#AB7 INTEGERS 13 (2013)

ON SETS WITH MORE RESTRICTED SUMS THAN
DIFFERENCES

David Penman
Department of Mathematical Sciences, University of Essex, Wivenhoe Park,
Colchester, United Kingdom
dbpenman@essex.ac.uk

Matthew Wells
Department of Mathematical Sciences, University of Essex, Wivenhoe Park,
Colchester, United Kingdom
mwells@essex.ac.uk

Received: 8/2/12, Revised: 4/3/13, Accepted: 7/27/13, Published: 9/26/13

Abstract

Given a finite set A of integers, we define its restricted sumset A+A to be the set
of sums of two distinct elements of A - a subset of the sumset A + A - and its
difference set A — A to be the set of differences of two elements of A. We say A is
a restricted-sum-dominant set if [A+A| > |A — A|. Though intuition suggests that
such sets should be rare, we present various constructions of such sets and prove
that a positive proportion of subsets of {0,1,...n— 1} are restricted-sum-dominant
sets. As a by-product, we improve on the previous record for the maximum value
of In(|A + A])/In(|A — A]), and give some related discussion.

1. Introduction

Let A be a finite set of integers. We define its sumset A+ A to be {a+b: a,b € A},
its difference set A — A to be {a — b : a,b € A} and its restricted sumset A+A
to be {a+b: a # bab € A}. Tt is a natural intuition that, since addition is
commutative but subtraction is not, that ‘often’ we should have |A+ A| < |A— A].
However it has been known for some time that this is not always the case: for
example, the set C = {0,2,3,4,7,11,12,14}, which is attributed to Conway, has
|C+C| = 26, but |C—C| = 25. In this paper, sets with this property are called sum-
dominant: in some other literature, they are described as MSTD (for ‘more sums
than differences’) sets, see, e.g., Nathanson [6]. It is now known by work of Martin
and O’Bryant [5] that sum-dominant sets are less rare than they might initially
appear: they prove that, for n > 15, the proportion of subsets of {0,1,2...n — 1}
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which are sum-dominant is at least 2 x 10~7. The constant was sharpened, and the
existence of a limit shown, by Zhao [11].

In this paper we investigate what might appear to be an even more demanding
condition on a set, namely what we will call the restricted-sum-dominant property.

Definition 1. A set A of integers is said to be restricted-sum-dominant if
|A+A| > |A - Al

There are examples of this. For example, we find the set from Hegarty [3]
Ay = {0,1,2,4,5,9,12,13,17,20, 21, 22, 24, 25, 29, 32, 33, 37, 40, 41, 42, 44, 45}

has |A15<AFA15‘ = 86 whilst |A15 - A15| = 83.

Clearly any restricted-sum-dominant set is sum-dominant. The converse is false
as Conway’s set is sum-dominant but not restricted-sum-dominant (|C+C| = 21).

Note that the property of being restricted-sum-dominant is preserved when we
apply a bijection of the form x — az 4+ b with a,b € Z, a # 0. It therefore suffices
to consider sets A C Z with min(A) = 0 and ged(A) = 1. We shall refer to such
sets as being normalised.

The organisation of this paper is as follows. In Section 2 we exhibit several
sequences of restricted-sum-dominant sets, addressing some natural questions about
the relative sizes of the restricted sumset and difference sets. In Section 3, we show
that a strictly positive proportion of subsets of {0, 1,2,...n—1} are restricted-sum-
dominant sets. In Section 4 we obtain a new record high value of each of

_ In(A+ 4]) _ In(jA+ A}/]A])

£ )7mandg(f4)*m

and give some related discussion. Finally, in Section 5 we improve somewhat the
bounds on the order of the smallest restricted-sum-dominant set.

We shall, slightly unusually, use the notation [a, ], when a < b are integers, to
denote {a,a+1,...b}.

We are grateful to the referee for suggestions which have non-trivially improved
the organisation and exposition of this paper, especially in Section 5.

