# ON SETS WITH MORE RESTRICTED SUMS THAN DIFFERENCES 

David Penman<br>Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester, United Kingdom<br>dbpenman@essex.ac.uk<br>Matthew Wells<br>Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester, United Kingdom<br>mwells@essex.ac.uk

Received: 8/2/12, Revised: 4/3/13, Accepted: 7/27/13, Published: 9/26/13


#### Abstract

Given a finite set $A$ of integers, we define its restricted sumset $A \hat{+} A$ to be the set of sums of two distinct elements of $A-$ a subset of the sumset $A+A-$ and its difference set $A-A$ to be the set of differences of two elements of $A$. We say $A$ is a restricted-sum-dominant set if $|A \hat{+} A|>|A-A|$. Though intuition suggests that such sets should be rare, we present various constructions of such sets and prove that a positive proportion of subsets of $\{0,1, \ldots n-1\}$ are restricted-sum-dominant sets. As a by-product, we improve on the previous record for the maximum value of $\ln (|A+A|) / \ln (|A-A|)$, and give some related discussion.


## 1. Introduction

Let $A$ be a finite set of integers. We define its sumset $A+A$ to be $\{a+b: a, b \in A\}$, its difference set $A-A$ to be $\{a-b: a, b \in A\}$ and its restricted sumset $A \hat{+} A$ to be $\{a+b: a \neq b, a, b \in A\}$. It is a natural intuition that, since addition is commutative but subtraction is not, that 'often' we should have $|A+A| \leq|A-A|$. However it has been known for some time that this is not always the case: for example, the set $C=\{0,2,3,4,7,11,12,14\}$, which is attributed to Conway, has $|C+C|=26$, but $|C-C|=25$. In this paper, sets with this property are called sumdominant: in some other literature, they are described as MSTD (for 'more sums than differences') sets, see, e.g., Nathanson [6]. It is now known by work of Martin and O'Bryant [5] that sum-dominant sets are less rare than they might initially appear: they prove that, for $n \geq 15$, the proportion of subsets of $\{0,1,2 \ldots n-1\}$
which are sum-dominant is at least $2 \times 10^{-7}$. The constant was sharpened, and the existence of a limit shown, by Zhao [11].

In this paper we investigate what might appear to be an even more demanding condition on a set, namely what we will call the restricted-sum-dominant property.

Definition 1. A set $A$ of integers is said to be restricted-sum-dominant if $|A \hat{+} A|>|A-A|$.

There are examples of this. For example, we find the set from Hegarty [3]

$$
A_{15}=\{0,1,2,4,5,9,12,13,17,20,21,22,24,25,29,32,33,37,40,41,42,44,45\}
$$

has $\left|A_{15} \hat{+} A_{15}\right|=86$ whilst $\left|A_{15}-A_{15}\right|=83$.
Clearly any restricted-sum-dominant set is sum-dominant. The converse is false as Conway's set is sum-dominant but not restricted-sum-dominant $(|C \hat{+} C|=21)$.

Note that the property of being restricted-sum-dominant is preserved when we apply a bijection of the form $x \rightarrow a x+b$ with $a, b \in \mathbb{Z}, a \neq 0$. It therefore suffices to consider sets $A \subset \mathbb{Z}$ with $\min (A)=0$ and $\operatorname{gcd}(A)=1$. We shall refer to such sets as being normalised.

The organisation of this paper is as follows. In Section 2 we exhibit several sequences of restricted-sum-dominant sets, addressing some natural questions about the relative sizes of the restricted sumset and difference sets. In Section 3, we show that a strictly positive proportion of subsets of $\{0,1,2, \ldots n-1\}$ are restricted-sumdominant sets. In Section 4 we obtain a new record high value of each of

$$
f(A)=\frac{\ln (|A+A|)}{\ln (|A-A|)} \text { and } g(A)=\frac{\ln (|A+A| /|A|)}{\ln (|A-A| /|A|)}
$$

and give some related discussion. Finally, in Section 5 we improve somewhat the bounds on the order of the smallest restricted-sum-dominant set.

We shall, slightly unusually, use the notation $[a, b]$, when $a<b$ are integers, to denote $\{a, a+1, \ldots b\}$.

We are grateful to the referee for suggestions which have non-trivially improved the organisation and exposition of this paper, especially in Section 5.

## 2. Explicit Sequences of Restricted-Sum-Dominant Sets

Our first sequence of restricted-sum-dominant sets arose by considering the set $B=\{0,1,2,4,5,9,12,13,17,20,21,25,28,30,32,33\}$ which appears in [7] and [9] as a set of integers with $|B \hat{+} B|>|(B-B) \backslash\{0\}|)$. We then noted that replacing 33 with 29 gives a 16 -element restricted-sum-dominant set (which will be $T_{3}^{\prime}$ below). To get the subsequent terms of the sequence, we used (here and elsewhere in the paper) the idea from [9], Conjecture 6, that repetition of certain so-called interior
blocks when the set is written in order as a sequence of differences can increase the size of the sumset more than the difference set: see [9] for details.

Theorem 2. For every integer $j \geq 1$ we define

$$
\begin{aligned}
T_{j}^{\prime}= & \{0,2\} \cup\{1,9, \ldots, 1+8 j\} \cup\{4,12, \ldots, 4+8 j\} \\
& \cup\{5,13, \ldots, 5+8 j\} \cup\{6+8 j, 8(j+1)\}
\end{aligned}
$$

Then

$$
\begin{aligned}
T_{j}^{\prime} \hat{+} T_{j}^{\prime} & =[1,6+8(2 j+1)] \backslash\{8,8(2 j+1)\} \\
T_{j}^{\prime}+T_{j}^{\prime} & =[0,8(2 j+2)] \backslash\{7+8(2 j+1)\} \text { and } \\
T_{j}^{\prime}-T_{j}^{\prime} & =[-8(j+1), 8(j+1)] \backslash\{ \pm 6, \ldots \pm(6+8(j-1))\} .
\end{aligned}
$$

Proof. We deal first with the restricted sumset. Since $0 \in T_{j}^{\prime}, T_{j}^{\prime} \backslash\{0\} \subseteq T_{j}^{\prime} \hat{+} T_{j}^{\prime}$, giving all elements congruent to 1,4 or 5 mod 8 less than $8(j+1)$. Also

$$
\begin{aligned}
8(j+1) \hat{+}\{1,9, \ldots, 1+8 j\} & =\{1+8(j+1), \ldots, 1+8(2 j+1)\} \\
8(j+1) \hat{+}\{4,12, \ldots, 4+8 j\} & =\{4+8(j+1), \ldots, 4+8(2 j+1)\} \\
8(j+1) \hat{+}\{5,13, \ldots, 5+8 j\} & =\{5+8(j+1), \ldots, 5+8(2 j+1)\}
\end{aligned}
$$

so $T_{j}^{\prime} \hat{+} T_{j}^{\prime}$ contains all the elements congruent modulo 8 to 1,4 or 5 stated. For integers congruent to 2 modulo 8 the restricted sumset contains $0+2$ and

$$
\{1,9, \ldots, 1+8 j\} \hat{+}\{1,9, \ldots, 1+8 j\}=\{10,18, \ldots, 2+8(2 j-1)\}
$$

gives most of the rest: the two missing elements are $(4+8 j)+(6+8 j)=2+8(2 j+1)$ and $4+8(j-1)+6+8 j=2+8(2 j)$.

For integers congruent to 3 modulo 8 , note that

$$
\{1,9, \ldots, 1+8 j\} \hat{+}(2)=\{3,11, \ldots, 3+8 j\}
$$

and

$$
(6+8 j) \hat{+}\{5,13, \ldots 5+8 j\}=\{3+8(j+1), \ldots 3+8(2 j+1)\}
$$

For integers congruent to 6 modulo 8,

$$
\{1,9, \ldots, 1+8 j\} \hat{+}\{5,13, \ldots, 5+8 j\}=\{6,14, \ldots 6+8(2 j)\}
$$

and $(6+8 j)+8(j+1)=6+8(2 j+1) \in T_{j}^{\prime} \hat{+} T_{j}^{\prime}$ also. The elements congruent to 7 modulo 8 are obtained from

$$
(2)+\{5,13, \ldots, 5+8 j\}=\{7,15, \ldots, 7+8 j\}
$$

and

$$
(6+8 j)+\{1,9, \ldots, 1+8 j\}=\{7+8 j, \ldots, 7+8(2 j)\}
$$

in $T_{j}^{\prime} \hat{+} T_{j}^{\prime}$. Finally, the required multiples of 8 are obtained from

$$
\{4,12, \ldots, 4+8 j\} \hat{+}\{4,12, \ldots, 4+8 j\}=\{16,24, \ldots, 8(2 j)\} .
$$

Finally we note that the alleged omitted elements 0,8 and $8(2 j+1)$ are not in $T_{j}^{\prime} \hat{+} T_{j}^{\prime}$. The claim for 0 is clear, the only way to get 8 is as $4+4$ which is not a restricted sum, for $8(2 j+1)$ the large elements of $T_{j}^{\prime}$ are $5+8 j, 6+8 j, 8(j+1) \in T_{j}^{\prime}$ but $3+8 j, 2+8 j, 8 j \notin T_{j}^{\prime}$ so it could only be obtained as $(4+8 j)+(4+8 j)$ which is not a restricted sum.

Next we address the sumset $T_{j}^{\prime}+T_{j}^{\prime}$. All we need do here is note that $0=0+0$, $8=4+4,7+8(2 j+1)$ is still not attained and that $8(2 j+2)=8(j+1)+8(j+1)$.

