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Abstract
In this paper we provide five new proofs for the p,q-analogue of Chu-Vandermonde’s
identity. The presented proofs can be considered as generalizations of the g-version
and g = 1-version.

1. Introduction

The binomial coefficients are an important tool in combinatorics and they are de-
noted by (). They naturally occur as the coefficients in the binomial expansion of
(z + y)™; that is,

(x+y)" = I;J (Z)xky"_k.

If we set y = 1 the above relation is called the horizontal generating function for
the binomial coefficients. Their explicit value is given by

(+) = mor

if 0 < k < n and zero otherwise. Some of the most important relations satisfied by
the binomial coefficients are the triangular recurrence relation or Pascal’s identity:

(") = () ()

and Chu-Vandermonde’s identity:

(7)-262)0) g
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The relations for the binomial coefficient and other identities can be found for
example in [4].

The g-binomial coefficients are a generalization of the binomial coefficients intro-
duced by C.F. Gauss. Choosing particular values for the integer parameters, they
evaluate to polynomials in Z[g]. One of their natural occurrences is as a counting
tool for the number of k-dimensional subspaces of an n-dimensional vector space
over a finite field of order q. Their explicit values are given by

i,

where we use the notation [k], = 1+ ¢+ ¢®> + ... + ¢*! and where [k],! denotes
the g-factorial which is given by [k],! = [k]q[k — 1]q...[2]4[1]g. It can easily be
verified that, when ¢ = 1, the g-binomial coefficients turn into the usual binomial
coefficients. Unlike the usual binomial coefficients, the g-binomial coefficients have
a limited array of identities. The most basic ones are the triangular recurrence

SRR AN

S A R
= +q :
[ ko, kl, k-1],

and the g-analogues of Chu-Vandermonde’s identity:

relations:

k
m-+n . . m n
= § ' 3 (m—k+j) 2
=0
q J q q
m+n _ Zk g k=) (n=3) m ni 3)
k , k=g |J
=0
q J q q

We also have a generalization of the horizontal generating function that is satisfied
by the g-binomial coefficient:

n—1 n
H(qi t1z) = Zq(nflcfl)(nfk)ﬂ [Z] ",
q

=0 k=0

n—1 n
H(l + qix) _ qu(kq)/z [Z] =k
i=0 k=0 q

The relations for the g-binomial coefficient and other identities can be found for
example in [3] or [5].

The p,qg-binomial coefficients are a generalization of the g-binomial coefficient
introduced by Robert B. Corcino in [1]. Choosing particular values for the integer
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parameters they evaluate to polynomials in Z[p, q]. Their explicit value is given by

HIR =

where [k],, = p"1 + p" 2 + p* 3¢ + ... + ¢*71, and [k],,! denotes the p,q-
factorial which is given by [k],.q! = [klp.qlk — Lpg---[2]p.q[l]p.q- It can easily be
verified that, when p = 1, the p,q-binomial coefficients turn into the g-binomial
coefficients. It can be noticed that the p,q-binomial coefficients is symmetrical, i.e.

{Z} = {Z} . Because they are symmetrical, through the rest of the paper, we
Pq a,p

will write and prove only one variant of a relation. Some of the identities satisfied
by the p,q-binomial coefficients are the triangular recurrence relation:

O I R PR
= q +p : (4)
[ k p,q k p.q k—1 p.q

Chu-Vandermonde’s identity:

k
_ o . m n
= 3 k) gilm—ke) o o ()
=0 Ml
p,q p,q

and the horizontal generating function:

m-+n
k

p.q

n—1 n

. . k1) (n— _ n
H(qz +p7':L‘) _ Z q(n kE—1)( k)/2pk(k 1)/2 [k‘| s (6)
=0 k=0 P,

We may also see that the following basic identity occurs:

b= Lo

) 3

These relations and more identities for the p,q-binomial coefficients can be found
in [1] and [7]. Also in [7] there is a combinatorial interpretation of the p,q-binomial
coefficients.

The aim of this paper is to provide new proofs for Chu-Vandermonde’s identity
(5). The identity is already proven in [7] as Identity 3.6 and in [2] as Proposition
4. In the first proof we homogenize the g-variant of the Chu-Vandermonde relation
(2). In the second and third proof we generalize some proofs for the classical Chu-
Vandermonde relation (1); specifically, in the second proof we make repeated use of
Pascal’s identity (4), an idea found for the classical relation (1) in [6] as Property
10.7, and for the third proof we use a generalization of the generating horizontal
relation (6), an idea for (1) found in [4, Chapter 5.4]. In the fourth proof we use
a generalization of quantum calculus ideas found in [5] as Propositions IV.2.2 and
IV.2.3. In the last proof we use induction to prove (1) directly.
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Through the rest of the paper we will use the following conventions: [g} =
Pq

{"} =1; [”} =0, for j > n or j < 0. We will also use the notations LHS and

n J

. p.q
RHS for the left-hand side, respectively right-hand side of an equality.