2. Explicit Sequences of Restricted-Sum-Dominant Sets

Our first sequence of restricted-sum-dominant sets arose by considering the set
B ={0,1,2,4,5,9,12,13,17, 20, 21, 25, 28, 30, 32,33} which appears in [7] and [9]
as a set of integers with |[B+B| > |(B — B)\ {0}|). We then noted that replacing 33
with 29 gives a 16-element restricted-sum-dominant set (which will be T4 below).
To get the subsequent terms of the sequence, we used (here and elsewhere in the
paper) the idea from [9], Conjecture 6, that repetition of certain so-called interior
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blocks when the set is written in order as a sequence of differences can increase the
size of the sumset more than the difference set: see [9] for details.
Theorem 2. For every integer j > 1 we define
! . .
T; ={0,2} U{1,9,...,1+ 85} U{4,12,...,4 + 8j}
U{5,13,...,5+8j1 U{6+85,8( +1)}
Then
/N 7 . .
Ti+T; =1[1,6 +8(2j + 1)\ {8,8(2j + 1)},

Tj+T; =10,8(25 +2)] \ {7 +8(2j + 1)} and
T) —T) = [-8(j +1),8(j + D]\{£6,... = (6 +8(j — 1)) }.

Proof. We deal first with the restricted sumset. Since 0 € T}, T} \ {0} C Tj+T7,
giving all elements congruent to 1,4 or 5 mod 8 less than 8(5 + 1). Also

8(j +1)+{1,9,...,1+8} ={1+8(j +1),....,1+8(2j + 1)}
8(j+1)+{4,12,...,4+ 85} ={4+8( +1),...,4+8(2j + 1)}
8(5 +1)+{5,13,...,5+8i} ={5+8( +1),....,5+8(2j + 1)}

SO Tﬁ—TJf contains all the elements congruent modulo 8 to 1,4 or 5 stated. For
integers congruent to 2 modulo 8 the restricted sumset contains 0+2 and

{1,9,...,1+8}+{1,9,...,1+ 85} = {10,18,...,2 +8(2j — 1)}

gives most of the rest: the two missing elements are (4+85)+(6+8j) = 2+8(2j+1)
and 4 +8(j — 1) + 6 + 85 = 2 + 8(2y).
For integers congruent to 3 modulo 8, note that

{1,9,...,1+8j}4(2) = {3,11,...,3 + 8}

and
(6 +85)4{5,13,...5+8j} = {3+8( +1),...3+8(2j +1)}.

For integers congruent to 6 modulo 8§,
{1,9,..., 1+ 81 +{5,13,...,5+ 85} = {6,14,...6 + 8(25)}

and (6+85)+8(+1)=6+8(2j+1) € T;J}T; also. The elements congruent to 7
modulo 8 are obtained from

(2)+1{5,13,...,54+8j} ={7,15,..., 7+ 85}

and
(6+85)+{1,9,...,1+8j} ={7+84,...,7+8(25)}
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in 77 —T—TJ’ . Finally, the required multiples of 8 are obtained from
(4,12, 4+ 8j}H{4,12,...,4+ 8} = {16,24,...,8(2j)}.

Finally we note that the alleged omitted elements 0,8 and 8(2j + 1) are not in
TJ’—T—TJ’ . The claim for 0 is clear, the only way to get 8 is as 4 + 4 which is not a
restricted sum, for 8(2j + 1) the large elements of 7 are 5+ 85,6+ 85,8(j +1) € T}
but 3 + 85,2+ 85,85 ¢ T so it could only be obtained as (4 + 85) + (4 + 85) which
is not a restricted sum.

Next we address the sumset T]’ + Tj’ All we need do here is note that 0 = 0+ 0,
8 =444, 7+8(2j+1) is still not attained and that 8(25+2) =8(j+1)+8(j +1).

We finally deal with 77 —T}. Given that d € T —T; <= —d € T;—T; it suffices
to consider the positive differences. Firstly we show that {6,...,6 +8(j — 1)} ¢
T7 —T;. Given that T} has the form

T/ ={0,1+82,2,4+8y,5+82,6 +85,8(j + 1)}

(where 0 < x,y,2, < j), considering the difference set 77 — T we see that the only
difference of the form 6 + 8¢ (where ¢ is a non-negative integer) is 6 + 87, as stated.
To confirm TJ{ — TJ{ does contain the other elements in the interval specified, note
that, as 0 € T}, T} C Tj — T}. The other elements are obtained as follows:

{1,9,...,1+8j} — (1) ={0,8,...,8j}
{4,12,...,4+8j} —1={3,11,...,3+ 8j}
{4,12,...,4+8j} —2={2,10,...,2 + 85}
{12,20,...,4+ 85} — (5) = {7,15,...,7+8(j — 1)}
8(j+1)— (1) =7+8j.