We finally deal with $T_{j}^{\prime}-T_{j}^{\prime}$. Given that $d \in T_{j}-T_{j} \Longleftrightarrow-d \in T_{j}-T_{j}$ it suffices to consider the positive differences. Firstly we show that $\{6, \ldots, 6+8(j-1)\} \notin$ $T_{j}^{\prime}-T_{j}^{\prime}$. Given that $T_{j}^{\prime}$ has the form

$$
T_{j}^{\prime}=\{0,1+8 x, 2,4+8 y, 5+8 z, 6+8 j, 8(j+1)\}
$$

(where $0 \leq x, y, z, \leq j$ ), considering the difference set $T_{j}^{\prime}-T_{j}^{\prime}$ we see that the only difference of the form $6+8 t$ (where $t$ is a non-negative integer) is $6+8 j$, as stated. To confirm $T_{j}^{\prime}-T_{j}^{\prime}$ does contain the other elements in the interval specified, note that, as $0 \in T_{j}^{\prime}, T_{j}^{\prime} \subseteq T_{j}^{\prime}-T_{j}^{\prime}$. The other elements are obtained as follows:

$$
\begin{aligned}
\{1,9, \ldots, 1+8 j\}-(1) & =\{0,8, \ldots, 8 j\} \\
\{4,12, \ldots, 4+8 j\}-1 & =\{3,11, \ldots, 3+8 j\} \\
\{4,12, \ldots, 4+8 j\}-2 & =\{2,10, \ldots, 2+8 j\} \\
\{12,20, \ldots, 4+8 j\}-(5) & =\{7,15, \ldots, 7+8(j-1)\} \\
8(j+1)-(1) & =7+8 j .
\end{aligned}
$$

Thus all the elements of the right-hand side are in $T_{j}^{\prime}-T_{j}^{\prime}$ as required.
Corollary 3. For every integer $j \geq 1$ the set $T_{j}^{\prime} \subset \mathbb{Z}$ has
$\left|T_{j}^{\prime}\right|=3 j+7,\left|T_{j}^{\prime} \hat{+} T_{j}^{\prime}\right|=16 j+12,\left|T_{j}^{\prime}+T_{j}^{\prime}\right|=16 j+16 \quad$ and $\quad\left|T_{j}^{\prime}-T_{j}^{\prime}\right|=14 j+17$.
Therefore

$$
\left|T_{j}^{\prime} \hat{+} T_{j}^{\prime}\right|-\left|T_{j}^{\prime}-T_{j}^{\prime}\right|=2 j-5, \quad\left|T_{j}^{\prime}+T_{j}^{\prime}\right|-\left|T_{j}^{\prime}-T_{j}^{\prime}\right|=2 j-1
$$

and $T_{j}^{\prime}$ is an restricted-sum-dominant set for every integer $j \geq 3$.
$T_{3}^{\prime}$ of order 16 is one of the two smallest restricted-sum-dominant sets we have.
The set $T_{j}^{\prime}$ has a superset $T_{j}=T_{j}^{\prime} \cup 1+8(j+1)$, which is also restricted-sumdominant for $j \geq 3$ :

Theorem 4. For every integer $j \geq 1$ define

$$
\begin{aligned}
T_{j}= & \{0,2\} \cup\{1,9, \ldots, 1+8(j+1)\} \cup\{4,12, \ldots, 4+8 j\} \\
& \cup\{5,13, \ldots, 5+8 j\} \cup\{6+8 j, 8(j+1)\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
T_{j} \hat{+} T_{j} & =[1,1+8(2 j+2)] \backslash\{8,8(2 j+1), 8(2 j+2)\} \\
T_{j}+T_{j} & =[0,2+8(2 j+2)] \text { and } \\
T_{j}-T_{j} & =[-(1+8(j+1)), 1+8(j+1)] \backslash\{ \pm 6, \ldots \pm(6+8(j-1))\}
\end{aligned}
$$

Proof. Firstly since $T_{j} \supset T_{j}^{\prime}$ we have $T_{j} \hat{+} T_{j} \supset[1,6+8(2 j+1)] \backslash\{8,8(2 j+1)\}$. With $1+8(j+1) \in T_{j}$ we now also have that

$$
\begin{aligned}
& 8(j+1)+(1+8(j+1))=1+8(2 j+2) \quad \text { and } \\
& (6+8 j)+(1+8(j+1))=7+8(2 j+1)
\end{aligned}
$$

are in $T_{j} \hat{+} T_{j}$ as well. Furthermore

$$
(1+8(j+1))+(1+8(j+1))=2+8(2 j+2) \in T_{j}+T_{j}
$$

This completes the claims for the sumset and restricted sumset, noting that clearly 8 and $8(2 j+2)$ are not in $T_{j} \hat{+} T_{j}$ and checking that $8(2 j+1) \notin T_{j} \hat{+} T_{j}$.

As regards the difference set, with $0 \leq x \leq j+1$ the positive differences resulting from the introduction of the new element have the form

$$
\begin{aligned}
& (1+8(j+1))-\{0,2,1+8 x, 4+8 y, 5+8 z, 6+8 j, 8(j+1)\} \\
= & \{1+8(j+1), 8 j+7,8(j-x+1), 8(j-y)+5,8(j-z)+4,3,1,0\} .
\end{aligned}
$$

This shows that $T_{j}-T_{j}=T_{j}^{\prime}-T_{j}^{\prime} \cup \pm(1+8(j+1))$ and the result follows.
Corollary 5. For every integer $j \geq 1$ the set $T_{j} \subset \mathbb{Z}$ has
$\left|T_{j}\right|=3 j+8,\left|T_{j} \hat{+} T_{j}\right|=16 j+14,\left|T_{j}+T_{j}\right|=16 j+19 \quad$ and $\quad\left|T_{j}-T_{j}\right|=14 j+19$.
Therefore

$$
\left|T_{j} \hat{+} T_{j}\right|-\left|T_{j}-T_{j}\right|=2 j-5, \quad\left|T_{j}+T_{j}\right|-\left|T_{j}-T_{j}\right|=2 j
$$

and $T_{j}$ is an restricted-sum-dominant set for every integer $j \geq 3$.
In [5], Martin and O'Bryant construct, for all integers $x$, subsets $S$ of $[0,17|x|]$ with $|S+S|-|S-S|=x$. Corollary 3 shows that for each positive odd integer $x$ there is $T_{j}^{\prime} \subset \mathbb{Z}$ with $\left|T_{j}^{\prime}+T_{j}^{\prime}\right|-\left|T_{j}^{\prime}-T_{j}^{\prime}\right|=x$, and Corollary 5 shows each positive
even integer can be expressed as the difference of the cardinalities of the sumset and the difference set of some $T_{j} \subset \mathbb{Z}$.

Recall that the diameter of a finite set $A$ of integers is $\max (A)-\min (A)$. There is some interest in finding sets of integers of small diameter with prescribed relationships between the order of the sumset (or restricted sumset) and the difference set: see, e.g., [5] Theorem 4 where sets $S_{x}$ of diameter at most $17|x|$ are constructed with $\left|S_{x}+S_{x}\right|-\left|S_{x}-S_{x}\right|$ equal to $x$. Our sets $T_{j}^{\prime}$ and $T_{j}$ have respective diameters $8 j+8$ and $8 j+9$, which is smaller than the sets $S_{x}$ in [5] for $j \geq 3$.

Further Corollary 5 makes it clear that the difference between the size of the restricted sumset and the difference set can be any odd positive integer. We will get any even difference for $|A \hat{+} A|-|A-A|$ in our next construction. This was motivated by the sum-dominant (but not restricted-sum-dominant) set called $A_{13}=$ $\{0,1,2,4,7,8,12,14,15,18,19,20\}$ in Hegarty [3]. We exhibit, addressing his remark about the desirability of generalising $A_{13}$, two infinite sequences of (eventually) restricted-sum dominant sets derived from $A_{13}$ (which shall be our $R_{1}$ ).

Theorem 6. For each integer $j \geq 1$ define $R_{j} \subset \mathbb{Z}$ to be the set

$$
\begin{aligned}
R_{j}= & \{1,4\} \cup\{0,12, \ldots, 12 j\} \cup\{2,14, \ldots, 2+12 j\} \\
& \cup\{7,19, \ldots, 7+12 j\} \cup\{8,20, \ldots, 8+12 j\} \cup\{3+12 j, 6+12 j\} .
\end{aligned}
$$

For each integer $j \geq 2$ we have

$$
\begin{aligned}
R_{j} \hat{+} R_{j} & =[1,3+12(2 j+1)] \backslash\{\{17, \ldots, 5+12(j-1)\} \cup\{12(2 j), 12(2 j+1)\}\}, \\
R_{j}+R_{j} & =[0,4+12(2 j+1)] \backslash\{17, \ldots, 5+12(j-1)\} \quad \text { and } \\
R_{j}-R_{j} & =[-(8+12 j), 8+12 j] \backslash\{ \pm 9, \ldots, \pm(9+12(j-1))\} .
\end{aligned}
$$

Proof. We first verify the claim for the restricted sumset. For multiples of 12,

$$
\{0,12, \ldots, 12 j\} \hat{+}\{0,12, \ldots, 12 j\}=\{12,24, \ldots, 12(2 j-1)\}
$$

The elements congruent to 1 modulo 12 are given by

$$
(1)+\{0,12, \ldots, 12 j\}=\{1,13, \ldots, 1+12 j\} .
$$

and

$$
(6+12 j)+\{7,19, \ldots, 7+12 j\}=\{1+12(j+1), \ldots, 1+12(2 j+1)\}
$$

For those congruent to 2 modulo 12

$$
\{0,12, \ldots, 12 j\} \hat{+}\{2,14, \ldots, 2+12 j\}=\{2,14, \ldots, 2+12(2 j)\}
$$

and also $(6+12 j)+(8+12 j)=2+12(2 j+1) \in R_{j} \hat{+} R_{j}$. For 3 modulo 12 clearly $3=1+2 \in R_{j} \hat{+} R_{j}$ and the rest follow from

$$
\{7,19, \ldots, 7+12 j\} \hat{+}\{8,20, \ldots, 8+12 j\}=\{15,27, \ldots, 3+12(2 j+1)\}
$$

