6].

A Beatty sequence may be regarded as an approximation to an arithmetic pro-

gression in that its consecutive differences take two values (�α� and �α�) rather

than one. The intersection properties of arithmetic progressions are given by the

Chinese Remainder Theorem which we give, in a long-winded way, here.

Theorem 2. (Chinese Remainder Theorem) Let a1, a2, b1, b2 be integers with a1

and a2 positive.
(a) There exist integers b1 and b2 such that S(a1, b1) and S(a2, b2) are disjoint if
and only if gcd(a1, a2) > 1.
(b) If gcd(a1, a2) = 1, then the intersection of S(a1, b1) and S(a2, b2) is an arith-
metic progression with common difference a1a2.
(c) If gcd(a1, a2) > 1, and S(a1, b1) and S(a2, b2) do intersect, then their intersec-
tion is an arithmetic progression with common difference lcm(a1a2).

The situation for Beatty sequences is more complicated. Instead of part (a) we

have the following result of Ryozu Morikawa [7], [10].

Theorem 3. (Japanese Remainder Theorem) With p = (p1, p2), q = (q1, q2),
q1 = u1q and q2 = u2q, there exist numbers b1 and b2 such that S(p1/q1, b1) and
S(p2/q2, b2) are disjoint if and only if there exist positive integers x and y such that

xu1 + yu2 = p− 2u1u2(q − 1). (1)

When this is so we say that p1/q1 and p2/q2 satisfy the Morikawa condition.

Definition 4. If a1, . . . , an is an increasing sequence of integers then we say that

the differences ai+1 − ai are the gap sizes of the sequence. If S is a set of residues

modulo p, whose members have been reduced modulo p to integers in the interval

[0, p−1], and labeled g1 ≤ g2 ≤ · · · ≤ gn, then the set of gap sizes of S is {gi+1−gi :

i = 1, . . . , n− 1} ∪ {p + g1 − gn}.

Instead of part (b) of Theorem 2 we have the following result of Fraenkel and

Holzman [5].

Theorem 5. If S(p1/q1, b1) and S(p2/q2, b2) are Beatty sequences whose moduli do
not satisfy the Morikawa condition, and q1 ≥ q2 ≥ 2, then the intersection of the
two sequences has at most q2 + 3 distinct gap sizes.

The bound here is best possible. In this paper we obtain an analogy of part

(c) of Theorem 2 by giving a precise description of the intersection of two Beatty

sequences whose moduli satisfy the Morikawa condition. In particular, it follows

that in this case the intersection has at most three gap sizes.
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2. Results

Notation 6. Throughout this section we will use the following notation. We will

be considering Beatty sequences S(p1/q1, b1) and S(p2/q2, b2). We assume, without

loss of generality, that q1 ≤ q2. We put p = gcd(p1, p2), p1 = mp, and p2 = np.

This implies

gcd(m, q1) = gcd(n, q2) = 1.

We set q1 and q2 to be the least non-negative residues satisfying q1q1 ≡ −1 (mod p)

and q2q2 ≡ −1 (mod p) respectively. Similarly, qm and qn are the least non-negative

residues satisfying q1qm ≡ −1 (mod m) and q2qn ≡ −1 (mod n), respectively. We

set k1 = (q1q1 + 1)/p and k2 = (q2q2 + 1)/p.

The argument proceeds in three steps. In Theorem 11 we obtain an expression for

the intersection of S(p/q1, b1) and S(p/q2, b2). This is used in Theorem 15 to obtain

an expression for the intersection of S(pm/q1, b1) and S(p/q2, b2), and that result

is used in Theorem 16 to obtain an expression for the intersection of S(pm/q1, b1)

and S(pn/q2, b2).

Definition 7. Let b, n, p, d be positive integers with n ≤ p, gcd(p, d) = 1 and

S = {id + b mod p : i = 0, . . . , n− 1}. Reduce each member of S to an integer in

[0, p− 1] and label them g1, . . . , gn, such that g1 ≤ g2 ≤ · · · ≤ gn. We say that this

sequence is a modular arithmetic progression modulo p with additive difference d.

The following is easily derived from the usual Three Gap Theorem, see [11].

Theorem 8 (Three Gap Theorem). The set of gap sizes of a modular arithmetic
progression has cardinality at most 3, and if the cardinality equals 3 then the largest
member of the set equals the sum of the other two.

The following corollary follows immediately from the preceding theorem and

Definition 7.