Thus all the elements of the right-hand side are in TJ’ — TJ{ as required. O
Corollary 3. For every integer j > 1 the set TJ{ C Z has
T} = 3j+7, |[T;4T;| =165 +12,|[T; + T;| = 16j + 16 and |Tj —T;| =145 +17.
Therefore

Tj+T) — T =T} =25 =5, |Tj+T;|—|Tj—Tj| =2j— 1
and TJ{ is an restricted-sum-dominant set for every integer j > 3.

T} of order 16 is one of the two smallest restricted-sum-dominant sets we have.
The set T} has a superset 7; = 77 U 1 + 8(j + 1), which is also restricted-sum-
dominant for j > 3:
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Theorem 4. For every integer j > 1 define

T; ={0,2} U{1,9,...,1+8(j + 1)} U{4,12,...,4 + 8;}
U{5,13,...,5+8j1U{6+85,8(j + 1)}

Then

T;4T; = [1,1 +8(25 + 2)]\{8,8(2j + 1),8(2j +2)},
T;+T; =1[0,2+8(2j +2)] and
T, —T;=[-1+8(F+1)),1+8(y+1)\{£6,... £ (6+8(—1))}

Proof. Firstly since T; D T} we have T,+T; O [1,6 +8(25 + 1))\ {8,8(25 + 1)}
With 1+ 8(j 4+ 1) € T, we now also have that

8G+1)+(1+8(3+1)=1+8(2j+2) and
(6+8j)+(14+8(+1)=7+812j+1)

are in T;+7T; as well. Furthermore
(148G +1)+(1+8(U+1)=2+8(2j+2)eT;+Tj.

This completes the claims for the sumset and restricted sumset, noting that clearly
8 and 8(2j + 2) are not in 7;+7; and checking that 8(2j + 1) & T;+71}.

As regards the difference set, with 0 < x < 541 the positive differences resulting
from the introduction of the new element have the form

(14+8(+1))—{0,2,1+8zx,4+8y,5+82,6+858( +1)}

This shows that 7 —T; = T; — T; U £(1 + 8(j + 1)) and the result follows. O
Corollary 5. For every integer j > 1 the set T; C Z has
IT;| =35 +8, |T;+Tj| =165 +14,|T; + T;| = 165 + 19 and |T; — Tj| = 145 +19.
Therefore

| Tj+T5] = 1Ty — Tyl = 25 =5, |T; +Ty| = |T; — Ty = 2j
and T} is an restricted-sum-dominant set for every integer j > 3.

In [5], Martin and O’Bryant construct, for all integers x, subsets S of [0, 17|z|]
with |S + S| — |S — S| = «. Corollary 3 shows that for each positive odd integer x
there is T} C Z with [T} + T}| — |T; — T}| = z, and Corollary 5 shows each positive
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even integer can be expressed as the difference of the cardinalities of the sumset
and the difference set of some T C Z.

Recall that the diameter of a finite set A of integers is max(A) — min(A). There
is some interest in finding sets of integers of small diameter with prescribed rela-
tionships between the order of the sumset (or restricted sumset) and the difference
set: see, e.g., [5] Theorem 4 where sets S, of diameter at most 17|z| are constructed
with [S; + Sz| =[Sz — Sz| equal to z. Our sets 7} and T} have respective diameters
87 + 8 and 85 + 9, which is smaller than the sets S, in [5] for j > 3.

Further Corollary 5 makes it clear that the difference between the size of the
restricted sumset and the difference set can be any odd positive integer. We will
get any even difference for |[A+A| — |A — A| in our next construction. This was
motivated by the sum-dominant (but not restricted-sum-dominant) set called A;3 =
{0,1,2,4,7,8,12,14,15,18,19, 20} in Hegarty [3]. We exhibit, addressing his remark
about the desirability of generalising Aj3, two infinite sequences of (eventually)
restricted-sum dominant sets derived from Ajz (which shall be our R;).