For elements congruent to 4 modulo 12 , we clearly have that 4 and 16 are in $R_{j} \hat{+} R_{j}$ as well as

$$
\{8,20, \ldots, 8+12 j\} \hat{+}\{8,20, \ldots, 8+12 j\}=\{28,40, \ldots, 4+12(2 j)\}
$$

The elements congruent to 6 modulo 12 in $R_{j} \hat{+} R_{j}$ can be obtained as the union of

$$
(4) \hat{+}\{2,14, \ldots, 2+12 j\}=\{6,18, \ldots, 6+12 j\}
$$

and

$$
(6+12 j)+\{0,12, \ldots, 12 j\}
$$

The elements congruent to 7 (respectively 8) modulo 12 are obtained from

$$
\{0,12, \ldots, 12 j\} \hat{+}\{7,19, \ldots, 7+12 j\}=\{7,19, \ldots, 7+12(2 j)\}
$$

and

$$
\{0,12, \ldots, 12 j\} \hat{+}\{8,20, \ldots, 8+12 j\}=\{8,20, \ldots, 8+12(2 j)\}
$$

For 9 (respectively 10 ) modulo 12 use

$$
\{2,14, \ldots, 2+12 j\} \hat{+}\{7,19, \ldots, 7+12 j\}=\{9,21, \ldots, 9+12(2 j)\}
$$

respectively

$$
\{2,14, \ldots, 2+12 j\} \hat{+}\{8,20, \ldots, 8+12 j\}=\{10,22, \ldots, 10+12(2 j)\}
$$

Finally the elements congruent to 11 modulo 12 are obtained from

$$
(4)+\{7,19, \ldots, 7+12 j\}=\{11,23, \ldots, 11+12 j\}
$$

and

$$
(3+12 j)+\{8,20, \ldots, 8+12 j\}=\{11+12 j, \ldots, 11+12(2 j)\}
$$

To see that the restricted sumset does not contain any of $\{17, \ldots, 5+12(j-1)\}$, note that none of the sumsets of the progressions with common difference 12 give elements which are congruent to 5 modulo 12 and neither can translates of the progressions by 1 or 4). The remaining elements congruent to 5 modulo 12 are obtained as clearly $5 \in R_{j} \hat{+} R_{j}$, and also

$$
(3+12 j)+\{2,14, \ldots, 2+12 j\}=\{5+12 j, \ldots, 5+12(2 j)\} \subseteq R_{j} \hat{+} R_{j}
$$

Finally, to see that $R_{j} \hat{+} R_{j}$ does not contain $12(2 j)$ or $12(2 j+1)$, note that it is impossible to obtain $12(2 j)$ as a sum of distinct elements of $R_{j}$ since the only elements of $R_{j}$ greater than $12 j$ are $S=\{2+12 j, 3+12 j, 6+12 j, 7+12 j, 8+12 j\}$ but none of the numbers in $2(12 j)-S$ (namely $10+12(j-1), 9+12(j-1)$,
$6+12(j-1), 5+12(j-1), 4+12(j-1))$ are in $R_{j}$. Further as $12(j+1) \notin R_{j}$ $12(2 j+1)$ is excluded from $R_{j} \hat{+} R_{j}$. This completes the argument for $R_{j} \hat{+} R_{j}$.

However, we do have that $12 j+12 j=12(2 j) \in R_{j}+R_{j}$ and $(6+12 j)+(6+12 j)=$ $12(2 j+1) \in R_{j}+R_{j}$, so both these missing elements get into $R_{j}+R_{j}$. Since we readily see that none of the numbers congruent to $7 \bmod 12$ ruled out of $R_{j} \hat{+} R_{j}$ are in $R_{j}+R_{j}$ either, the sumset is as stated.

To confirm the claim for the difference set as before we consider the positive differences. Writing $R_{j}$ as

$$
\{1,4,12 w, 2+12 x, 7+12 y, 8+12 z, 3+12 j, 6+12 j\}
$$

the remainders which occur in $R_{j}-R_{j}$ are exactly the set $[0,11] \backslash\{9\}$. On the other hand, to see that $R_{j}-R_{j}$ contains all the claimed differences, note that as $0 \in R_{j}$ we have $R_{j} \subset R_{j}-R_{j}$. Also the right hand sides of

$$
\begin{aligned}
\{0,12, \ldots, 12 j\}-(1) & =\{-1,11, \ldots, 11+12(j-1)\} \\
\{2,14, \ldots, 2+12 j\}-(1) & =\{1,13, \ldots, 1+12 j\} \\
\{7,19, \ldots, 7+12 j\}-(4) & =\{3,15, \ldots, 3+12 j\} \\
\{8,20, \ldots, 8+12 j\}-(4) & =\{4,16, \ldots, 4+12 j\} \\
\{7,19, \ldots, 7+12 j\}-(2) & =\{5,17, \ldots, 5+12 j\} \\
\{7,19, \ldots, 7+12 j\}-(1) & =\{6,18, \ldots, 6+12 j\} \\
\{2,14, \ldots, 2+12 j\}-(4) & =\{-2,10, \ldots, 10+12(j-1)\} .
\end{aligned}
$$

are in the difference set which completes the claim.
Corollary 7. For every integer $j \geq 2$ the set $R_{j} \subset \mathbb{Z}$ has
$\left|R_{j}\right|=4 j+8,\left|R_{j} \hat{+} R_{j}\right|=23 j+14,\left|R_{j}+R_{j}\right|=23 j+18 \quad$ and $\quad\left|R_{j}-R_{j}\right|=22 j+17$.
Therefore

$$
\left|R_{j} \hat{+} R_{j}\right|-\left|R_{j}-R_{j}\right|=j-3, \quad\left|R_{j}+R_{j}\right|-\left|R_{j}-R_{j}\right|=j+1
$$

and $R_{j}$ is an restricted-sum-dominant set for every integer $j \geq 4$.
This indeed confirms that any positive integer can be obtained as $\left|R_{j} \hat{+} R_{j}\right|-\left|R_{j}-R_{j}\right|$.

Our fourth sequence of sets, the $M_{j} \mathrm{~s}$, also has $R_{1}$ (Hegarty's $A_{13}$ ) as its first member, but this time we focus not on prescribing $\left|M_{j} \hat{+} M_{j}\right|-\left|M_{j}-M_{j}\right|$ but instead on getting a reduced diameter $9+11 j$ rather than the diameter $8+12 j$ of $R_{j}$. (We were first led to this family by considering Marica's sum-dominant set [4] $M=\{1,2,3,5,8,9,13,15,16\}$, normalising it and trying to expand it to a restricted-sum-dominant set).

Theorem 8. For $j \geq 1$ define

$$
\begin{aligned}
M_{j}= & \{0,2\} \cup\{1,12, \ldots, 1+11 j\} \cup\{4,15, \ldots, 4+11 j\} \\
& \cup\{7,18, \ldots, 7+11 j\} \cup\{8,19, \ldots, 8+11 j\} \cup\{3+11 j, 9+11 j\}
\end{aligned}
$$

We then have that

$$
\begin{aligned}
M_{j} \hat{+} M_{j} & =[1,6+11(2 j+1)] \backslash\{3+11(2 j+1)\} \\
M_{j}+M_{j} & =[0,7+11(2 j+1)] \text { and } \\
M_{j}-M_{j} & =[-(9+11 j), 9+11 j] \backslash\{ \pm 9, \ldots, \pm(9+11(j-1))\} .
\end{aligned}
$$

Proof. Firstly we show that $M_{j} \hat{+} M_{j}$ consists of

$$
\bigcup_{a=1,2,4,5,6}\{a, a+11, \ldots, a+11(2 j+1)\}
$$

and

$$
\bigcup_{a=3,7,8,9,10,11}\{a, a+11, \ldots, a+11(2 j)\}
$$

and then show that the sumset contains the additional elements claimed. In the case where $a=1$ we have
$\{4,15, \ldots, 4+11 j\} \hat{+}\{8,19, \ldots, 8+11 j\}=\{12,23, \ldots, 12+11(2 j)=1+11(2 j+1)\}$
and $0+1 \in M_{j} \hat{+} M_{j}$ also. For the case $a=2$

$$
\{1,12, \ldots, 1+11 j\} \hat{+}\{1,12, \ldots, 1+11 j\}=\{13,24, \ldots, 2+11(2 j-1)\}
$$

and $0+2,(4+11(j-1))+(9+11 j)=2+11(2 j),(4+11 j)+(9+11 j)=2+11(2 j+1)$ are also in $M_{j} \hat{+} M_{j}$.

