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Abstract
We find that a wide variety of families of partition statistics stabilize in a fashion
similar to pk(n), the number of partitions of n with k parts, which satisfies pk(n) =
pk+1(n+1), k � n/2. We bound the regions of stabilization, discuss variants on the
phenomenon, and give the limiting sequence in many cases as the coe�cients of a
single-variable generating function. Examples include many statistics that have an
Euler product form, partitions with prescribed subsums, and plane overpartitions.

1. Introduction

Consider a set of combinatorial objects {↵} with statistics wt(↵) and t(↵), think-
ing of wt(↵) as the primary descriptor. Let G(z, q) be its two-variable generating
function, that is, if p(n, k) is the number of objects ↵ with wt(↵) = n and t(↵) = k,

G(z, q) =
X

n,k2N
S
{0}

p(n, k)qnzk .

An important example occurs when the generating function G(z, q) has the Euler
product form

G(z, q) =
Y
i�1

1
(1� zqi)ai

(1)

with ai 2 Z+
S

{0}. We let Fn(z) denote the qn coe�cient of G(z, q) which is a
1Work on this paper began with the second author at Drexel and concluded at CELC, Univer-

sidade Lisboa, Portugal
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polynomial in z, so

G(z, q) =
X

n

Fn(z)qn, Fn(z) =
X

k

p(n, k)zk .

For ai = 1 this is the generating function for partitions of weight wt(↵) = n with
number of parts t(↵) = k. It is a well-known fact in partition theory that p(n, k)
for k nearly equal to n has a value independent of n: p(n, n � b) is the number of
partitions of b for b  n

2 . A similar result holds for plane partitions of n indexed by
their trace [1, p. 199] or [7, Corollary 5.3].

This phenomenon, which we call stabilization, is widespread in generating func-
tions of combinatorial interest, even those of greater complexity. The purpose of
this paper is to describe this behavior in more general cases, and consider some
illustrative examples and variations. We found the polynomial framework to be
well-suited to these problems rather than a direct approach. The arguments should
be adaptable to a wide variety of cases.

2. Basic Infinite Product Generating Functions

Let G(z, q) be an infinite product generating function of the form

G(z, q) =
1X

n=1

Fn(z)qn =
1Y

j=1

1
(1� zb(j)qc(j))aj

, (2)

where we assume that the number of j for which c(j) = t for any t is finite, so that
the series converges. We find that if the c grow su�ciently faster than the b, the
upper ends of the Fn(z) stabilize, to the coe�cients of a single-variable generating
function which we can give.

Let F denote the set of all nonnegative integer sequences with finite support.
For e = (e1, e2, . . . ) 2 F set

µ(e) = (c(1)e1c(2)e2 · · · ), ⌫(e) = (b(1)e1b(2)e2 · · · )

to denote the partitions with parts c(j) (resp. b(j)) appearing ej times. A direct
expansion of the generating functions yields an explicit form for the polynomial
Fn(z):

Fn(z) =
nX

k=0

zk
X

µ(e)`n
⌫(e)`k

Y
i�1

✓
ai + ei � 1

ei

◆
. (3)

We will compare the coe�cients of Fn(z) with those of the expansion of
1Y

i=1

1
(1� zb(i))ai

=
1X

k=0

zk
X

⌫(e)`k

Y
i�1

✓
ai + ei � 1

ei

◆
.
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Theorem 1. Suppose that the exponents satisfy a1 = 1 = b(1) = c(1). If there
exists a positive integer m � 2 such that

m · b(j)  c(j), j � 2, (4)

then
(a) for k > n/m,

⇥
zk
⇤
Fn(z) =

⇥
zk+1

⇤
Fn+1(z).

(b) If c(j) � b(j) > 0 for all j > 1 and the set of j for which c(j) � b(j) takes a
given value is finite for any fixed di↵erence, then for `  bn/mc,

⇥
zn�`

⇤
Fn(z) =

⇥
z`
⇤Y

j�2

1
(1� zc(j)�b(j))aj

.