Theorem 6. For each integer j > 1 define R; C Z to be the set

R; ={1,4}U{0,12,...,12j} U{2,14,...,2 + 125}
U{7,19,...,7+ 125} U {8,20,...,8 + 125} U {3 + 124, 6 + 125}

For each integer j > 2 we have

Rj4R; = [1,3412(25 + D))\ {{17,...,5+12(j — 1)} U {12(25),12(2j + 1)}},
Rj+R; =[0,4412(2j + D]\ {17,...,5+12(j — 1)} and
Rj — R; = [—(8+125),8 + 12j] \ {£9, ..., £(9 + 12(j — 1))}.

Proof. We first verify the claim for the restricted sumset. For multiples of 12,
{0,12,...,125}4+{0,12,...,125} = {12,24,...,12(25 — 1)}.
The elements congruent to 1 modulo 12 are given by
(1) +{0,12,...,125} = {1,13,...,1 4+ 125}.
and
(6+125) 4+ {7,19,..., 7+ 125} ={1+12(j + 1),..., 1 +12(2j + 1)}.
For those congruent to 2 modulo 12
{0,12,...,125}+{2,14,...,2 + 125} = {2,14,...,2 + 12(2j)}

and also (6 + 125) + (8 + 125) = 2+ 12(2j + 1) € R;+R;. For 3 modulo 12 clearly
3=14+2€¢ Rj—T—Rj and the rest follow from

{7,19,...,7+12j}4{8,20,...,8 + 125} = {15,27,...,3 + 12(2j + 1)}.
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For elements congruent to 4 modulo 12, we clearly have that 4 and 16 are in R; —T—Rj
as well as

{8,20,...,8 +125}+{8,20,...,8 + 125} = {28,40,...,4 +12(2j)}.
The elements congruent to 6 modulo 12 in Rj—T-Rj can be obtained as the union of
(4)+{2,14,...,2 + 125} = {6,18,...,6 + 125}

and
(6 +127) + {0,12,...,125}.

The elements congruent to 7 (respectively 8) modulo 12 are obtained from
{0,12,...,125}3{7,19, ..., 7+ 125} = {7,19,..., 7+ 12(25)}.

and
{0,12,...,125}448,20,...,8 + 125} = {8,20,...,8 +12(2j)}.

For 9 (respectively 10) modulo 12 use
{2,14, ..., 2+ 125}4+{7,19,..., 7+ 125} = {9,21,...,9 + 12(2j)}
respectively
{2,14,...,2+125}4+{8,20,...,8 + 125} = {10,22,...,10 + 12(2)}.
Finally the elements congruent to 11 modulo 12 are obtained from
(4 +{7,19,...,7+ 125} ={11,23,...,11 + 125}

and
(3+125) 4+ {8,20,...,8+ 125} = {11+ 124,...,11 4+ 12(25)}.

To see that the restricted sumset does not contain any of {17,...,5+ 12(5 — 1)},
note that none of the sumsets of the progressions with common difference 12 give
elements which are congruent to 5 modulo 12 and neither can translates of the
progressions by 1 or 4). The remaining elements congruent to 5 modulo 12 are
obtained as clearly 5 € R; —T—Rj, and also

(3+124) + {2,14,...,2+ 125} = {5+ 12j,...,5 + 12(24)} C R;+R;.

Finally, to see that R;+R; does not contain 12(2j) or 12(2j 4+ 1), note that it
is impossible to obtain 12(2j) as a sum of distinct elements of R; since the only
elements of R; greater than 12j are S = {24+ 124,34 125,64+ 125,7 + 125,8 + 125}
but none of the numbers in 2(125) — S (namely 10 + 12(j — 1),9 + 12(j — 1),
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6+12(j —1),5+12(j — 1),4+ 12(j — 1)) are in R;. Further as 12(j +1) € R;
12(2j + 1) is excluded from R;+R;. This completes the argument for R;+R;.

However, we do have that 1254125 = 12(2j) € R;+R; and (6+125)+(6+12j) =
12(2j +1) € R; + R;, so both these missing elements get into R; + R;. Since we
readily see that none of the numbers congruent to 7 mod 12 ruled out of R;+R;
are in R; + R; either, the sumset is as stated.