For the case $a=4$,
$\{7,18, \ldots, 7+11 j\} \hat{+}\{8,19, \ldots, 8+11 j\}=\{15,26, \ldots, 15+11(2 j)=4+11(2 j+1)\}$
and $0+4 \in M_{j} \hat{+} M_{j}$.
For the case $a=5$,

$$
\{8,19, \ldots, 8+11 j\} \hat{+}\{8,19, \ldots, 8+11 j\}=\{27, \ldots, 16+11(2 j-1)=5+11(2 j)\}
$$

and also $5=1+4,16=12+4$ and $(7+11 j)+(9+11 j)=5+11(2 j+1)$.
For the case $a=6$

$$
\begin{aligned}
(2)+\{4,15, \ldots, 4+11 j\} & =\{6,17, \ldots, 6+11 j\} \\
(9+11 j)+\{8,19, \ldots, 8+11 j\} & =\{6+11(j+1), \ldots, 6+11(2 j+1)\}
\end{aligned}
$$

For the case $a=3$

$$
\{7,18, \ldots, 7+11 j\} \hat{+}\{7,18, \ldots, 7+11 j\}=\{25,36, \ldots, 3+11(2 j)\}
$$

and $3=1+2,14=2+12$ are in $M_{j} \hat{+} M_{j}$.
For the case $a=7$

$$
\begin{aligned}
& (0)+\{7,18, \ldots, 7+11 j\}=\{7,18, \ldots, 7+11 j\} \\
& (3+11 j)+\{4,15, \ldots, 4+11 j\}=\{7+11 j, \ldots, 7+11(2 j)\}
\end{aligned}
$$

For the case $a=8$

$$
\{1,12, \ldots, 1+11 j\} \hat{+}\{7,18, \ldots, 7+11 j\}=\{8,19, \ldots, 8+11(2 j)\}
$$

For the case $a=9$

$$
\{1,12, \ldots, 1+11 j\} \hat{+}\{8,19, \ldots, 8+11 j\}=\{9,20, \ldots, 9+11(2 j)\}
$$

For $a=10$

$$
\begin{aligned}
& (2) \hat{+}\{8,19, \ldots, 8+11 j\}=\{10,21, \ldots, 10+11 j\} \\
& (3+11 j) \hat{+}\{7,18, \ldots, 7+11 j\}=\{10+11 j, \ldots, 10+11(2 j)\}
\end{aligned}
$$

For $a=11$

$$
\{4,15, \ldots, 4+11 j\} \hat{+}\{7,18, \ldots, 7+11 j\}=\{11,22, \ldots, 11+11(2 j)\}
$$

To see that $3+11(2 j+1) \notin M \hat{+} M$, if it did not we would have a sum of the form $(a+11 j)+(c+11 j)=14+22 j$ from elements of $M_{j}$ with $a+c=14$, however, since $a$ and $c$ are distinct elements of $\{1,3,4,7,8,9\}$ this is impossible and hence $3+11(2 j+1) \notin M_{j} \hat{+} M_{j}$. This confirms the claim for the restricted sumset. Furthermore for each $m \in M_{j}$ the sumset contains $0,2(7+11 j)=3+11(2 j+1)$ and $2(9+11 j)=7+11(2 j+1)$ which completes the claim for the sumset.

For the difference set to see that $\{ \pm 9, \ldots, \pm(9+11(j-1))\} \notin M_{j}-M_{j}$ let

$$
M_{j}=\{0,2,1+11 w, 4+11 x, 7+11 y, 8+11 z, 3+11 j, 9+11 j\}
$$

where $0 \leq w, x, y, z \leq j$. It suffices to consider just the positive differences. Calculation of $M_{j}-M_{j}$ reveals that the only positive difference congruent to 9 modulo 11 is $(9+11 j)-0$, which is outside the range claimed.

To see that $M_{j}-M_{j}$ contains the remaining elements in the interval, firstly note that as $0 \in M_{j}$ we have $M_{j}-M_{j} \supset M_{j}$. Furthermore $M_{j}-M_{j}$ also contains the
right-hand sides of the following:

$$
\left.\begin{array}{l}
\{1,12, \ldots, 1+11 j\}-(1)=\{0,11, \ldots, 11 j\} \\
\{4,15, \ldots, 4+11 j\}-(1)=\{3,14, \ldots, 3+11 j\} \\
\{7,18, \ldots, 7+11 j\}-(1)=\{6,17, \ldots, 6+11 j\} \\
\{1,12, \ldots, 1+11 j\}-(2)=\{-1,10,21, \ldots, 10+11(j-1)\} \\
\{4,15, \ldots, 4+11 j\}-(2)=\{2,13, \ldots, 2+11 j\} \\
\{7,18, \ldots, 7+11 j\}-(2)=\{5,16, \ldots, 5+11 j\} \\
9+11 j-0
\end{array}\right)=9+11 j .
$$

This completes the claim of the theorem.
Corollary 9. For every integer $j \geq 1$ the set $M_{j} \subset \mathbb{Z}$ has
$\left|M_{j}\right|=4 j+8,\left|M_{j} \hat{+} M_{j}\right|=22 j+16,\left|M_{j}+M_{j}\right|=22 j+19 \quad$ and $\quad\left|M_{j}-M_{j}\right|=20 j+19$.
Hence

$$
\left|M_{j} \hat{+} M_{j}\right|-\left|M_{j}-M_{j}\right|=2 j-3, \quad\left|M_{j}+M_{j}\right|-\left|M_{j}-M_{j}\right|=2 j
$$

and $M_{j}$ is an restricted-sum-dominant set for every $j \geq 2$.
Note that the set $M_{2}$ has slightly smaller diameter 31 than the other 16-element restricted-sum-dominant set $T_{3}^{\prime}$.

Martin and O'Bryant refer to sets with $|A+A|=|A-A|$ as sum-difference balanced. Similarly we can consider sets with $|A \hat{+} A|=|A-A|$ as restricted-sumdifference balanced. The results above show such sets exist (e.g., $R_{3}$ ). The smallest such set we have found has order 14: it is is

$$
M^{\prime}=\{0,1,2,4,7,8,12,14,15,19,22,25,26,27\}
$$

so $\left|M^{\prime} \hat{+} M^{\prime}\right|=|[1,53] \backslash\{43,50\}|=51$ and $\left|M^{\prime}-M^{\prime}\right|=|[-27,27] \backslash\{ \pm 9, \pm 16\}|=51$. We show that by taking the union of translates of $M^{\prime}$ by non-negative integer multiples of its maximum element one can obtain arbitrarily large restricted-sumdifference balanced sets.

Lemma 10. Let $k \geq 2$ and $A_{0}=A=\left\{0=a_{1}<a_{2}<\cdots<a_{k}=m\right\} \subset \mathbb{Z}$ and $A_{i}=A \cup(A+m) \cup \cdots \cup(A+i m)$. Then

$$
\begin{aligned}
\left|A_{i} \hat{+} A_{i}\right|-\left|A_{i-1} \hat{+} A_{i-1}\right|=c_{1} & \forall i \geq 2 \\
\left|A_{i}+A_{i}\right|-\left|A_{i-1}+A_{i-1}\right|=c_{1} & \forall i \geq 1
\end{aligned}
$$

and

$$
\left|A_{i}-A_{i}\right|-\left|A_{i-1}-A_{i-1}\right|=c_{2} \quad \forall i \geq 1
$$

where $c_{1}$ and $c_{2}$ are positive constants.

Proof. We first note

$$
\left|A_{i} \hat{+} A_{i}\right|-\left|A_{i-1} \hat{+} A_{i-1}\right|=\left|\left(A_{i} \hat{+} A_{i}\right) \backslash\left(A_{i-1} \hat{+} A_{i-1}\right)\right|
$$

and show that the right-hand side is a constant by showing that the set of new elements introduced on each iteration is a translate of the set of new elements introduced on the previous iteration. We have

$$
A_{i} \hat{+} A_{i}=\cup_{r, s=0}^{i}((A+r m) \hat{+}(A+s m))
$$

If $|r-s| \geq 2$, it is clear that $A+r m$ and $A+s m$ are disjoint so their restricted sum is just their sum. If $i-1 \geq r=s \geq 1$, then $(A+r m) \hat{+}(A+r m)=(A+(r-1) m)+$ $(A+(r+1) m)$. The only case needing a little thought is $|r-s|=1$ : without loss of generality, $r=s+1$. Then

$$
(A+(s+1) m) \hat{+}(A+s m)=\{a+b+(2 s+1) m: a+m \neq b\}
$$

the only way we can have $a+m=b$ is if $a=0, b=m$, but in this case

$$
(0+(s+1) m)+(m+s m)=(m+(s+1) m) \hat{+}(0+s m)
$$

We deduce that, for all $i \geq 2$

$$
A_{i} \hat{+} A_{i}=(A \hat{+} A) \cup(A+(A+m)) \cup \cdots \cup(A+A+(2 i-1) m) \cup(A \hat{+} A+2 i m)
$$

Similarly

$$
A_{i-1} \hat{+} A_{i-1}=(A \hat{+} A) \cup(A+A+m) \cup \cdots \cup(A \hat{+} A+(2 i-2) m)
$$

Now some elements of $(A+A+(2 i-2) m) \backslash(A \hat{+} A+(2 i-2) m)$ may be in $A+$ $A+(2 i-3) m$ and thus in $A_{i-1} \hat{+} A_{i-1}$. (Translates of $A+A$ by less than $(2 i-3) m$ need not be considered). We have

$$
\begin{align*}
&\left(A_{i} \hat{+} A_{i}\right) \backslash\left(A_{i-1} \hat{+} A_{i-1}\right)= \\
&((A+A+(2 i-2) m) \cup(A+A+(2 i-1) m) \cup  \tag{1}\\
&(A \hat{+} A+2 i m)) \backslash((A+A+(2 i-3) m) \cup(A \hat{+} A+(2 i-2) m))
\end{align*}
$$

Likewise

$$
\begin{gather*}
\left(A_{i+1} \hat{+} A_{i+1}\right) \backslash\left(A_{i} \hat{+} A_{i}\right)=((A+A+2 i m) \cup(A+A+(2 i+1) m) \cup \\
(A \hat{+} A+(2 i+2) m)) \backslash((A+A+(2 i-1) m) \cup(A \hat{+} A+(2 i) m)) \tag{2}
\end{gather*}
$$

The right-hand side of (2) is a translation of the right-hand side of (1) by $2 m$. (To see this, note it is easy to check for sets of integers that if $C_{i}+2 m=C_{i+1}$ and $D_{i}+2 m=D_{i+1}$, then $\left(C_{i} \backslash D_{i}\right)+2 m=\left(C_{i+1} \backslash D_{i+1}\right)$ : apply this with the obvious choices of $C_{i}$ and $D_{i}$ ). Thus

$$
\left(A_{i+1} \hat{+} A_{i+1}\right) \backslash\left(A_{i} \hat{+} A_{i}\right)=\left(\left(A_{i} \hat{+} A_{i}\right) \backslash\left(A_{i-1} \hat{+} A_{i-1}\right)\right)+2 m
$$