Proof. (a) From the explicit form (3) of the polynomial Fn(z), we can expand it as

Fn(z) =
nX

k=0

zk
X

µ(e)`n
⌫(e)`k

Y
i�1

✓
ai + ei � 1

ei

◆

=
nX

k=0

kX
e1=0

zb(1)e1
X

µ�(e)`n�c(1)e1
⌫�(e)`k�b(1)e1

zk�b(1)e1
Y
i�2

✓
ai + ei � 1

ei

◆
.

Now if the integer sequence e gives a contribution to [zk+1]Fn+1(z) and e1 > 0,
then we define e0 as the integer sequence all of whose terms agree with e except
for j = 1 where we set e01 = e1 � 1. In this way, we obtain all the possible terms
contributing to [zk]Fn(z). Conversely, any term for [zk]Fn(z) gives a contribution
to [zk+1]Fn+1(z) by simply adding 1 to its first component.

The result reduces to showing that any contribution to [zk+1]Fn+1(z) indexed
by e must have e1 > 0.

We introduce the notation for the modified partitions

µ�(e) = (c(2)e2c(3)e3 · · · ), ⌫�(e) = (b(2)e2b(3)e3 · · · ).

Now assume that the partition with µ(e) ` n and ⌫(e) ` k gives a contribution
to [zk+1]Fn+1(z) but e1 = 0. So µ�(e) ` n and ⌫�(e) ` k, but if c(j) � m · b(j)
for all j � 2, then |µ�(e)| � m|⌫�(e)|. Hence if k > n

m , we find that |µ�(e)| >
n, a contradiction. Thus all terms in both expansions are the same, and so the
coe�cients are equal. This proves part (a).

For part (b), we begin by forming a new partition as follows. First subtract b(j)
from each c(j) and consider the partition �(e) = ((c(2)� b(2))e2 . . . ). This removes
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exactly the amount |⌫�(e)| from |µ�(e)|, so

Fn(z) =
nX

k=0

kX
e1=0

zk
X

�(e)`n�k

⌫�(e)`k�b(1)e1

Y
i�2

✓
ai + ei � 1

ei

◆

=
nX

k=0

zk
X

�(e)`n�k

|⌫�(e)|k

Y
i�2

✓
ai + ei � 1

ei

◆
.

By hypothesis, the parts of � satisfy c(j) � b(j) � (m � 1)b(j). If k = n � ` >
bn/mc, then ` < bnm�1

m c. If �(e) ` n � k = `, then ⌫�(e)  `
m�1  k. Thus the

sum runs over all e for which �(e) ` ` with parts c(j) � b(j). But this is exactly
the coe�cient of z` in the expansion claimed:

⇥
zn�`

⇤
Fn(z) =

⇥
z`
⇤Y

j�2

1
(1� zc(j)�b(j))aj

.

By the technique of proof, we have a slight improvement in a special case of hand
enumerators of prefabs ([2], [8, page 92]).

Corollary 2. Suppose a1 = 1. If Fn(z) = [qn]
Q1

j=1(1�zqj)�aj , then for k � n/2,⇥
zk
⇤
Fn(z) =

⇥
zk+1

⇤
Fn+1(z).

By the proof, we find that the generating function for the stabilized coe�cients
gives an upper bound outside the range of stability.

Corollary 3. With the hypotheses of Theorem 1,

⇥
zn�`

⇤
Fn(z) 

⇥
z`
⇤Y

j�2

1
(1� zc(j)�b(j))aj

, 0  `  n.

Variants of stabilization exist in several guises. If the b grow faster than the
bound of the previous theorem, we find that the smaller end of the polynomials
stabilize instead of the larger (and b and c staying within a given ratio range will
permit both phenomena). We also note that it is possible for the larger coe�cients
of a sequence of polynomials to stabilize in periods, i.e., the coe�cients match those
of a polynomial every 2 or more steps further along.

Theorem 4. (a) Let {b(j)} and {c(j)} be two strictly increasing sequences of in-
tegers, positive except that b(1) = 0. Let Fn(z) = [qn]

Q1
j=1(1 � zb(j)qc(j))�aj with

a1 = 1. If there exists a positive integer m such that for all j � 2

(m + 1)b(j) > c(j),
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then
[zk]Fn(z) = [zk]Fn+c(1)(z), 0  k  n/(m + 1).