To confirm the claim for the difference set as before we consider the positive
differences. Writing R; as

{1,4,12w,2 + 12,7 + 12,8 + 122, 3 + 124, 6 + 125}

the remainders which occur in R; — R; are exactly the set [0, 11]\ {9}. On the other
hand, to see that R; — R; contains all the claimed differences, note that as 0 € R;
we have R; C R; — R;. Also the right hand sides of

(1) ={-1,11,...,11 + 12(j — 1)}
{2,14,...,2 4125} — (1) = {1,13,...,1 + 125}
{7.19,...,7+12j} — (4) = {3,15,...,3 + 12j}
{8,20,...,8+12j} — (4) = {4,16,...,4 + 125}
{7,19,...,7+ 125} — (2) = {5,17,...,5 + 125}
{7,19,...,7+ 125} — (1) = {6,18,...,6 + 125}
{2,14,...,2+12j} — (4) = {=2,10,..., 10+ 12(j — 1)}.

are in the difference set which completes the claim. O
Corollary 7. For every integer j > 2 the set R; C Z has
|Rj| = 4j+38, |Rj+R;j| =23j+14,|R;+ Rj| = 23j+18 and |R;—R;| = 22j+17.
Therefore

|Rj+R;| = |Rj — Rl =7 =3, |Rj+R;|—|R; — Rj| =j+1
and R; is an restricted-sum-dominant set for every integer j > 4.

This indeed confirms that any positive integer can be obtained as
|R;j+R;| - |R; — Ry.

Our fourth sequence of sets, the Mjs, also has R, (Hegarty’s A;3) as its first
member, but this time we focus not on prescribing |M;+M;| — |M; — M;| but
instead on getting a reduced diameter 9 + 115 rather than the diameter 8 4 127
of R;. (We were first led to this family by considering Marica’s sum-dominant
set [4] M = {1,2,3,5,8,9,13,15,16}, normalising it and trying to expand it to a
restricted-sum-dominant set).
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Theorem 8. For j > 1 define
M; ={0,2}U{1,12,..., 1+ 115} U {4,15,...,4 + 115}
U{7,18,...,7+ 11} U{8,19,...,8 + 115} U {3 + 114,94+ 115}
We then have that
M;+M; =[1,6 +11(25 + 1)) \ {3+ 11(2j + 1)},

M+ M; =[0,7+11(2j + 1)] and
M; — M; = [—(9 4 115),9 + 11§] \ {£9, ..., £(9+ 11(j — 1))}.

Proof. Firstly we show that M;+M; consists of

U {ea+11,..a+11(25+ 1)}
a=1,2,4,5,6

and

U  {ea+11,..a+11(24)}
a=3,7,8,9,10,11

and then show that the sumset contains the additional elements claimed. In the
case where a = 1 we have

{4,15,...,4+ 11j}-f-{8, 19,...,8+ 115} ={12,23,...,12+11(2j§) = 1+ 11(25+ 1)}
and 0+ 1€ Mj—T—Mj also. For the case a = 2
{1,12,...,1+11j}—T—{1,12,...,1+llj}:{13,24,...,2+11(2j—1)}

and 042, (4+11(5—1))+(9+115) = 2+11(2j), (44+115)+(94+115) = 2+11(2j+1)
are also in Mj—f-Mj.
For the case a = 4,

{7,18,..., 7+ 115}4{8,19,...,8+ 115} = {15,26,..., 15+ 11(2j) = 4+ 11(2j +1)}

and 0+ 4 € M;+M,;.
For the case a = 5,

{8,19,...,8 + 115}-4{8,19,...,8 + 115} = {27,...,16 + 11(2j — 1) = 5+ 11(2j)}

and also 5 =144, 16 =12+ 4 and (74 11j) + (9 + 115) =5+ 11(25 + 1).
For the case a = 6
(2) +{4,15,...,4+ 115} = {6,17,...,6 + 115}
(9+115)+{8,19,...,84+ 11} = {6+ 11(j + 1),...,6 + 11(25 + 1)}.
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For the case a = 3
(7,18, ..., 7+ 115}4{7,18, ..., 7+ 115} = {25,36,...,3 + 11(2))}

and 3 =1+2,14 =2+ 12 are in M;+M;.
For the case a =7
(0)+{7,18,...,7+ 115} ={7,18,..., 7+ 115}
(3+115) +{4,15,...,4+ 115} = {7+ 114,..., 74+ 11(25) }.