Since translation by a constant leaves the cardinality of the set difference unaltered it follows that

$$
\left|\left(A_{i+1} \hat{+} A_{i+1}\right) \backslash\left(A_{i} \hat{+} A_{i}\right)\right|=\left|\left(A_{i} \hat{+} A_{i}\right) \backslash\left(A_{i-1} \hat{+} A_{i-1}\right)\right|
$$

as required.
To see that

$$
\begin{equation*}
\left|A_{i}+A_{i}\right|-\left|A_{i-1}+A_{i-1}\right|=\left|A_{i} \hat{+} A_{i}\right|-\left|A_{i-1} \hat{+} A_{i-1}\right| \tag{3}
\end{equation*}
$$

for all $i \geq 1$ we show that the number of additional elements $A_{i}+A_{i}$ contains is constant. All the elements of

$$
(A+A) \backslash(A \hat{+} A)
$$

except for $2 m$, which is in $A_{i} \hat{+} A_{i}$ for $i \geq 1$ due to $0+2 m$, are excluded from $A_{i} \hat{+} A_{i}$ for all $i \geq 1$. Similarly the elements of

$$
((A+A) \backslash(A \hat{+} A))+2 i m
$$

except for $2 i m$ are excluded from $A_{i} \hat{+} A_{i}$. This means that for all $i \geq 1$

$$
\left|A_{i}+A_{i}\right|-\left|A_{i} \hat{+} A_{i}\right|=2(|(A+A) \backslash(A \hat{+} A)|-1)
$$

In other words the difference between the cardinalities of the sumset and the restricted sumset is a constant for all $i \geq 1$ and (3) holds.

To verify the claim for the difference set, write

$$
A_{i}-A_{i}=\cup_{j=-i}^{i}(A-A+j m)
$$

Thus we have

$$
\left(A_{i}-A_{i}\right) \backslash\left(A_{i-1}-A_{i-1}\right)=(A-A-i m) \cup(A-A+i m) \backslash \bigcup_{j=-(i-1)}^{i-1}(A-A-j m)
$$

But the only sets in $\cup_{j=-(i-1)}^{i-1}(A-A-j m)$ which could intersect $(A-A-i m)$ or $(A-A+i m)$ are for $j=(i-1), j=(i-2)$ (which will intersect $A-A-i m$ in precisely the one element $(1-i) m$ ), $j=-(i-2)$ (which will intersect it in precisely the one element $(i-1) m$ ) and $j=-(i-1)$. Thus for all $i \geq 1$

$$
\begin{aligned}
\left(A_{i}-A_{i}\right) \backslash\left(A_{i-1}-A_{i-1}\right)= & ((A-(A+i m)) \backslash(A-(A+(i-1) m))) \\
& \cup((A-A+i m) \backslash(A-A+(i-1) m))
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\left(A_{i+1}-A_{i+1}\right) \backslash\left(A_{i}-A_{i}\right)= & ((A-(A+(i+1) m)) \backslash(A-(A+i m))) \\
& \cup((A-A+(i+1) m) \backslash(A-A+i m)) .
\end{aligned}
$$

The sets $(A-(A+(i+1) m)) \backslash(A-(A+i m))$ and $(A-A+(i+1) m) \backslash(A-A+i m)$ are disjoint for all $i \geq 1$. Also $(A-(A+(i+1) m)) \backslash(A-(A+i m))$ is a translation of $(A-(A+i m)) \backslash(A-(A+(i-1) m))$ by $-m$ and $(A-A+(i+1) m) \backslash(A-A+i m)$ is a translation of $(A-A+i m) \backslash(A-A+(i-1) m)$ by $m$. These translations leave the cardinalities of the sets unchanged, therefore

$$
\left|\left(A_{i+1}-A_{i+1}\right) \backslash\left(A_{i}-A_{i}\right)\right|=\left|\left(A_{i}-A_{i}\right) \backslash\left(A_{i-1}-A_{i-1}\right)\right|
$$

and the overall result follows.
Setting $M_{1}^{\prime}=M^{\prime} \cup\left(M^{\prime}+27\right)$ we easily check

$$
\left|M_{1}^{\prime} \hat{+} M_{1}^{\prime}\right|=|[1,107] \backslash\{97,104\}|=|[-54,54] \backslash\{ \pm 36, \pm 43\}|=\left|M_{1}^{\prime}-M_{1}^{\prime}\right|
$$

and $M_{2}^{\prime}=M^{\prime} \cup\left(M^{\prime}+27\right) \cup\left(M^{\prime}+54\right)$ gives

$$
\left|M_{2}^{\prime} \hat{+} M_{2}^{\prime}\right|=|[1,161] \backslash\{151,158\}|=|[-81,81] \backslash\{ \pm 63, \pm 70\}|=\left|M_{2}^{\prime}-M_{2}^{\prime}\right|
$$

It follows from Lemma 10 that
Corollary 11. There exist arbitrarily large restricted-sum-difference balanced subsets of $\mathbb{Z}$.

Our final sequence of restricted-sum-dominant sets is constructed with a view to obtaining high values of $f(A)$ as defined in the introduction. Again, this set is a modification of one in [9], which describes $Q_{j} \backslash\{1+4(4 j+7)\}$ for $j=1,2,3$ as sets giving large sumset relative to the difference set. Including $1+4(4 j+7)$ increases the sumset but does not change the difference set.

Theorem 12. Let

$$
\begin{aligned}
Q_{j}= & \{0,2,4,12\} \cup\{1,5, \ldots, 1+4(4 j+8)\} \cup\{24,40, \ldots, 8+16 j\} \\
& \cup\{4+16(j+1), 12+16(j+1), 14+16(j+1), 16(j+2)\}
\end{aligned}
$$

for an integer $j \geq 1$. Then

$$
\begin{aligned}
Q_{j} \hat{+} Q_{j}= & {[1,1+4(8 j+16)] } \\
& \backslash\{8,20,32,48,4(8 j+4), 4(8 j+8), 4(8 j+11), 4(8 j+14), 4(8 j+16)\}
\end{aligned}
$$

for $j \geq 2$, whilst

$$
Q_{j}+Q_{j}=[0,2+4(8 j+16)] \backslash\{20,32,4(8 j+8), 4(8 j+11)\}
$$

for $j \geq 1$ and

$$
\begin{aligned}
Q_{j}-Q_{j}= & {[-(1+4(4 j+8)), 1+4(4 j+8)] \backslash \pm\{\{6\},\{14, \ldots, 14+16 j\}} \\
& \{18, \ldots, 2+16 j\},\{26, \ldots, 10+16 j\}, 6+16(j+1)\}
\end{aligned}
$$

for $j \geq 1$.

Proof. To verify these claims, consider elements of $Q_{j}$ in terms of the union of

$$
Q_{\mathrm{odd}}=\{1,5, \ldots, 1+4(4 j+8)\}
$$

and

$$
\begin{aligned}
Q_{\text {even }}= & \{0,2,4,12\} \cup\{24, \ldots, 8+16 j\} \\
& \cup\{4+16(j+1), 12+16(j+1), 14+16(j+1), 16(j+2)\}
\end{aligned}
$$

Firstly $Q_{j} \hat{+} Q_{j}$ contains all the odd numbers in the interval since we have

$$
\begin{aligned}
(0) \hat{+}\{1,5, \ldots, 1+4(4 j+8)\}= & \{1,5, \ldots, 1+4(4 j+8)\} \\
16(j+2) \hat{+}\{1,5, \ldots, 1+4(4 j+8)\}= & \{1+4(4 j+8), 5+4(4 j+8), \\
& \ldots, 1+4(8 j+16)\} \\
(2) \hat{+}\{1,5, \ldots, 1+4(4 j+8)\}= & \{3,7, \ldots, 3+4(4 j+8)\} \\
14+16(j+1) \hat{+}\{1,5, \ldots, 1+4(4 j+8)\}= & \{3+4(4 j+7), 7+4(4 j+7), \\
& \ldots, 3+4(8 j+15)\} .
\end{aligned}
$$

The union of the right hand sides of the above is indeed

$$
\{1,3, \ldots, 3+4(8 j+15), 1+4(8 j+16)\}=\{1,3, \ldots, 1+2(4(4 j+8))\}
$$

To see that the sumset contains all the even elements claimed, note first that $Q_{\text {odd }} \hat{+} Q_{\text {odd }}$ gives the following elements congruent to $2 \bmod 4$ :

$$
Q_{\text {odd }} \hat{+} Q_{\mathrm{odd}}=\{6,10, \ldots, 2+4(8 j+15)\} \subseteq Q_{j} \hat{+} Q_{j}
$$

Clearly $0+2$ is also in $Q_{j} \hat{+} Q_{j}$, however whilst $\max \left(Q_{j}+Q_{j}\right)=2+4(8 j+16)$ this is not in the restricted sumset. As regards the multiples of four, clearly none of these can be obtained from $Q_{\text {odd }} \hat{+} Q_{\text {odd }}$ or $Q_{\text {odd }} \hat{+} Q_{\text {even }}$. To confirm the elements we claim to be excluded cannot be present note that $Q_{\text {even }}$ is symmetric w.r.t. $16(\mathrm{j}+2)$ : $Q_{\text {even }}=16(j+2)-Q_{\text {even }}$. Hence $Q_{\text {even }} \hat{+} Q_{\text {even }}=16(2 j+4)-\left(Q_{\text {even }} \hat{+} Q_{\text {even }}\right)$ and $Q_{\text {even }}+Q_{\text {even }}=16(2 j+4)-\left(Q_{\text {even }}+Q_{\text {even }}\right)$. The restricted sumset of the elements of $Q_{\text {even }}$ less than or equal to 32 is

$$
\{0,2,4,12,24\} \hat{+}\{0,2,4,12,24\}=\{2,4,6,12,14,16,24,26,28,36\}
$$

Thus $0,8,20,32$ and 48 are excluded from $Q_{j} \hat{+} Q_{j}$. Whilst $Q_{j}+Q_{j}$ contains 0,8 and 48 as the doubles of 0,4 and 24 respectively, it is easy to check that neither 20 nor 32 are in $Q_{j}+Q_{j}$. By symmetry

$$
16(2 j+4)-\{0,8,20,32,48\}=\{4(8 j+4), 4(8 j+8), 4(8 j+11), 4(8 j+14), 4(8 j+16)\}
$$

which has empty intersection with $Q_{j} \hat{+} Q_{j}$.