(b) Let a1 = 0, a2 = 1. If Fn(z) = [qn]
Q1

j=2(1 � zqj)�aj , then deg(Fn) = bn/2c
and

[zk]Fn(z) = [zk+1]Fn+2(z), k � n/3.

Proof. Let e be a sequence of non-negative integers with finite support. By (3), for
the coe�cients [zk]Fn(z) and [zk]Fn+c(1)(z), we need to consider the following two
sets of finitely supported nonnegative integer sequences:

Sn = {e 2 F : |µ(e)| = n, |⌫(e)| = k},
Sn+c(1) = {f 2 F : |µ(f)| = n + c(1), |⌫(f)| = k}.

We construct a bijection between these two sets. Given e 2 Sn, we take the cor-
responding f with fi = ei for 2  i since b(1) = 0. Next write out |µ(e)| = n and
|µ(f)| = n + c(1):

n =
X
j�1

c(j)ej , n + c(1) = c(1)f1 +
X
j�2

c(j)ej .

The term f1 uniquely determines a preimage e1 provided f1 > 0. But f1 must be
positive for k  n/(m + 1) sinceX

j�2

c(j)fj =
X
j�2

c(j)ej < (m + 1)
X
j�2

b(j)ej = (m + 1)k  n.

Finally, the coe�cients themselves agree; that is, [zk]Fn(z) = [zk]Fn+c(1)(z):
Y⇢✓

ai + ei � 1
ei

◆
: e 2 Sn

�
=
Y⇢✓

ai + fi � 1
fi

◆
: f 2 Sn+c(1)

�

since the above binomial coe�cients are all equal for i � 2 and when i = 1 they
both reduce to 1 since a1 = 1.

For part (b), let Sn = {e 2 F : µ(e) ` n, ⌫(e) ` k} while Sn+2 = {f 2 F :
µ(f) ` n + 2, ⌫(f) ` k + 1}. We can construct a bijection between these two sets as
in part (a) provided f2 > 0 when k � n/3. Assume that f2 = 0 is possible. ThenP

fj = k + 1 while
P

j�3 jfj = n + 2. On the other hand, 3(k + 1) �
P

j�3 jfj

which yields a contradiction.

3. Partitions With Prescribed Subsums

Fix a positive integer m and integer i so 1  i  m. Canfield-Savage-Wilf [4,
Section 3] introduced the generating function

Gm,i(z, q) =
1Y

j=1

i�1Y
b=1

1
1� zj�1q(j�1)m+b

mY
b=i

1
1� zjq(j�1)m+b
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to describe partitions with prescribed subsums. They let ⇤m,i(n, k) be the number
of partitions � = (�1, · · · ,�n) of n such that the sum of those parts �j whose indices
j are congruent to i modulo m is k; that is,X

j:j⌘i (mod m)

�j = k.

Then they found X
n,k�0

⇤m,i(n, k)zkqn = Gm,i(z, q).

We begin by recovering a result for ⇤2,2(n, k) in [4, Theorem 1] and [9] by re-
formulating it in terms of the generating function G2,2(z, q) and stabilization of
polynomial coe�cients.

Proposition 5. Let m � 2 and 1  b < m. Let G(z, q) =
Q1

j=1(1�zj�1q(j�1)m+b)�1

and An(z) = [qn]G(z, q). Then for 0  k  n/(m + 1) we have

1. [zk]An(z) = [zk]An+b(z),

2. if n�mk is not divisible by b, then [zk]An(z) = 0,

3. if n�mk is divisible by b and bk  n/(m + 1), then [zk]An(z) = p(k).