For the case a = 8
{1,12, ..., 1+ 115}4H{7,18,..., 7+ 115} = {8,19,...,8 + 11(2)}.
For the case a =9
{1,12,..., 1+ 115}+{8,19,...,8 + 115} = {9,20,...,9 + 11(2j)}.
For a =10
(2)+{8,19,...,8 + 115} = {10,21,...,10 + 115}
(34 115)+{7,18,...,7+ 115} = {10 + 114,...,10 + 11(2j)}.
For a =11
{4,15, ..., 44+ 115}4+{7,18,..., 7T+ 115} = {11,22,...,11 + 11(2j)}.

To see that 3 + 11(2j + 1) ¢ M+M, if it did not we would have a sum of the
form (a + 115) + (¢ + 11j) = 14 + 225 from elements of M; with a + ¢ = 14,
however, since a and c¢ are distinct elements of {1,3,4,7,8,9} this is impossible and
hence 3 4+ 11(2j + 1) ¢ M;+M;. This confirms the claim for the restricted sumset.
Furthermore for each m € M, the sumset contains 0,2(7 + 11j) = 3+ 11(2j + 1)
and 2(9 + 115) = 7+ 11(25 + 1) which completes the claim for the sumset.

For the difference set to see that {£9,...,£(9+11(j — 1))} ¢ M; — M, let

M; ={0,2,1+ 11w, 4+ 112, 7 + 11y, 8 + 112,3 + 115,9 4 115},

where 0 < w, z,y, z < j. It suffices to consider just the positive differences. Calcu-
lation of M; — M reveals that the only positive difference congruent to 9 modulo
11 is (9 + 115) — 0, which is outside the range claimed.

To see that M; — M; contains the remaining elements in the interval, firstly note
that as 0 € M; we have M; — M; D M;. Furthermore M; — M; also contains the
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right-hand sides of the following:

{1,12,..., 1+ 115} — (1) = {0,11,...,115}
{4,15,... 4+ 115} — (1) = {3,14,...,3 + 115}
(7,18,...,7+ 115} — (1) = {6,17,...,6 + 115}
(2)
(2)

{1,12,...,14+ 115} — (2) = {-1,10,21,...,10 + 11(j — 1)}
{4,15,...,44+ 115} — (2) = {2,13,...,2 + 115}
{7,18,...,74+ 115} — (2) = {5,16,...,5 + 115}
9+11j —0=9+11j.
This completes the claim of the theorem. O
Corollary 9. For every integer j > 1 the set M; C Z has
|M;| = 4548, |M;+M;| = 22j+16, |M;+M;| = 22j+19 and |M;—M;| = 20j+19.
Hence
|M+M;| — [Mj — Mj| =2j =3, |M;+ M| —|M; — M| =2j
and M; is an restricted-sum-dominant set for every j > 2.
Note that the set M5 has slightly smaller diameter 31 than the other 16-element
restricted-sum-dominant set 775.
Martin and O’Bryant refer to sets with |A + A| = |A — A| as sum-difference
balanced. Similarly we can consider sets with |A+A| = |A — A| as restricted-sum-

difference balanced. The results above show such sets exist (e.g., R3). The smallest
such set we have found has order 14: it is is

M’ =1{0,1,2,4,7,8,12,14, 15,19, 22, 25, 26, 27},

so |M'+M'| = |[1,53]\{43,50}| = 51 and |M' — M'| = |[-27,27]\ {£9, £16}| = 51.
We show that by taking the union of translates of M’ by non-negative integer
multiples of its maximum element one can obtain arbitrarily large restricted-sum-
difference balanced sets.