2. Chu-Vandermonde’s Identity

Theorem 2.1. (Chu-Vandermonde identity) The p,g-binomial coefficients satisfy
the identity:

m-+n
k

k
= 3 plkmni)gitm=ke) lkm ] ln] _
—J J
p,q p,q

pg J=0

Proof 1. For this proof of (5) we will work in the rational function field Q(p, gq).
We will use the Chu-Vandermonde identity (2) for r-binomial coefficients with the
parameter r = % to prove our identity. Due to our choice of parameter we have the
following relation:

b (B)k—l ok — g*
E, = —— — a e I . SRS LS DI A
(k] 1 g_l q p—g q (Kl p.q (8)

Expanding the Chu-Vandermonde’s identity (2) for r-binomial coefficients,

.
MAN NS im0 ||
v ik
we obtain:
el S k) ]! [n),!
GRTETErRY A T RO R A

Now making use of (8), relation (9) becomes:

142+4...4+(k—1) | ,142+...+(m+n—k—1) |
LHS _ q q [m + n]nyI'
g2t mdn—1) [Klp,q!lm + 1 — k]p,q!
q[k(k71)+(m+nfk)(m+n7k71)7(m+n)(m+nf1)]/2 [m + nlp,q!

(K]p.g![m +n — Ky 4! 7
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ko 1424 4 (k—j—1) | g2t m—k+j—1)

ml, !
= JZ:;J : q1+2+“'+(m_1) [k - j]p,qE[n}Lpf k+ j]p’q!
gttt L g2t (== 1) [n]p.q! p\I(m—k+))
gttt (n=1) lp.aln = lp.! <5)
_ zk:pj(m—k—kj) -qA . [m]p.q! ' ' [”]p,q!' ,
=0 [k = dlp.a'lm =k + ilp.q! [lpa!ln = dlp.d!

where A = [(k—j)(k—j—1)+(m—k+j)(m—k+j—1)—m(m-1)+;j(j-1)+
(n—j3)n—75—-1)—n(n—1)]/2—j(m—k+j). By multiplying the LHS and RHS
with ¢~ (k=D +(mtn—k)(min—k—1)—(m+n)(m+n-1I/2 e obtain identity (5). O

Proof 2. In this proof we make repeated use of Pascal’s identity (4). So, we have:

m-+n _ rlm+n—1 ntm—k|Mm+n—1
k = k +p ko1
p.q p.q p.q
k) k|mtn—2 ntm—1—k|M+n—2
= q{q k +p 1
p.q P.q
n+m—=k k—1 m+n—2 n+m—=k m+n—2
tp {q k-1 + k-2
p.q pq
ok | mM+n—2 ntm—k—1 k—1 m+n—2
= 2
k +p q " [2pa E_1
pq p.q
2(n+m—k) | T +n—2
P k-2
p.q
_ sk|m+n-—3 +pn+m—k—2q2(k—1)[3} m+mn—3
k P g -1
pq p.q
2(n+m—k—1) k—2 m+n—3 3(n+m—k) | T +n-—3
+p q "[Blpa E_9 +p E_3
p.a P.q
_  ak|m+n—4 I GO m+n—4
k k—1
p.q p.q
2ntm—k—2) 2(k-2) [Blp,q " [4lp,q | M+ 1 —4
+p q T E—
(2]p.q k—2
p.q
3(n+m—k—1) k—3 m+n—4 4(n+m—k) | T +n—4
+p ¢ A E_3 +p E_4
p.q p.q

n—k— m— — n m
st 2 ] o]
p,q p,q p,q
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n m
0 k '
P.a P,

Taking the first and last term of the equalities we obtain identity (5). ]

+ pk:n

p,q

(k=1)(n—1) m—k+1| T m
+...+p q {1:| [k—l
p,q

For the next proof of Theorem 2.1 we utilize the following proposition.

Proposition 2.1. The p,q-binomial coefficients satisfy the following identity:

n—1 n
H (qa-i-i +pix) _ Z q(n—k—1+2a)(n—k)/2pk(k—1)/2 lZ] ok (10)
1=0 k=0 Pq

for any nonnegative integer a.

Remark. When a = 0, relation (10) becomes relation (6) that can be found in [1]
as Theorem 3 and in [7] as Identity 3.3.

Proof. We will make use of induction and Pascal’s identity (4) to prove this identity.