Proof. The first part is a direct consequence of the last theorem.
For part (2), in Theorem 4 let c(j) = m(j � 1) + b and b(j) = j � 1. When

all aj = 1, [zj ]Fn(z) is the number of all e 2 F such that µ(e) ` n and ⌫(e) ` k.
Consider

n = |µ(e)| =
X
j�1

ej [m(j � 1) + b]

= m
X
j�1

ej(j � 1) + b
X
j�1

ej

= mk + b
X
j�1

ej . (5)

Hence n�mk must be divisible by b for any nonzero choice of e.
For part (3), assume 0  bk  n/(m + 1) and that n�mk is divisible by b. Let

e be any solution to ⌫(e) = k. Note that this does not give a constraint for the
choice of e1. On the other hand, the choice of e1 by (5) must be

e1 = (n�mk)/b�
X
j�2

ej , e1 � 0

to yield µ(e) = n. Hence, 0  [zk]Fn(z)  p(k). Finally, the inequality 0  bk 
n/(m + 1) shows that e1 � 0 always holds. Hence, [zk]Fn(z) = p(k).
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Theorem 6. Let GA(z, q) =
Q1

k=1(1 � zkq2k�1)�1 and GB(z, q) =
Q1

k=1(1 �
zkq2k)�1, so G2,2(z, q) = GA(z, q)GB(z, q). Then the coe�cients of the polynomials
Fn(z) = [qn]G2,2(z, q) satisfy

[zk]Fn(z) = [zk]Fn+1(z) =
kX

`=0

p(`)p(k � `), 0  k  n/3,

where p(`) is the number of partitions of `, as usual.

Proof. Let An(z) = [qn]GA(z, q) and Bn(z) = [qn]GB(z, q). The generating func-
tion GB(z, q) has the explicit expansion

GB(z, q) =
1X

j=0

p(j)zjq2j

so B2k+1(z) = 0 while B2k(z) = p(k)zk. We also know by Proposition 5 that

[zj ]An(z) = p(j), 0  j  n/3.

Next we have that

Fn(z) =
n/2X
`=0

An�2`(z)B2`(z) =
n/2X
`=0

p(`)z`An�2`(z)

Examine the coe�cient [zk]Fn(z) for 0  k  n/3:

[zk]Fn(z) = [zk]
n/2X
`=0

p(`)z`An�2`(z) =
n/2X
`=0

p(`) [zk�`]An�2`(z)

Since k�`  (n�2`)/3 for 0  `  k and k  n/3, we find [zk�`]An�2`(z) = p(k�`).
We conclude that

[zk]Fn(z) =
kX

`=0

p(`) p(k � `).

In order to investigate more general cases for the polynomials Fn(z) = [qn]Gm,i(z, q)
it is convenient to rewrite the generating function as

Gm,i(z, q) =

 
i�1Y
b=1

1
1� qb

! 1Y
a=1

m�1Y
d=0

1
1� zaqi+(a�1)m+d

. (6)
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We wish to find a useful form for the coe�cient [zj ]Fn(z). As usual, we have

[qn]Gm,i(z, q) =
nX

s=0

[qn�s]

 
i�1Y
b=1

1
1� qb

!
[qs]

1Y
a=1

m�1Y
d=0

1
1� zaqi+(a�1)m+d

=
nX

s=0

[qn�s]

0
@i�1Y

b=1

1X
fb=0

�
qb
�fb

1
A

⇥ [qs]
1Y

a=1

m�1Y
d=0

1X
f(a,d)=0

⇣
zaqi+(a�1)m+d

⌘f(a,d)

A typical term of the above expansion is indexed by a pair of partitions (⇢, µ) where
⇢ ` n � s where each part of ⇢ is < i while µ ` s where each part of µ is � i. We
write the parts of µ as µ(a,d) with multiplicity eµ(a,d) where a � 1 and 0  d < m.
By construction, we find that

s =
X
a,d

eµ(a,d)µ(a,d).

while, of course, no part of ⇢ has a contribution to z.
Each part µ(a,d) of µ with multiplicity eµ(a,d) contributes the power of z

(za)eµ(a,d) = zaeµ(a,d) ,

so the total contribution from µ is X
a,d

aeµ(a,d).

We prove a few lemmas in preparation for the next theorem.

Lemma 7. We have

[zj ]Fn(z)

=
nX

s=ji

p(n� s,< i)#{µ ` s : all parts of µ are � i,
X
a,d

aeµ(a,d) = j} (7)

where p(n� s,< i) denotes the number of all partitions of n� s all of whose parts
are strictly less than i.