Lemma 10. Letk > 2 and Ag=A={0=a1 <ay < - <ap =m} CZ and
Ai=AUA+m)U---U(A+1im). Then

|Ai+A;| — |[AisiHAi | =a Vi>2,
|[A; + A —|Aici +Aisal=a Vi>1

and
|A17Ai‘7|Ai_17Ai_1|:CQ V’LZ].

where ¢1 and cy are positive constants.
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Proof. We first note
|AiF+ A — [Ai1FAi 1| = [(Ai+A) \ (A1 +Ai )]

and show that the right-hand side is a constant by showing that the set of new
elements introduced on each iteration is a translate of the set of new elements
introduced on the previous iteration. We have

At A = UL o o((A+ rm)+(A + sm)).

If |r — s| > 2, it is clear that A+rm and A+ sm are disjoint so their restricted sum
is just their sum. If i—1 > r = s > 1, then (A+rm)+(A+rm) = (A+ (r—1)m)+
(A+ (r 4+ 1)m). The only case needing a little thought is |r — s| = 1: without loss
of generality, r = s + 1. Then

(A+ (s+1)m)+(A+sm)={a+b+ (2s+1)m: a+m # b}
the only way we can have a +m = b is if a = 0,b = m, but in this case
0+ (s+1)m) + (m+ sm) = (m+ (s + 1)m)+(0 + sm)
We deduce that, for all i > 2
Ait A =(AFA) U A+ (A4+m))U- - U(A+ A+ (2i — 1)m) U (A+A + 2im).
Similarly
AiiHAi1 =(AFAUA+A+m)U - U(A+A + (20 — 2)m).

Now some elements of (A + A + (2i — 2)m) \ (A+A + (2i — 2)m) may be in A +
A+ (2i —3)m and thus in A;_;+A;_1. (Translates of A+ A by less than (2i — 3)m
need not be considered). We have

(AiFA)\ (Aim1HAim) = (A+ A+ (20 —2)m) U (A + A+ (20 — 1)m)U
(AFA+2im))\ (A+ A+ (2 —3)m) U (AFA+ (20 —2)m)). (1)
Likewise
(Aip1F+Ai1) \ (Ai+4) = (A+ A+ 2im) U (A+ A+ (2i + 1)m)U
(A+A+ (2i +2)m)) \ (A+ A+ (20 — 1)m) U (A+A + (2i)m)). 2)

The right-hand side of (2) is a translation of the right-hand side of (1) by 2m. (To
see this, note it is easy to check for sets of integers that if C; + 2m = C;4; and
D;+2m = D;11, then (C; \ D;) + 2m = (Ci41 \ Di41): apply this with the obvious
choices of C; and D;). Thus

(Aipr+Aip) \ (Ai+A) = ((Ai+A) \ (Ais1+4i1)) + 2m.
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Since translation by a constant leaves the cardinality of the set difference unaltered
it follows that

[(Aip1FAi) \ (Ai+A0)| = [(Ait40) \ (Aica+Ai )|

as required.
To see that

|Ai + Ai|l — |Aic1 + Aia] = |Ai+Ai| — |Aim1+ A (3)

for all # > 1 we show that the number of additional elements A; + A; contains is
constant. All the elements of

(A+ A)\ (A+4)
except for 2m, which is in A;4+A4; for i > 1 due to 0+ 2m, are excluded from A;F+A4;
for all ¢ > 1. Similarly the elements of
(A+ A)\ (A+A4)) + 2im
except for 2im are excluded from A;+A;. This means that for all ¢ > 1
[Ai + A = [AitAil = 2(/(A+ A) \ (A+A4)[ - 1).

In other words the difference between the cardinalities of the sumset and the re-
stricted sumset is a constant for all ¢ > 1 and (3) holds.
To verify the claim for the difference set, write

J=—1
Thus we have
i1
(Ai = A\ (Aisy —Aig) = (A= A—im)U(A—A+im)\ ] (A—A—jm).
j=—(i-1)

But the only sets in U;;l_(i_l) (A — A — jm) which could intersect (A — A — im) or
(A— A+im) are for j = (i — 1), j = (i — 2) (which will intersect A — A — im in
precisely the one element (1 —4)m), j = —(i —2) (which will intersect it in precisely
the one element (¢ — 1)m) and j = —(i — 1). Thus for all i > 1