It remains to show that all other (relevant) multiples of 4 are in the (restricted) sumset; we consider the cases $0,4,8$ and 12 modulo 16 separately. We have the following multiples of 16 in $Q_{j} \hat{+} Q_{j}$ :

$$
\begin{aligned}
\{24,40, \ldots, 16 j+8\} \hat{+}\{24,40, \ldots, 16 j+8\} & =\{64,80, \ldots, 16(2 j)\} \\
(4+16(j+1)) \hat{+}(12+16(j+1)) & =4(8 j+12)=16(2 j+3)
\end{aligned}
$$

Furthermore $Q_{j}+Q_{j}$ contains 48 and $16(2 j+1)=2(16 j+8)$ and also $16(j+2)+$ $16(j+2)=4(8 j+16)=16(2 j+4)$. We already saw $16(2 j+2)=4(8 j+8)$ is not in $Q_{j}+Q_{j}$.

We obtain those congruent to 4 modulo 16 from

$$
\begin{aligned}
(12) \hat{+}\{24,40, \ldots, 16 j+8\} & =\{36,52, \ldots, 4+16(j+1)\} \\
(4) \hat{+}(16(j+2)) & =4+16(j+2) \\
(12+16(j+1)) \hat{+}\{24, \ldots, 8+16 j\} & =\{4+16(j+3), \ldots, 4+16(2 j+2)\} \\
(4+16(j+1)) \hat{+}(16(j+2)) & =4+16(2 j+3) .
\end{aligned}
$$

The elements congruent to 8 modulo 16 are given by

$$
\begin{aligned}
(0) \hat{+}\{24,40, \ldots, 8+16 j\} & =\{24,40, \ldots, 8+16 j\} \\
(4) \hat{+}(4+16(j+1)) & =8+16(j+1) \\
(12) \hat{+}(12+16(j+1)) & =8+16(j+2) \\
(16(j+2)) \hat{+}\{24,40, \ldots, 8+16 j\} & =\{8+16(j+3), \ldots, 8+16(2 j+2)\}
\end{aligned}
$$

Also $(12+16(j+1))+(12+16(j+1))=8+16(2 j+3) \in Q_{j}+Q_{j}$. Finally the elements congruent to 12 modulo 16 follow from

$$
\begin{aligned}
(4) \hat{+}\{24, \ldots, 8+16 j\} & =\{28, \ldots, 12+16 j\} \\
(0) \hat{+}(12+16(j+1)) & =12+16(j+1) \\
(4+16(j+1)) \hat{+}\{24, \ldots, 8+16 j\} & =\{12+16(j+2), \ldots, 12+16(2 j+1)\} \\
(12+16(j+1)) \hat{+}(16(j+2)) & =12+16(2 j+3) .
\end{aligned}
$$

We now deal with the difference set. Again, it suffices to consider the non-negative differences. Since all the differences which we claim are excluded are even we need only consider differences of pairs of elements of $Q_{j}$ of the same parity and therefore divide into cases accordingly. The non-negative elements of $Q_{\text {odd }}-Q_{\text {odd }}$ are

$$
\{0,4, \ldots, 4(4 j+8)\}
$$

The even elements of $Q_{j}$ have the form

$$
Q_{\mathrm{even}}=\{0,2,4,12,8+16 x, 4+16(j+1), 12+16(j+1), 14+16(j+1), 16(j+2)\}
$$

where $x \in \mathbb{Z}$ with $1 \leq x \leq j$. The positive differences of the elements of $Q_{\text {even }}$ are

$$
\begin{aligned}
& \{2,4,8,10,12,12+16(x-1), 4+16 x, 6+16 x, 8+16 x \\
& 12+16(j-x), 4+16(j-x+1), 6+16(j-x+1), 8+16(j-x+1), \\
& 8+16 j, 16(j+1), 2+16(j+1), 4+16(j+1), 8+16(j+1), \\
& 10+16(j+1), 12+16(j+1), 14+16(j+1), 16(j+2)\}
\end{aligned}
$$

Thus none of the differences in $Q_{j}-Q_{j}$ have the form which we claim is excluded. To confirm the presence of the remaining differences we have that all the differences congruent to 1 modulo 4 are present since

$$
\{1,5, \ldots, 1+4(4 j+8)\}-\{0\}=\{1,5, \ldots, 1+4(4 j+8)\} \subseteq Q_{j}-Q_{j}
$$

The elements congruent to 3 modulo 4 follow from

$$
\{1,5, \ldots, 1+4(4 j+8)\}-\{2\}=\{-1,3, \ldots, 3+4(4 j+7)\} \subseteq Q_{j}-Q_{j}
$$

The multiples of 4 are obtained from

$$
\{1,5, \ldots, 1+4(4 j+8)\}-\{1\}=\{0,4, \ldots, 4(4 j+8)\}
$$

For elements congruent to $2 \bmod 4$, the only elements congruent to $2 \bmod 16$ we are claiming to get are 2 and $2+16(j+1) ; 2$ is clearly in, and $2+16(j+1)=$ $14+16(j+1)-12$.

The elements congruent to 6 modulo 16 can be obtained from

$$
\{24,40, \ldots, 8+16 j\}-\{2\}=\{22,38, \ldots, 6+16 j\}
$$

The only elements congruent to $10 \bmod 16$ we are claiming are $10+16(j+1)=$ $12+16(j+1)-2$ and $10=12-2$. Finally, the only element congruent to 14 mod 16 we claim is present is $14+16(j+1) \in Q_{j}$.

Corollary 13. For the set $Q_{j}$ defined above we have

$$
\begin{aligned}
\left|Q_{j}\right|=5 j+17,\left|Q_{j} \hat{+} Q_{j}\right| & =32 j+56 \text { for } j \geq 2,\left|Q_{j}+Q_{j}\right|=32 j+63 \text { for } j \geq 1 \\
\left|Q_{j}-Q_{j}\right| & =26 j+61 \text { for } j \geq 1
\end{aligned}
$$

(and $\left|Q_{1} \hat{+} Q_{1}\right|=90$ ). Thus $Q_{j}$ is an restricted-sum-dominant set for all $j \geq 1$.

## 3. The Proportion of Restricted-Sum-Dominant Sets Is Strictly Positive

Martin and O'Bryant prove that for $n \geq 15$ the number of sum-dominant subsets of $[0, n-1]$ is at least $\left(2 \times 10^{-7}\right) 2^{n}$ (see Theorem 1 of [5]). Their result has been
improved by Zhao [11] who shows that the proportion of sum-dominant sets tends to a limit and that that limit is at least $4.28 \times 10^{-4}$. In this section we will show that the proportion of subsets of $\{0,1,2, \ldots n-1\}$ which are restricted-sum-dominant is bounded below by a much weaker constant. It may well be that Zhao's techniques, or others, can be modified to improve the result but at least a substantial piece of computation would appear to be required and our concern at present is simply to show that a positive proportion of sets are restricted-sum-dominant sets. Note that the fact that a positive proportion of sets have more differences than restricted sums is an immediate consequence of Theorem 14 in [5]. Many lemmas etc. in what follows are very slight modifications of corresponding results in [5] and we merely present these proofs without further comment. However the construction of the two 'fringe sets' $U$ and $L$ is notably more involved.

Lemma 14. Let $n, \ell$ and $u$ be integers such that $n \geq \ell+u$. Fix $L \subseteq[0, \ell-1]$ and $U \subseteq[n-u, n-1]$. Suppose $R$ is a uniformly randomly selected subset of $[\ell, n-u-1]$ (where each element is chosen with probability 1/2) and set $A=L \cup R \cup U$. Then for every integer $k$ satisfying $2 \ell-1 \leq k \leq n-u-1$, we have

$$
\mathbb{P}(k \notin A \hat{+} A)=\left\{\begin{array}{l}
\left(\frac{1}{2}\right)^{|L|}\left(\frac{3}{4}\right)^{(k+1) / 2-\ell}, \quad \text { if } k \text { is odd }, \\
\left(\frac{1}{2}\right)^{|L|}\left(\frac{3}{4}\right)^{k / 2-\ell}, \quad \text { if } k \text { is even. }
\end{array}\right.
$$

Proof. Define an indicator variable

$$
X_{j}=\left\{\begin{array}{l}
1, \text { if } j \in A \\
0, \text { otherwise }
\end{array}\right.
$$

Since $A=L \cup R \cup U$ the $X_{j}$ are independent random variables for $\ell \leq j \leq n-u-1$, each taking values 0 or 1 equiprobably. For $0 \leq j \leq \ell-1$ and $n-u \leq j \leq n-1$ the values of $X_{j}$ are dictated by the choices of $L$ and $U$.