Proof. This expression for [zj ]Fn(z) follows directly from the generating function
except for the range of summation. Let µ be a partition of s. Then we have

s =
X
a,d

[i + m(a� 1) + d]eµ(a,d) �
X
a,d

[i + i(a� 1)]eµ(a,d) = i
X
a,d

aeµ(a,d) = ij.
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Let r denote the number of parts of µ while t denotes the number of parts with
a � 2 so r � t gives the number of parts with a = 1. Note that

r =
X
a,d

eµ(a,d).

Lemma 8. Given the partition µ, we have the bound j � r � t, and can rewrite s
as

s = ir + m(j � r) +
X
a,d

deµ(a,d).

Proof. Since µ ` s, we find that

s =
X
a,d

eµ(a,d) [i + (a� 1)m + d] = i
X
a,d

eµ(a,d) + m
X
a,d

(a� 1)eµ(a,d) +
X
a,d

deµ(a,d)

= ir + m(j � r) +
X
a,d

deµ(a,d).

For the bound, consider

j � r =
X
a,d

(a� 1)eµ(a,d) �
X

a�2,d

eµ(a,d) � t.

Lemma 9. Let µ be a partition of s all of whose parts are � i. If m � i + 2 and
j > s/(i + 1), then µ must have at least one part of size i.

Proof. We now assume that m � i + 2 and that the part i does not appear in µ.
In particular, for any part of µ of the form i + d, with a = 1, d must be strictly
positive. Then we have a refinement of the above bounds:

s � ir + m(j � r) +
X
a,d

deµ(a,d) � ir + (i + 2)(j � r) +
X

d

de1,d

� ir + (i + 2)(j � r) + (r � t)
� ir + (i + 1)(j � r) + t + (r � t)
= (i + 1)[r + (j � r)] = (i + 1)j.

Hence the partition µ must have i as a part; otherwise, (i+1)j > s which contradicts
our assumption.

With these preparations, we will show that

Theorem 10. Let m � 1 and 1  i  m. Set Fn(z) = [qn]Gm,i(z, q) where
Gm,i(z, q) is given by (6). If m > i + 1 and j > n

i+1 , then

[zj ]Fn(z) = [zj�1]Fn�i(z).
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Proof. By (7), we need to show that

nX
s=ji

p(n� s,< i)#{µ ` s : all parts of µ are � i,
X
a,d

aeµ(a,d) = j}

=
n�iX

s0=(j�1)i

p(n� s0 � i,< i)

⇥ #{⌫ ` s0 : all parts of ⌫ are � i,
X
a,d

ae⌫(a,d) = j � 1}

These two coe�cients are equal provided we construct a bijection T between

Us = {µ ` s : all parts of µ are � i,
X
a,d

aeµ(a,d) = j}

Vs0 = {⌫ ` s0 : all parts of ⌫ are � i,
X
a,d

ae⌫(a,d) = j � 1}.

when s0 = s� i. Let µ 2 Us. By Lemma 7, the partition µ must have a part equal
to i. Let ⌫ = T (µ) be the partition of s� i obtained by deleting one part from µ of
size i. It is easy to verify that ⌫ 2 Vs0 . The inverse of T is simply adding a part of
size i to ⌫ 2 Vs0 .

In other words, Theorem 10 shows that if m > i + 1 and j > n/(i + 1), then the
subsums satisfy ⇤m,i(n, j) = ⇤m,i(n� i, j � 1).

4. Laurent Type Polynomials

A more general case consists of generating functions that involve z raised to di↵erent
powers; ultimately, we might treat the case of the generating function

G(z, q) =
Y

(i,j)2Z2\(0,0)

(1� ziqj)aij .