Corollary 9. If g1, . . . , gn is a modular arithmetic progression modulo p, then the
set of gap sizes in the doubly infinite increasing sequence with range {gi + jp : 1 ≤
i ≤ n, j ∈ Z} has cardinality at most 3, and if the cardinality equals 3 then the
largest member of the set equals the sum of the other two.

The Beatty sequence S = S(p/q, b) has period p in the sense that a ∈ S if and

only if a+p ∈ S, and so is characterised by a set of residues modulo p. The following

is Theorem 3 of [10].

Theorem 10. The sequence S(p/q, b) with gcd(p, q) = 1 coincides with the set of
integers congruent modulo p to a member of {iq + b : 0 ≤ i ≤ q−1}, where qq ≡ −1

(mod p).
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Thus the set of residues in a Beatty sequence forms a modular arithmetic pro-

gression, and the Beatty sequence itself fulfils the conditions of Corollary 9. In fact

the Beatty sequence has at most two gap sizes. These are �p/q� and �p/q� (which

are equal when q = 1).

Theorem 11. Let p, q1 and q2 be positive integers with gcd(p, q1) = gcd(p, q2) = 1

such that p/q1 and p/q2 satisfy the Morikawa condition. If b1, b2 are integers such
that S(p/q1, b1) and S(p/q2, b2) intersect then the intersection is the set of residues

{aq1 + iG1q1 + b1 : 0 ≤ i ≤ t− 1} (2)

modulo p for some positive integer t where G1 is the smallest gap size in {−q1iq2−
q1b2 (mod p) : i = 0, . . . , q2 − 1} if t > 2, and the second or third smallest gap size
if t = 2, and a is a non-negative integer satisfying

a + G1(t− 1) < q1. (3)

The ideas of the following proof are illustrated in the accompanying figure.

Proof. Without loss of generality suppose b1 = 0. Let B1 be the set of residues

modulo p in S(p/q1, b1) and B2 be the set in S(p/q2, b2). Theorem 10 implies that

B1 ≡ {iq1 : i = 0, . . . , q1−1} (mod p) and B2 ≡ {iq2+b2 : i = 0 . . . q2−1} (mod p).

Let

B
∗
1 ≡ {−q1iq1 : 0 ≤ i ≤ q1 − 1} (mod p)

≡ {0, . . . , q1 − 1} (mod p),

and

B
∗
2 ≡ {−q1iq2 − q1b2 mod p : 0 ≤ i ≤ q2 − 1} (mod p).

Clearly

−q1(B1 ∩B2) ≡ B
∗
1 ∩B

∗
2 (mod p) (4)

so |B1 ∩ B2| = |B∗
1 ∩ B

∗
2 |. If |B1 ∩ B2| = 1 then we have nothing to prove, and if

|B1 ∩ B2| = 2 then a simpler version of the proof applies (but note the comments

at the end of the proof), so we assume |B1 ∩ B2| ≥ 3. Consider the set of gaps

in the modular arithmetic progression B
∗
2 . By Theorem 8 there are at most 3 gap

sizes. We will assume there are 3 (if there are less, then a simpler version of the

proof applies) and that the gaps are G1 < G2 < G3. Since the moduli of the Beatty

sequences satisfy the Morikawa condition there will be some value for b2 which

makes |B1 ∩B2| empty, and therefore B
∗
1 ∩B

∗
2 = {0, . . . , q1− 1}∩B

∗
2 empty, which

implies G3 > q1. Now consider a different value of b2 for which the sequences do

intersect (note that this doesn’t change the gap sizes of B
∗
2) and let the intersection

be the sequence

0 ≤ a1 < a2 < · · · < at ≤ q1 − 1 (5)
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Figure 1: The diagram on the left shows the set of residues modulo 16 of B1 =

S(16/5, 0) in the outer ring and B2 = S(16/3, 5) in the inner ring. The diagram

on the right shows B
∗
1 ≡ −5B1 (mod 16) and B

∗
2 ≡ −5B2 (mod 16). The Beatty

sequences do not intersect. Making a suitable change to the offset of B1 will cause

the outer rings to rotate so that they do.

where, by the assumption above, t ≥ 3. We claim that the only gap size in this

sequence is G1. Clearly no gap can equal G3 since

G3 > q1 > at − a1. (6)

Suppose G2 occurs in the sequence. Then, since t ≥ 3, there is an adjacent gap of

size at least G1. This implies at − a1 ≥ G1 + G2, but G1 + G2 = G3 by Theorem 8

and we get a contradiction as in (6). Thus all gaps equal G1 and

B
∗
1 ∩B

∗
2 = {a + iG1 : 0 ≤ i ≤ t− 1}

for some integer a. By (5) we have

a + (t− 1)G1 ≤ q1 − 1. (7)

Therefore from (4)

B1 ∩B2 ≡ q1{a + iG1 : 0 ≤ i ≤ t− 1} (mod p)

≡ {aq1 + iG1q1, 0 ≤ i ≤ t− 1} (mod p)

which is (2). If there are only two elements in the intersection we cannot conclude

that a2−a1 < G2. This observation leads to the anomalous case in the theorem.