Now, $k \notin A \hat{+} A$ if and only if $X_{j} X_{k-j}=0$ for all $0 \leq j \leq k / 2-1 . \quad(j=k / 2$ would not give a restricted sum). The random variables $X_{j} X_{k-j}$ for $0 \leq j \leq k / 2$ are independent of each other. Hence

$$
\mathbb{P}(k \notin A \hat{+} A)=\Pi_{0 \leq j \leq k / 2-1} \mathbb{P}\left(X_{j} X_{k-j}=0\right)
$$

When $k$ is odd we have

$$
\begin{aligned}
\mathbb{P}(k \notin A \hat{+} A) & =\prod_{j=0}^{\ell-1} \mathbb{P}\left(X_{j} X_{k-j}=0\right) \prod_{j=\ell}^{(k-1) / 2} \mathbb{P}\left(X_{j} X_{k-j}=0\right) \\
& =\prod_{j \in L} \mathbb{P}\left(X_{k-j}=0\right) \prod_{j=\ell}^{(k-1) / 2} \mathbb{P}\left(X_{j}=0 \text { or } X_{k-j}=0\right) \\
& =\left(\frac{1}{2}\right)^{|L|}\left(\frac{3}{4}\right)^{(k+1) / 2-\ell} \cdot
\end{aligned}
$$

When $k$ is even

$$
\begin{aligned}
\mathbb{P}(k \notin A \hat{+} A) & =\prod_{j=0}^{\ell-1} \mathbb{P}\left(X_{j} X_{k-j}=0\right) \prod_{j=\ell}^{k / 2-1} \mathbb{P}\left(X_{j} X_{k-j}=0\right) \\
& =\prod_{j \in L} \mathbb{P}\left(X_{k-j}=0\right) \prod_{j=\ell}^{k / 2-1} \mathbb{P}\left(X_{j}=0 \text { or } X_{k-j}=0\right)=\left(\frac{1}{2}\right)^{|L|}\left(\frac{3}{4}\right)^{k / 2-\ell} .
\end{aligned}
$$

Lemma 15. Let $n, \ell, u, L, U, R$ and $A$ be defined as in Lemma 14. Then for every integer $k$ satisfying $n+\ell-1 \leq k \leq 2 n-2 u-1$, we have

$$
\mathbb{P}(k \notin A \hat{+} A)=\left\{\begin{array}{l}
\left(\frac{1}{2}\right)^{|U|}\left(\frac{3}{4}\right)^{n-(k+1) / 2-u}, \quad \text { if } k \text { is odd }, \\
\left(\frac{1}{2}\right)^{|U|}\left(\frac{3}{4}\right)^{n-1-k / 2-u}, \quad \text { if } k \text { is even } .
\end{array}\right.
$$

Proof. This is similar to the previous lemma, but we consider different intervals for the summands. For $k$ odd, we have

$$
\begin{aligned}
\mathbb{P}(k \notin A \hat{+} A) & =\prod_{j=(k+1) / 2}^{n-u-1} \mathbb{P}\left(X_{j} X_{k-j}=0\right) \prod_{j=n-u}^{n-1} \mathbb{P}\left(X_{j} X_{k-j}=0\right) \\
& =\prod_{j=(k+1) / 2}^{n-u-1} \mathbb{P}\left(X_{j}=0 \text { or } X_{k-j}=0\right) \prod_{j \in U} \mathbb{P}\left(X_{k-j}=0\right) \\
& =\left(\frac{3}{4}\right)^{n-(k+1) / 2-u}\left(\frac{1}{2}\right)^{|U|}
\end{aligned}
$$

For $k$ even, as $k=k / 2+k / 2$ is forbidden,

$$
\begin{aligned}
\mathbb{P}(k \notin A \hat{+} A) & =\prod_{j=k / 2+1}^{n-u-1} \mathbb{P}\left(X_{j} X_{k-j}=0\right) \prod_{j=n-u}^{n-1} \mathbb{P}\left(X_{j} X_{k-j}=0\right) \\
& =\prod_{j=k / 2+1}^{n-u-1} \mathbb{P}\left(X_{j}=0 \text { or } X_{k-j}=0\right) \prod_{j \in U} \mathbb{P}\left(X_{k-j}=0\right) \\
& =\left(\frac{3}{4}\right)^{n-1-k / 2-u}\left(\frac{1}{2}\right)^{|U|}
\end{aligned}
$$

Proposition 16. Let $n, \ell$ and $u$ be integers such that $n \geq \ell+u$. Fix $L \subseteq[0, \ell-1]$ and $U \subseteq[n-u, n-1]$. Suppose $R$ is a uniformly randomly selected subset of $[\ell, n-u-1]$ (where each element is chosen, independently of all other elements,
with probability 1/2) and set $A=L \cup R \cup U$. Then for every integer $k$ satisfying $2 \ell-1 \leq n-u-1$,

$$
\mathbb{P}([2 \ell-1, n-u-1] \cup[n+\ell-1,2 n-2 u-1] \subseteq A \hat{+} A)>1-8\left(2^{-|L|}+2^{-|U|}\right)
$$

Proof. We crudely estimate

$$
\begin{aligned}
& \mathbb{P}([2 \ell-1, n-u-1] \cup[n+\ell-1,2 n-2 u-1] \nsubseteq A \hat{+} A) \\
& \leq \sum_{k=2 \ell-1}^{n-u-1} \mathbb{P}(k \notin A \hat{+} A)+\sum_{k=n+\ell-1}^{2 n-2 u-1} \mathbb{P}(k \notin A \hat{+} A)
\end{aligned}
$$

The left summation of the line above can be bounded using Lemma 14:

$$
\begin{aligned}
\sum_{k=2 \ell-1}^{n-u-1} \mathbb{P}(k \notin A \hat{+} A) & <\sum_{\substack{k \geq 2 \ell-1 \\
k \text { odd }}}\left(\frac{1}{2}\right)^{|L|}\left(\frac{3}{4}\right)^{(k+1) / 2-\ell}+\sum_{\substack{k \geq 2 \ell-1 \\
k \text { even }}}\left(\frac{1}{2}\right)^{|L|}\left(\frac{3}{4}\right)^{k / 2-\ell} \\
& =\left(\frac{1}{2}\right)^{|L|} \sum_{m=0}^{\infty}\left(\frac{3}{4}\right)^{m}+\left(\frac{1}{2}\right)^{|L|} \sum_{m=0}^{\infty}\left(\frac{3}{4}\right)^{m}=8\left(\frac{1}{2}\right)^{|L|}
\end{aligned}
$$

The summation on the right can be bounded similarly, using Lemma 15, to give

$$
\sum_{k=n+\ell-1}^{2 n-2 u-1} \mathbb{P}(k \notin A \hat{+} A)<8\left(\frac{1}{2}\right)^{|U|} .
$$

Thus $\mathbb{P}([2 \ell, n-u-1] \cup[n+\ell-1,2 n-2 u-1] \subseteq A \hat{+} A)$ is bounded above by $8\left((1 / 2)^{|L|}+(1 / 2)^{|U|}\right)$, which is equivalent to the claim of Proposition 16.

We now come to the main result. Whilst the respective lower and upper fringes $U=\{0,2,3,7,8,9,10\}$ and $L=\{n-11, n-10, n-9, n-8, n-6, n-3, n-2, n-1\}$ used by Martin and O'Bryant are sufficient for the sum-dominant case these fall some way short of what is required for a restricted-sum-dominant result. However we can again use Spohn's idea of repeating interior blocks. After a few iterations we get the new fringes, which we shall henceforth refer to as $L$ and $U$, to fit with the earlier lemmas. Thus from now on

$$
\begin{aligned}
& L=\{0,2,3,7,9,10,14,16,17,21,23,24,28,30,31,35 \\
&37,38,42,44,45,49,51,52,56,57,58,59,60\} \\
& U=n-\{59,58,57,55,52,51,50,48,45,44,43,41,38,37,36,34,31 \\
&30,29,27,24,23,22,20,17,16,15,13,10,9,8,6,3,2,1\}
\end{aligned}
$$

Theorem 17. For $n \geq 120$, the number of restricted-sum-dominant subsets of $[0, n-1]$ is at least $\left(7.52 \times 10^{-37}\right) 2^{n}$.

Proof. With $L$ and $U$ as just defined, one can check that

$$
\begin{aligned}
U-L=[n-119, n-1] \backslash & \{n-7, n-14, n-21, n-28 \\
& n-35, n-42, n-49, n-56\}
\end{aligned}
$$

Now since $n-7, n-14, n-21, n-28, n-35, n-42, n-49, n-56 \notin U-L$ it follows that $\pm(n-7), \pm(n-14), \pm(n-21), \pm(n-28), \pm(n-35), \pm(n-42), \pm(n-49), \pm(n-56) \notin$ $A-A \subseteq[-(n-1), n-1]$. With eight pairs of differences excluded from $A-A$ we have $|A-A| \leq 2 n-17$. On the other hand one can check

$$
\begin{aligned}
L \hat{+} L & =[0,120] \backslash\{0,1,4,6,8,15,22,29,36,43,50,120\} \\
U \hat{+} L=U+L & =[n-59, n+59] \\
U \hat{+} U & =[2 n-118,2 n-2] \backslash\{2 n-118,2 n-6,2 n-2\} .
\end{aligned}
$$

Hence for $120 \leq n \leq 178$ we have that $A \hat{+} A$ contains

$$
[0,2 n-2] \backslash\{0,1,4,6,8,15,22,29,36,43,50,120,2 n-118,2 n-6,2 n-2\}
$$

so that $|A \hat{+} A| \geq 2 n-16$. There are $n-120$ numbers between 61 and $n-60$ inclusive. Therefore the number of such $A$ is $2^{n-120}$.

For $n \geq 178$ applying Proposition 16 with $\ell=61$ and $u=59$ implies that when $A$ is chosen uniformly randomly from all such sets, the probability that $A \hat{+} A$ contains $[61, n-60] \cup[n+60,2 n-119]$ is at least

$$
1-8\left(2^{-|L|}+2^{-|U|}\right)=1-8\left(2^{-29}+2^{-35}\right)=\frac{4294967231}{4294967296}
$$

That is, there are at least $2^{n-120} \frac{4294967231}{4294967296}>\left(7.52 \times 10^{-37}\right) 2^{n}$ such sets $A$ with $A \hat{+} A=[0,2 n-2] \backslash\{0,1,4,6,8,15,22,29,36,43,50,120,2 n-118,2 n-6,2 n-2\}$,
whilst at the same time eight pairs of differences are excluded from $A-A$. Thus all such sets $A$ are restricted-sum-dominant sets.