When n = 1 we have ¢*+z = ¢° [(1)] + [}] x, which is true. When n = 2 we have
P.q

p,q

(" +x)(¢" T +px) = T+ ¢ (p+ @)z +pa® = g** [g}p q+qa mp qx+p{§}p qu’
which is true. Now we assume that the identity holds for n and we prove the identity

for n +1. So we have:

n n—1
[[@ " +p'2) = [J[@" +p'z) (¢ +p )
=0 1=0
— {Z q(n—k—1+2a)(n—k‘)/2pk(k—1)/2 [Z‘| .’L’k] (qa—i-n + pnm)
k=0 p.q
_ Zq((n—k—1+2a)(n—k)/2)+a+npk(k—1)/2 [Z] ok
k=0 p7q
n
+ Zq(n—k—1+2a)(n—k)/2p(k(k—1)/2)+n [Z] 2Rl
k:O p,q

We observe that the coefficients ¢("1t2)(n+1)/2 of 40 and p(+1)/2 of g7+ corre-
spond with the ones in the formula (10). Now let us check the other coefficients.
Let us take a j, 1 < j < n, and calculate the coefficient of z7:
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Cc = q<<nj1+2a><nj>/2>+a+npj<j1>/2[”]
p,q

j—1

n—(j—1)| ™
p,q

)

+q<nj+2a><nj+1>/2p<<j1><j2>/2>+n[ n 1
p,q

= i) =i+ )/2,(5G-1)/2) (Qj n

p,q
n+1

- q(n—j+2a)(n—j+1)/2p(j(j—1)/2) j

)

P.q
where for the last equality we used Pascal’s identity (4). So we have proved identity
(10). O

Proof 3. In this proof we make use of Proposition 2.1 for a = 0 and a = n. So, we
have:

n+m—1 n—1 m—1
I @ +pf2) = [ +p'2)- [ (@ +0 ("))
k=0 i=0 =0

Now using Proposition 2.1 we have:
n+m
LHS = Zq(n+m*k*1)(n+m7k)/2pk(k71)/2 n'il;m ",
k=0 v
RHS = (Zq(n—i—1>(n—i)/2pi<i—1)/2[”] f)
‘ i
=0 0.g
(Eq(m Jj—1+2n)(m— J)/2 [1(=1)/2]+nj [m] a:j)
= J
=0 D,q

m

- Z B [i(i—1)+j(j—1>+2nj]/2[”] lm] Lt
p,q J p,q

where B=[(n—i—1)(n—4) 4+ (m—j— 1+ 2n)(m — j)]/2. Now we identify the
coefficient of ¥, 0 < k < n 4+ m, on both sides and we obtain:
m
11
-]
p,q p.q

n n
= > 4" [z
pg  i=0,j=k—i
where V=[(n—i—1)(n—d)+(m—-—k+i—1+2n)(m—k+1i)]/2 and W =
[i(i —1)+ (k—i)(k —i—1) 4+ 2n(k —4)]/2. Now by multiplying relation (11) by
g~ (ntm=k=D(ndm=k)/2,)=k(k=1)/2 e obtain identity (5). O

(n-tm—k—1)(nFm—k)/2p k(k—1)/2 n+m

q
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For the fourth proof of Theorem 2.1. we need Proposition 2.2. To prepare the stage,
the following remark is crucial.

Remark. For Proposition 2.2 and Proof 4 we will work in the quotient algebra R =
k{X,Y}/I, ,, where k is a ring, k{X,Y'} is the free algebra of two indeterminates
and I, , is the two-sided ideal of the free algebra generated by ¢Y X —pXY, p,q € k.
Clearly qyr = pxy, where x and y are the equivalence classes of X and Y in R.

Proposition 2.2. The p,q-binomial coefficients satisfy the following identity:

n(n—1)/2 no_ G- D) n—g-Dl/2| =i (12
q (+y) ;q [n_j] "yl (12)
- p,q

Proof. We will prove the above relation using induction on n and Pascal’s identity
(4). For n = 2 we check that
gz +y)? = @@’ +qry+qur+qy® = 9= + ) + (¢ +p)ry

2
11

Now we assume that the identity holds for n and we prove the identity for n + 1.
So we have:

q”(”+1)/2(x+y)”+1 _ qn(x+y)qn(n—1)/2(x+y)n

= ¢"(x+y) (q”<”1)/2(9:” +y")

2.

p,q

z? +

p,q

Ty +4q

p,q

1 2

n—1
+Zq[j(j—1)+<n—j)(n—j—1>]/2[ (L

=iy
n=J p,q

j=1
_ qn(n-f—l)/Q(mn +yn) +qn(n+1)/2xyn +qn(n+1)/2yxn

n—1
+Zq[j<j1)+(nj>(nj1>+2n]/2[ " ] ity
J=1 e P.q

)

n—1
G—1)+(n—j§)(n—j—1)+2n]/2| T n—j, j
+> g l” - j] ya" Ty’
p,q

j=1

)