This completes the analysis of the case when two Beatty sequences with the same

numerator in their moduli intersect. Before progressing to the more general case

we prove the following theorem and its corollary.
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Theorem 12. Let m and t be positive integers, and a1, a2, b1 and b2 be integers
in the interval [0, t− 1]. If

{a1i + b1 : i = 0, . . . , t− 1} ≡ {a2i + b2 : i = 0, . . . , t− 1} (mod m) (8)

and
(t + 1) gcd(a1, a2,m) < m (9)

then either a1 ≡ a2 (mod m) and b1 ≡ b2 (mod m), or a1 ≡ −a2 (mod m) and
b2 ≡ b1 + a1(t− 1) (mod m).

Proof. Let S = {a1i + b1 : i = 0, . . . , t − 1}. We first show that neither a1t + b1

nor a1(t + 1) + b1 is congruent modulo m to a member of S. Suppose otherwise. If

a1t + b1 is congruent modulo m to a member of S, then

a1t + b1 ≡ a1i + b1 (mod m) for some i ∈ [0, t− 1]

⇒ a1(t− i) ≡ 0 (mod m),

which implies i = 0 else the members of S would not be distinct. Hence m divides

a1t but m does not divide a1i for any i ∈ [1, t − 1]. Hence t divides m and m/t

divides a1. Thus a1 = Am/t for some integer A where gcd(A,m) = 1 and

S ≡ {(Am/t)i + b1 : i = 0, . . . , t− 1} (mod m).

Clearly

{(Am/t)i + b1 : i = 0, . . . , t− 1} ≡ {(m/t)i + b1 : i = 0, . . . , t− 1} (mod m)

so S ≡ {mi/t + b1 : i = 0, . . . , t − 1} (mod m). It follows that m/t divides a2. In

fact we have

m| gcd(a1,m)t and m| gcd(a2,m)t,

and thus m divides gcd(a1, a2,m)t which implies t gcd(a1, a2,m) ≥ m, contradicting

(9). We conclude a1t + b1 is not congruent modulo m to any member of S.

Now suppose a1(t + 1) + b1 is congruent modulo m to a member of S. As above

this leads to

a1(t + 1− i) ≡ 0 (mod m)

for some i in [0, t−1]. In order for the members of S to be distinct this implies i = 0

or i = 1. If i = 1 we get a1t ≡ 0 (mod m) which is impossible as in the previous

case. Using similar reasoning to the previous case we see that if i = 0 which implies

that m divides a1(t + 1), t + 1 divides m, and

S ∪ {a1t + b1} ≡ {mi/(t + 1) + b1 : i = 0, . . . , t} (mod m).

Then m/(t + 1) divides a2 which leads to

m| gcd(a1, a2,m)(t + 1),
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implying that (t+1) gcd(a1, a2,m) ≥ m, again contradicting (9). We conclude that

a1(t + 1) + b1 is not congruent modulo m to any member of S.

By similar reasoning we conclude that neither a2t + b2 nor a2(t + 1) + b2 is

congruent modulo m to a member of S.

Now consider the set S
�

= {a2i + b2 : i = 1, . . . , t} modulo m. That is, S
�

is formed by adding a2 to each member of S. Note that |S ∩ S
�| = t − 1 since

a2(t + 1) + b2 is not congruent modulo m to any member of S. Hence

S ∩ S
�
= {a1i + b1 : i = 0, . . . , t− 1, i �= j}, (10)

for some j ∈ [0, t− 1]. We will show that j equals 0 or t− 1. Suppose, for the sake

of contradiction, that 0 < j < t− 1. Since j > 0, a1(j − 1) + b1 belongs to S ∩ S
�
.

Then,

a1(j − 1) + b1 ≡ a1(t− 1) + b1 + a2 (mod m), (11)

since if t−1 were replaced by k with 0 ≤ k < t−1, then a1j+b1 would be congruent

modulo m to a1(k + 1) + b1 + a2 and so belong to S
�
. From (11) we therefore get

a2 ≡ (j − t)a1 (mod m).