An important example comes from the generating function for the crank statistic
for partitions. Let

C(z, q) =
Y
k�1

1� qk

(1� zqk)(1� z�1qk)
=

1X
n=0

Mn(z)qn

where Mn(z) is a symmetric Laurent polynomial. From the definition of the crank,
the coe�cient of zn�k in Mn(z), for k  n

2 , equals the number of partitions of k
that include no 1s. In particular, the coe�cients of Mn(z) stabilize in the ranges
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for powers n � k and �n + k for 0  k  bn/2c. It is suggested in [3] that the
zeros for the crank polynomial converge to the unit circle. Another example is the
generating function

1Y
k=1

1
(1� zqk)k

1
(1� z�1qk)k

1
(1� qk)2k

,

which comes from the Donaldson-Thomas Theory in algebraic geometry and whose
asymptotics were studied in [6].

Lemma 11. Let {An(z)}1n=0 be a sequence of polynomials, such that the degree of
An(z) is n, whose coe�cients satisfy

[zn�k]An(z) = [zn+1�k]An+1(z), 0  k  n/m

for some integer m � 2. Let {Bn(z)}1n=0 be another sequence of polynomials. Then
the coe�cients of the polynomial sequence {Fn(z)}1n=0 where

Fn(z) =
nX

`=0

A`(z)Bn�`(z�1)

also satisfy
[zn�k]Fn(z) = [zn+1�k]Fn+1(z), 0  k  n/m.

Proof. Let 0  k  bn/mc. Consider [zn�k]Fn(z). We have

[zn�k]Fn(z) = [zn�k]
nX

`=0

A`(z)Bn�`(z�1)

=
nX

`=0

kX
a=0

[zn�k+a]A`(z) [z�a]Bn�`(z�1)

=
nX

`=n�k

kX
a=0

[zn�k+a]A`(z) [z�a]Bn�`(z�1) (8)

where in the last step we note that [zn�k+a]A`(z) = 0 if ` < n� k.
For [zn+1�k]Fn+1(z), we reindex ` by 1 and note that [zn+1�k]A0(z) = 0 for all

n, giving us the expression for [zn+1�k]Fn+1(z):
nX

`=n�k

kX
a=0

[zn+1�k+a]A`+1(z) [z�a]Bn�`(z�1) (9)

By assumption, we know that

[zn�k+a]A`(z) = [zn+1�k+a]A`+1(z), n� k  `  n

since 0  k  bn/mc. The coe�cients of [z�a]Bn�`(z�1) are the same, and conse-
quently the two sums (8) and (9) are equal.
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Lemma 12. Given the generating function G(z, q) =
Q

i�1(1� zqi)�ai where a1 =
1, let An(z) = [qn]G(z, q). Let Q(q) =

P1
j=0 cjqj. Let Fn(z) = [qn]G(z, q)Q(q).

Then the tail coe�cients of Fn(z) stabilize; that is,

[zk]Fn(z) = [zk+1]Fn+1(z), k � n/2.

Proof. By construction, the polynomials Fn(z) have the form

Fn(z) =
nX

`=0

cn�`A`(z).

Let k � n/2. Then the coe�cients for [zk]Fn(z) and [zk+1]Fn+1(z) are given by

[zk]Fn(z) =
nX

`=k

cn�`[zk]A`(z), [zk+1]Fn+1(z) =
n+1X

j=k+1

cn+1�j [zk+1]Aj(z).

As a consequence of Corollary 1, cn�`[zk]A`(z) = cn+1�j [zk+1]Aj(z) for j = ` + 1
and k  `  n.

Theorem 13. If a1 = b1 = 1, and

G(z, q) =
1X

n=0

Fn(z)qn =
Y
i�1

(1� zqi)�ai(1� z�1qi)�bi(1 ± qi)ci ,

then the coe�cients of the Laurent polynomials Fn(z) satisfy

[zn�k]Fn(z) = [zn+1�k]Fn+1(z), [z�(n�k)]Fn(z) = [z�(n+1�k)]Fn+1(z),

for 0  k  n/2.