Now we check the coefficient of zy™:

+ —1)(n—2)+2n n—1|M
qn(n 1)/2xyn q[(n 1)(n—2)+2 szmy 1 [ ]
p.q

)

—1)(n— n— n n
= <qn(7l+1)/2 + pgl(n=D(=2)+2(n=1)]/2 [1] )xy
p,q

)
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="V p(@" T T+ ") by
n-+1

—  n(n=1)/2,.,n
q ry 1

)

p.q

and we see that it is the right coefficient. Similarly for z™y.
We group the terms with similar powers and we see that the coefficient for
2" Iyt where 1 < j <n— 2, is:

q[j(j+1>+(n—j—1)(n—j—2>+2n]/2xn—jyj+1[ n ]
n—j—1
Pq

)

+q[j(j—1>+(n—j)(n—j—1)+2n]/2yxn—jyj[ "

n—7j
p,q
— G+ =) (=g =1)]/2 <qj+1 [ , i l n ] )xn—jyﬂ—l
n—j—1 n—7j
p.q p.q
_ UG+ (=i =1))/2gn=j i1 | L
n—J
p.q

where for the last equality we used Pascal’s identity (4). We observe that for this j
we end up with the right coefficient and this ends our proof. O

Proof 4. For this proof we use Proposition 2.2. In the ring R we have:
q(n+m)(n+m71)/2(x + y)ner _ qnm . qn(nfl)/Z(gj + y)n .qm(mfl)/Q(:r + y)m'

We expand both sides using Proposition 2.2.,

n+m
LHS = [i(i=1)+(n+m—i)(n+m—i—1)]/2 n+m—i, i n
; ! v Y'In +m—i|
= P.q
RHS = g™ (Z I+ =) (n=g=1)/2yn—5 5 [n " j >
=0 p,q

k=0

(Z q[k(k—1)+(m—k)(m—k—l)]/2xm—kyk l m ] )
m—k
p,q

)

n+mn+m n m
— E E qZ [ ] [ ] ‘,En—]y]xm—kyk
n—j m—k
p,q p,q

=0 k=0

)

n+mn+m ) n m ) ‘
_ Z Z qTﬂ(mk)[ ‘| l ] x(nf])+(mfk)yj+k’
n—j m—k
p,q p,q

7=0 k=0
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where Z=[j(j— 1)+ (n—5)(n—7—-1)+k(k—1)+ (m—k)(m —k —1)]/2 and
T = Z — j(m — k). For a given 4, the coefficient of 2"+~ in LHS is:

C1 = itV (tm—i)(ntm—i-1)]/2| " +m
n+m-—1
p.q
and in RHS is:
SR R N
j=0,k=i—j J D, / P4

where 2a =j(j —1)+(n—j)n—j-1D+(E—-HGE—-j—-1+(m—i—j)(m—i—
j—1)—j(m —i— j). Now reducing C1 and C2 with ¢l{(i=D+ntm=i)(ntm-i=1)]/2
we obtain:

nm N ) pim—ia) | T m
n+m-—1 _Zq b n—j m—i+j
pg J=0 P.q p.g
Using identity (7), the conclusion follows. O

Proof 5. In our last proof we make use of induction on n and Pascal’s identity (4).

When n = 1, we have:
m—k+1 m 1
p.q p.q p.q

_ kM
p.q p,q s b
m—k-+1 m
ta [“] ,

k: m
p [
p.q

1
0

m+1
k

k

p.q

which is exactly Pascal’s identity (4). We assume that the identity holds for n and
we prove it for n+ 1. Alternatively, using (4) and the induction statement, we have:

m+n+1 k|mtn 4tk m+n
k k k—1
D,q D,q D,q
k
— gk (k=3)(n=3) gi(m—k+j) | T n
= q p q . .
J= D,q p,q
k—1
pmtntl—k Zp(k—l—a)(n—a)qj(m—kﬂﬂ) N . ’
= —1-y J
P,q D,q

k—1
J —J
p,q D,q

j=0 ; ;
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m—k+j+1 m k(m+1) m n

P k—j—1| (11 ol &
p,q p,q pP,q
k—1
= 3 plhe ) gilmke14) n m+1

_ . y
Jj=0 J P,q J P,q

k(m+1) m + ]. n
+a 0 k

p,q p,q

k
=Y pdnmsgimti—e | L]

; k— ]
J=0 J D,q J p.q

)

so we end up with identity (5). O
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