Now from our assumption that j < t−1 we have a1(j+1)+b1 congruent to a member

of S, and by (11) congruent to a1(t + 1) + b1 + a2 modulo m. So a1(t + 1) + b1 + a2

is congruent modulo m to a member of S
�
, which implies that a1(t + 1) + b1 is

congruent to a member of S which we showed earlier to be impossible. We conclude

that j = 0 or j = t− 1.

If j = 0 then (10) gives

S
� ∩ S ≡ {a1i + b1 : i = 1, . . . , t− 1} (mod m),

so that no member is congruent modulo m to b1, and a1 + b1 ≡ a1k + b1 + a2 for

some k in {0, . . . , t− 1}. We must have k = 0, else S
� ∩S would include an element

congruent to a1(k − 1) + b1 + a2 ≡ b1 (mod m). Hence we get a1 ≡ a2 (mod m),

and from (8) we see that b1 = b2.

Similarly, if j = t − 1 then (10) gives a1(t − 2) + b1 ≡ a1k + b1 + a2 (mod m)

for some k in {0, . . . , t − 1}, and this k must equal t − 1 else a1(t − 1) + b1 would

be congruent modulo m to a member of S
�
and we get a1 ≡ −a2 (mod m). In this

case (8) then gives

{a1i + b1 : 0 ≤ i ≤ t− 1}
≡ {a1i + b2 : 0 ≤ i ≤ t− 1} (mod m)

≡ {a1(t− 1− i) + b2 − a1(t− 1) : 0 ≤ i ≤ t− 1} (mod m)

≡ {a1j + b2 − a1(t− 1) : 0 ≤ j ≤ t− 1} (mod m),

which implies

b1 ≡ b2 − a1(t− 1) (mod m),
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as required.

Corollary 13. Using Notation 6 we have either

a2q2 + b2 ≡ aq1 + b1 (mod p)

or
a2q2 + b2 ≡ q1(a + (q2 − 1)G1) + b1 (mod p).

Proof. Let H be the smallest gap size in {−q2iq1 − q2b1 mod p : 0 ≤ i ≤ q1 − 1}.
By swapping the roles of S(p/q1, b1) and S(p/q2, b2) in Theorem 11 we can rewrite

(2) as follows. The set of residues modulo p in the intersection of S(p/q1, b1) and

S(p/q2, b2) is

{a2q2 + iHq2 + b2 : 0 ≤ i ≤ t− 1},

where a2 satisfies 0 ≤ a2+H(t−1) ≤ q2. Note that we don’t need a different t value

as the size of the intersection doesn’t change. We thus have, using the notation of

the theorem,

{aq1 + iG1q1 + b1 : 0 ≤ i ≤ t− 1} ≡ {a2q2 + iHq2 + b2 : 0 ≤ i ≤ t− 1} (12)

modulo p. We will show that either Hq2 ≡ G1q1 or Hq2 ≡ −G1q1 modulo p. This

is immediate if t = 1 or t = 2, so we assume t ≥ 3. In Notation 6 we assumed that

q1 ≤ q2. Since the moduli of our Beatty sequences satisfy the Morikawa condition

(so the sequences would be disjoint for suitable offsets) we must have q1 + q2 ≤ p,

and so q1 ≤ p/2. Then from (7) (t− 1)G1 < q1 ≤ p/2, so that, for t ≥ 3,

G1(t + 1) < p. (13)

We now apply the theorem with (12) in the role of (8). Since q1 and q2 are relatively

prime to p,

gcd(G1q1,Hq2, p) = gcd(G1,H, p) ≤ G1.

So with (13) we have gcd(G1q1,Hq2, p)(t + 1) < p, which plays the role of (9). We

conclude that either Hq2 ≡ G1q1 and

a2q2 + b2 ≡ aq1 + b1 (mod p),

or Hq2 ≡ −G1q1 modulo p and

a2q2 + b2 ≡ a1q1 + b1 + G1q1(t− 1) (mod p)

≡ q1(a1 + G1(t− 1)) + b1 (mod p),

as required.
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We now analyse the intersection S(p1/q1, b1) ∩ S(p/q2, b2).

Lemma 14. The set of residues modulo pm in S(pm/q1, b) is

{i(q1 + pqmk1) + b1 : 0 ≤ j ≤ q1 − 1}.