5. Plane Overpartition Stabilization

A plane partition is an array of positive integers, conventionally justified to the
upper left corner of the fourth quadrant, which are weakly descending left in rows
and down in columns. A plane overpartition is a plane partition whose entries may
be overlined or not according to certain rules [5]: in each row, the last occurrence of
an integer may be overlined (or not) and in every column, all but the first occurrence
of an integer are overlined, while the first occurrence may or may not be overlined.
In [5, Proposition 4], the generating function for the weighted plane overpartitions
is found to be

X
⇧ is a plane overpartition

zo(⇧)q|⇧| =
1Y

n=1

(1 + zqn)n

(1� qn)dn/2e(1� z2qn)bn/2c

where o(⇧) is the number of overlined parts of the plane overpartition ⇧.
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Theorem 14. Let G(z, q) be the generating function for the polynomials Fn(z):

G(z, q) =
1Y

n=1

(1 + zqn)n

(1� qn)dn/2e(1� z2qn)bn/2c =
1X

n=0

Fn(z)qn.

Then the coe�cients of the polynomials Fn(z) satisfy the stabilization condition

[zk+1]Fn+1(z) = [zk]Fn(z),

for k � 2n/3.

Proof. Let {An(z)} be the polynomial sequence with generating function GA(z, q)
where

GA(z, q) =
1Y

n=2

1
(1� z2qn)bn/2c =

1X
n=0

An(z)qn

and {Bn(z)} with generating function GB(z, q):

GB(z, q) =
1Y

n=2

(1 + zqn)n =
1X

n=0

Bn(z)qn.

Easily, we have that deg(An) = 2bn/2c. By Theorem 4, replacing z by z2, we also
find

[zk]An = [zk+2]An+2, k � 2n/3.

The degree of the polynomial BN (z) is the largest number of parts in a possible
partition of N drawn from a multiset of two 2s, three 3s, etc. For N � 21 =
2 + 2 + 3 + 3 + 3 + 4 + 4, the average size of part is at least 3 and so

deg(BN )  1
3
N .

For smaller N , direct calculation shows that deg(BN )  2
3N .

It is more convenient to work with the intermediate polynomials

Qn(z) = [qn]GA(z, q)GB(z, q) =
nX

`=0

An�`(z)B`(z).

We have the summation formula for [zk]Qn(z):

[zk]Qn(z) =
nX

`=0

kX
a=0

[zk�a]An�`(z) · [za]B`(z)

=
X

`2Ik,n

deg(B`)X
a=0

[zk�a]An�`(z) · [za]B`(z)
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where Ik,n is the set of indices

Ik,n = {` : deg(B`) + deg(An�`) � k, 0  `  n} .

We have Ik+2,n+2 = Ik,n since for any B` the matching An�` for sums of k map to
the matching An+2�` for sums of k + 2.

We next show that

X
`2Ik,n

deg(B`)X
a=0

[zk�a]An�`(z)·[za]B`(z) =
X

`2Ik+2,n+2

deg(B`)X
a=0

[zk+2�a]An+2�`(z)·[za]B`(z);

To do this, we need that all the terms [zk�a]An�` fall into the stable range of
indices. Now to get into the stable range, we need

k � a � 2
3
(n� `)

where 0  a  deg B` and ` 2 Ik,n. We consider the stronger condition

2
3
n� deg B` � 2

3
(n� `),

which reduces to
deg(B`) 

2
3
`, ` 2 Ik,n

which does indeed hold.
Our next step is to define

Pn(z) = (1 + zq)Qn(z).

(Leaving out this factor earlier simplified the degree analysis, since without it we
had the single exceptional case of deg(B1) = 1.) We observe that

[zk]Pn(z) = [zk]Qn(z) + [zk�1]Qn�1(z),
[zk+1]Pn+1(z) = [zk+1]Qn+1(z) + [zk]Qn(z).

Hence, we have
[zk]Pn(z) = [zk+1]Pn+1(z), k � 2n/3.

To finish the proof, we define a polynomial family Cn(q) by
1Y

n=1

1
(1� qn)dn/2e =

1X
n=0

Cn(q).

Then the polynomials Fn(z) are given by

Fn(z) = [qn]C(q)
1X

`=0

P`(z)q`.

By Lemma 12, we see that this construction maintains the stability of the coe�cients
of the polynomial family {P`(z)}.
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Corollary 15. Let ppk(n) be the number of plane overpartitions of n with k over-
lined parts. If k � 2n/3, then

ppk(n) = ppk+1(n + 1).
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