Martin and O'Bryant's Lemma 7 and Theorem 16 for a subset $S$ of an arithmetic progression of length $n$ can also be adapted to give the following result.

Theorem 18. Given a subset $S$ of an arithmetic progression $P$ of length $n$ for every positive integer $n$, we have

$$
\sum_{S \subseteq P}|S \hat{+} S|=2^{n}(2 n-15)+\left\{\begin{array}{l}
26 \cdot 3^{(n-1) / 2}, \quad \text { if } n \text { is odd }  \tag{4}\\
15 \cdot 3^{n / 2}, \quad \text { if } n \text { is even } .
\end{array}\right.
$$

Thus $\frac{1}{2^{n}} \sum_{S \subseteq P}|S \hat{+} S| \sim 2 n-15$. This combined with Martin and O'Bryant's Theorem 3, that $\frac{1}{2^{n}} \sum_{S \subseteq P}|S-S| \sim 2 n-7$ gives that on average the difference set has eight elements more than the restricted sumset. Details will appear in [10].

## 4. How Much Larger Can the Sumset Be?

As in Section 4 of [3] we consider this question in terms of $f(A)=\ln |A+A| / \ln |A-A|$ (and the analogous quantity $\hat{f}(A)=\ln |A \hat{+} A| / \ln |A-A|$ ). It is known - see, e.g., [1] - that $\frac{3}{4} \leq f(A) \leq \frac{4}{3}$. The reason for considering the ratio of logarithms rather than (say) the ratio is explained in [3] in terms of the base expansion method. Some authors, e.g., Granville in [2], prefer to use $g(A)=\ln (|A+A| /|A|) / \ln (|A-A| /|A|)$ for which the analogous bounds are $1 / 2 \leq g(A) \leq 2$.

Hegarty's set $A_{15}$ is easily checked to have $f\left(A_{15}\right)=1.0208 \ldots$, which is often quoted as the largest known value of $f(A)$. In fact, the set $X$ (our $T_{2}$ ) which Hegarty uses to write $A_{15}=X \cup(X+20)$ already does fractionally better:

Lemma 19. Let $X=\{0,1,2,4,5,9,12,13,17,20,21,22,24,25\}$. Then $X+X=$ $[0,50]$ but $X-X=[-25,25] \backslash\{ \pm 6, \pm 14\}$. Thus $f(X)=\ln (51) / \ln (47) \simeq 1.0212$.

Proof. This is just a short calculation.
We do better than either of these using the sets $Q_{j}$ at the end of Section 2.
Theorem 20. There is a set $A$ of integers for which

$$
f(A)=\frac{\ln (|A+A|)}{\ln (|A-A|)} \simeq 1.030597781 \ldots
$$

and another set $B$ of integers for which

$$
\hat{f}(B)=\frac{\ln (|B \hat{+} B|)}{\ln (|B-B|)} \simeq 1.028377107 \ldots
$$

Proof. Take $A=Q_{10}$ for the first claim and $A=Q_{19}$ for the second claim.
It is easy to check that neither any other $Q_{j}$, nor any of the $T_{j}, T_{j}^{\prime}, M_{j}$ or $R_{j}$ give better results than the two $Q_{j}$ s listed above.

The function $g$ has a slightly different behaviour, as it is monotone increasing as $j$ increases in our sequences. The result here is

Theorem 21. Given $\epsilon>0$, there is a set $C$ of integers for which

$$
g(C)=\frac{\ln (|C+C| /|C|)}{\ln (|C-C| /|C|)}>\frac{\ln (32 / 5)}{\ln (26 / 5)}-\epsilon \simeq 1.125944426
$$

Proof. Take $Q_{j}$ for $j$ sufficiently large.
(For comparison, $g\left(A_{15}\right) \simeq 1.0717$ ).
The corresponding suprema are $\ln (16 / 3) / \ln (14 / 3) \simeq 1.0867$ for both $\left(g\left(T_{j}^{\prime}\right)\right)$ and $\left(g\left(T_{j}\right)\right), \ln (23 / 4) / \ln (11 / 2) \simeq 1.0261$ for $\left(g\left(R_{j}\right)\right)$ and $\ln (11 / 2) / \ln (5) \simeq 1.0592$ for $\left(g\left(M_{j}\right)\right)$. None of these do as well as the supremum for the $\left(Q_{j}\right)$.

Note also that because the sumsets and restricted sumsets in each of our families $T_{j}^{\prime}, T_{j}, M_{j}, R_{j}$ and $Q_{j}$ only differ in order by a constant, the function

$$
\hat{g}(A)=\frac{\ln (|A \hat{+} A| /|A|)}{\ln (|A-A| /|A|)}
$$

will give similar insights to $g$.

## 5. The Smallest Order of a Restricted-Sum-Dominant Set

We noted above that we have two restricted-sum-dominant sets of order 16 , namely $T_{3}^{\prime}$ and $M_{2}$ : we know of no smaller examples. In this section we reduce the range in which the smallest restricted-sum-dominant set can be.

Hegarty ([3], Theorem 1) proves that no 7 -element subset of the integers is sum-dominant, and that up to linear transformations Conway's set is the unique 8-element sum-dominant subset of $\mathbb{Z}$. As Conway's set is not a restricted-sumdominant set there is no 8 -element restricted-sum-dominant set of integers.

Further Hegarty finds all 9-element sum-dominant sets $A$ of integers with the additional property that for some $x \in A+A$ there are at least four ordered pairs $\left(a, a^{\prime}\right) \in A \times A$ with $a+a^{\prime}=x$. There are, up to linear transformations, 9 such sets, listed in [3] as $A_{2}$ and $A_{4}$ through to $A_{11}$. It is easy to check that none of these nine sets is restricted-sum-dominant.

Thus, the only possible 9 -element restricted-sum-dominant sets of integers have the property that for every $x \in A+A$ there are fewer than four ordered pairs ( $a, a^{\prime}$ ) such that $x=a+a^{\prime}$. This condition implies that there is no solution of $x+y=u+v$ with $x, y, u, v$ all distinct, so such a set is a weak Sidon set in the sense of Ruzsa [8].

Defining $\delta(n)$ for $n \in A-A$ to be the number of ordered pairs $(x, y)$ such that $x-y=n$, it is shown in the proof of Theorem 4.7 in [8] that for a weak Sidon set, $\delta(n) \leq 2$ whenever $n \neq 0$ and at most $2|A|$ elements $n$ have $\delta(n)=2$.

Thus, noting 0 has $|A|=9$ representations and putting $m=|A-A|$,

$$
81 \leq 9+(2 \times 9) \times 2+(m-19) \Rightarrow m \geq 55
$$

so if such a set were to be sum-dominant its sumset would have to have order at least 56 . But of course $|A+A| \leq 9 \times 10 / 2=45$, and we have proven

Theorem 22. All sum-dominant sets of integers of order 9 are linear transformations of one of Hegarty's nine sets $A_{2}$ and $A_{4}$ to $A_{11}$. None of these is restricted-sum-dominant, so there is no restricted-sum-dominant set of order 9 .

We thus know that the smallest restricted-sum-dominant set of integers has order between 10 and 16. It appears a non-trivial computational challenge to find the order of the smallest restricted-sum-dominant set.

## References

[1] Gregory A. Freiman and V.P. Pigarev, The relation between the invariants $r$ and $t$ (Russian), Kalinin. Gos. Univ. Moscow (1973), 172-174.
[2] Andrew Granville, An Introduction to Additive Combinatorics. Lecture notes, available at http://www.dms.umontreal.ca/~ andrew/PDF/ProcAddPap.pdf
[3] Peter V. Hegarty, Some explicit constructions of sets with more sums than differences, Acta Arith. 130 (2007), no.1, 61-77. Available online at http://arxiv.org/abs/math/0611582
[4] John Marica, On A Conjecture of Conway, Canad. Math. Bull. 12 (1969), 233-234. Available online at http://www.math.ca/cmb/v12/cmb1969v12.0233-0234.pdf
[5] Greg Martin and Kevin O'Bryant, Many sets have more sums than differences, in: Additive Combinatorics, 287-305, CRM Proc. Lecture Notes, 43, Amer. Math. Soc., Providence, RI, 2007. Available online at http://arxiv.org/abs/math/0608131
[6] Melvyn B. Nathanson Sets with more sums than differences, Integers 7 (2007), \#a05. Available online at http://www.emis.de/journals/INTEGERS/papers/h5/h5.pdf
[7] Sheila Oates McDonald and Anne Penfold Street, On Conway's conjecture for integer sets, Bull. Austral. Math. Soc. 8 (1973), 355-358. Available online at http://dx.doi.org/10.1017/S0004972700042647
[8] Imre Z. Ruzsa, Solving a linear equation in a set of integers I, Acta Arith. 65 (1993) no 3, 259-282. Available online at http://matwbn.icm.edu.pl/ksiazki/aa/aa65/aa6537.pdf
[9] William G. Spohn Jr. On Conway's conjecture for integer sets, Canad. Math. Bull. 14 (3), 1971 461-462. Available online at http://cms.math.ca/10.4153/CMB-1971-085-4
[10] Matthew Wells, Ph.D. Thesis (in preparation), University of Essex.
[11] Yufei Zhao, Sets Characterized by missing sums and differences, J. Number Theory 131 (2011) 2107-2134. Available online at http://yufeizhao.com/papers/sum-dominant_density.pdf