Proof. By Theorem 10 the set of residues modulo pm in S(pm/q1, b1) is {iQ + b1 :

0 ≤ i ≤ q1 − 1}, where Q is the least non-negative residue modulo pm satisfying

q1Q ≡ −1 (mod pm). Using Notation 6 we then have Q ≡ q1 (mod p) so that

Q = q1 + lp for some integer l. Then

Qq1 = (q1 + lp)q1

= −1 + k1p + lpq1.

But Qq1 ≡ −1 (mod pm) so k1 + lq1 ≡ 0 (mod m), which implies that l ≡ qmk1

(mod m), and the result follows.

Theorem 15. We use Notation 6, recalling that p1 = pm. If p1/q1 and p/q2 satisfy
the Morikawa condition then S(p1/q1, b1) ∩ S(p/q2, b2) equals

{(a + iG1)(q1 + pqmk1) + b1 + µmp : 0 ≤ i ≤ t− 1, µ ∈ Z},

where a, G1 and t have the same meaning as in Theorem 11.

Proof. We write S1, S2, and Sm for S(p/q1, b1), S(p/q2, b2), and S(pm/q1, b1) re-

spectively. Since Sm ⊆ S1 we have

Sm ∩ S2 = (S1 ∩ S2) ∩ Sm.

By Theorem 11

S1 ∩ S2 ≡ {aq1 + iG1q1 + b1 : 0 ≤ i ≤ t− 1} (mod p)

where a and t are positive integers satisfying 0 < a+G1(t− 1) ≤ q1. By Lemma 14

Sm ≡ {j(q1 + pqmk1) + b1 : 0 ≤ j ≤ q1 − 1} (mod pm).

Suppose x ∈ S2 ∩ Sm. Since x ∈ S1 ∩ S2 we have

x = aq1 + i1G1q1 + b1 + lp,

for some i1 in {0, . . . , t− 1} and l ∈ Z. Then, since x ∈ Sm,

aq1 + i1G1q1 + b1 + lp = j1(q1 + pqmk1) + b1 + µpm (14)

for some µ ∈ Z and j1 in {0, . . . , q1}. It follows that

(a + i1G1)q1 ≡ j1q1 (mod p).
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Since 0 < a + G1(t− 1) ≤ q1 < p and gcd(q1, p) = 1, we have a + i1G1 = j1. Then

(14) gives

l = (a + i1G1)qmk1 + µm.

The implications here can be reversed, so that Sm ∩ S2 equals

{(a + iG1)(q1 + pqmk1) + b1 + µmp : 0 ≤ i ≤ t− 1, µ ∈ Z},

as required.

Now we obtain our main result.

Theorem 16. We use Notation 6 recalling that p1 = pm and p2 = pn. If p1/q1 and
p2/q2 satisfy the Morikawa condition then the intersection of the Beatty sequences
Sm = S(pm/q1, b1) and Sn = S(pn/q2, b2) is the modular arithmetic progression
given below, where a, G1 and t have the same meaning as in Theorem 11:

{a(q1 + pk1qm) + b1 + µ0mp + i(G1(q1 + pk1qm) + µ1mp) : 0 ≤ i ≤ t− 1}

modulo mnp, and one of the following cases holds.
Case 1 In this case µ0 is the least non-negative residue satisfying

µ0m ≡ a2q2 + b2 − a1q1 − b1

p
+ a2k2qn − a1k1qm (mod n),

and µ1 is the least non-negative residue satisfying

µ1m ≡ G2q2 −G1q1

p
+ G2k2qn −G1k1qm (mod n).

Case 2 In this case µ0 is the least non-negative residue satisfying

µ0m ≡ a1q1 + b1 − a2q2 − b2

p
+ G2(q2 + pk2qn)− a1k1qm + a2k2qn (mod n),

and µ1 is the least non-negative residue satisfying

µ1m ≡ −G1q1 + G2q2

p
−G1k1qm −G2k2qn (mod n).

Proof. By Theorem 15 Sm ∩ S2 equals

{(a1 + iG1)(q1 + pk1qm) + b1 + µmp : 0 ≤ i ≤ t− 1, µ ∈ Z}, (15)

and Sn ∩ S1 equals

{(a2 + iG2)(q2 + pk2qn) + b2 + νnp : 0 ≤ i ≤ t− 1, ν ∈ Z}. (16)
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Since Sm ⊆ S1 and Sn ⊆ S2 we can obtain Sm∩Sn by evaluating (Sm∩S2)∩(Sn∩S1).

Suppose x ∈ Sm ∩ Sn. Then there exist integers i1, i2 ∈ {1, . . . , t} and µ, ν ∈ Z
such that

x = i1G1(q1 + pk1qm) + a1(q1 + pk1qm) + b1 + µmp (17)

= i2G2(q2 + pk2qn) + a2(q2 + pk2qn) + b2 + νnp.

Considering this modulo p we get

i1G1q1 + a1q1 + b1 ≡ i2G2q2 + a2q2 + b2 (mod p). (18)

This is the congruence considered in Corollary 13. We therefore have either

i2 = i1 or i2 = p− i1. We suppose the first of these holds and return to the other

case at the end of the proof. Then (17) gives

i1(G1(q1 + pk1qm)−G2(q2 + pk2qn)) + a1(q1 + pk1qm) (19)

− a2(q2 + pk2qn) + b1 − b2 = νnp− µmp

for some integers µ and ν. Using Corollary 13 again we may divide through by p

getting

i1(
G1q1 −G2q2

p
+ G1k1qm −G2k2qn) +

a1q1 + b1 − a2q2 − b2

p

+ a1k1qm − a2k2qn = νn− µm.

Since m and n are relatively prime, we can find µ and ν satisfying this for any i1.

Consider the case i1 = 0, and let µ0 and ν0 be the unique values of µ ∈ {0, . . . , n−1}
and ν ∈ {0, . . . ,m− 1} satisfying,

ν0n− µ0m ≡ a1q1 + b1 − a2q2 − b2

p
+ a1k1qm − a2k2qn (mod mn), (20)

and let µ1 and ν1 be the unique values of µ ∈ {0, . . . , n− 1} and ν ∈ {0, . . . ,m− 1}
satisfying,

ν1n− µ1m ≡ G1q1 −G2q2

p
+ G1k1qm −G2k2qn (mod mn). (21)

We see that (19) will be satisfied for any i1 ∈ {0, . . . , t− 1} if we set

µ = µ0 + i1µ1 + sn

ν = ν0 + i1ν1 + sm,

where s is any integer. Substituting in (15) and replacing i1 with i we get,

Sm ∩ Sn = {(a1 + iG1)(q1 + pk1qm) + b1 + (µ0 + iµ1 + sn)mp

: 0 ≤ i ≤ t− 1, s ∈ Z}
= {a1(q1 + pk1qm) + b1 + µ0mp + i(G1(q1 + pk1qm) + µ1mp)

+ smnp : 0 ≤ i ≤ t− 1, s ∈ Z},
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as required.

If we put i2 = p− i1 instead of i2 = i1 as a consequence of (18) then (17) gives

the values of µ0 and µ1 in Case 2.

Corollary 17. If p1/q1 and p2/q2 satisfy the Morikawa condition then the inter-
section of S1 = S(pm/q1, b1) and S2 = S(pn/q2, b2) contains at most 3 distinct gap
sizes.

Proof. Immediate from Theorem 16 and Corollary 9.

We end with an example. Consider the pair of Beatty Sequences S(737/10, 0),

and S(469/15, 2). This gives p = 67, m = 11, n = 7, q1 = 10, q2 = 15, b1 = 0,

b2 = 2, q1 = 20, q2 = 58, qm = 1, qn = 6, k1 = 3, k2 = 13, G1 = 2, G2 =

3, and t = 4. By Theorem 11 the intersection of S(67/10, 0) and S(67/15, 2) is

{20a1 + 40i : 0 ≤ i ≤ t − 1} (mod 67). With a1 = 3 this gives the intersection

{6, 33, 46, 6}. We similarly have a2 = 1. Now consider Theorem 16. We have µ0

being the least non-negative residue satisfying

µ0m ≡ a2q2 + b2 − a1q1 − b1

p
+ a2k2qn − a1k1qm (mod n)

=⇒ 11µ0 ≡ 69 (mod 7)

=⇒ µ0 ≡ 5 (mod 7),

and µ1 is the least non-negative residue satisfying

µ1m ≡ G2q2 −G1q1

p
+ G2k2qn −G1k1qm (mod n)

=⇒ 11µ1 ≡ 230 (mod 7)

=⇒ µ1 ≡ 5 (mod 7).

Then Sm ∩ Sn is

{a1(q1 + pk1qm) + b1 + µ0mp + i(G1(q1 + pk1qm)

+ µ1mp) : 0 ≤ i ≤ t− 1} (mod pmn)

≡ {4384 + 4127i : 0 ≤ i ≤ 3} (mod 5159)

≡ {1252, 2284, 3316, 4384} (mod 5159).
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