(A = A\ (i1 — A1) =((A = (A +im))\ (A — (A + (i — )m)))
U(A—-A+im)\ (A—A+ (i —1)m)).
Similarly

(Aip1 — Aip1) \ (Ai — 4;) =((A = (A+ (i + 1)m)) \ (A — (A +im)))
U((A—A+(i+1)m)\ (A— A +im)).
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The sets (A—(A+(i+1)m))\(A—(A+im)) and (A—A+(+1)m)\ (A—A+im)
are disjoint for all ¢ > 1. Also (A—(A+(i+1)m))\ (A— (A+1im)) is a translation
of (A—(A+im))\(A—(A+(i—1)m)) by —m and (A— A+ (i+1)m)\ (A— A+im)
is a translation of (A — A+1im)\ (A — A+ (i —1)m) by m. These translations leave
the cardinalities of the sets unchanged, therefore

[(Aigr = Aipa) \ (Ai = A = [(Ai = A) \ (Aia — Aia)|
and the overall result follows. O
Setting M{ = M’ U (M’ + 27) we easily check
|M]+M;j| = |[1,107) \ {97,104}| = |[-54,54] \ {£36,+43}| = |M;] — M|
and M5 = MU (M’ +27)U (M’ + 54) gives
|My4+Mj| = |[1,161] \ {151,158}| = |[—81,81] \ {£63, £70}| = | M} — M}|.
It follows from Lemma 10 that

Corollary 11. There exist arbitrarily large restricted-sum-difference balanced sub-
sets of Z.

Our final sequence of restricted-sum-dominant sets is constructed with a view to
obtaining high values of f(A) as defined in the introduction. Again, this set is a
modification of one in [9], which describes Q;\{1 +4(4j + 7)} for j = 1,2,3 as sets
giving large sumset relative to the difference set. Including 1 4 4(4j + 7) increases
the sumset but does not change the difference set.

Theorem 12. Let

Q; ={0,2,4,12} U{1,5,...,1 4+ 4(4j + 8)} U {24,40,...,8 + 165}
U{44+16(j +1),12 4+ 16(j + 1), 14 + 16(j + 1), 16(j +2)}

for an integer j > 1. Then

Q;+Q; =[1,1+4(8j + 16)]
\ {8,20,32,48,4(87 +4), 4(85 + 8), 4(87 + 11), 4(8j + 14), 4(85 + 16)}

for j > 2, whilst
Q;+Q; =1[0,2+4(8j+16)] \ {20,32,4(85 + 8),4(85 + 11)}
for j > 1 and

Q; — Q; =[—(1+4(4j +8)), 1+ 4(4j + 8)] \ £{{6}, {14,...,14 + 165},
{18,...,2+165},{26,...,10 + 16},6 + 16(j + 1)}

for 3 >1.



INTEGERS: 13 (2013) 15

Proof. To verify these claims, consider elements of (); in terms of the union of
Qoad ={1,5,...,14+4(45 +8)}
and

Qeven :{0, 2, 4, 12} U {24, ey 8 + 16_]}
U{4+16(j +1),12+16(j + 1), 14+ 16(j + 1), 16(j + 2)}.

Firstly @, —T—Qj contains all the odd numbers in the interval since we have

(0)+{1,5,...,1+4(4j +8)} ={1,5,..., 1+ 4(45 +8)}
16(5 +2)+{1,5,..., 1 +4(4j + 8)} ={1 + 4(45 + 8),5 + 4(4j + 8),
coy 14+4(85 +16)}
(2)+H{L,5,...,14+4(4j+8)} ={3,7,...,3+4(45 + 8)}
14+16(j 4+ 1)+{1,5,...., 1+ 4(45 + 8)} ={3+4(4j + 7), 7+ 4(4j + 7),
oy 34+ 4(85 +15)}.

The union of the right hand sides of the above is indeed
{1,3,...,3+4(8+15),1 +4(85 +16)} = {1,3,...,1+2(4(45 + 8))}.

To see that the sumset contains all the even elements claimed, note first that
Qodd+Qodq gives the following elements congruent to 2 mod 4:

Qodd+Qodd = {6,10,...,2 4+ 4(8j + 15)} C Q,;+Q;.

Clearly 0+ 2 is also in Q;+@Q;, however whilst max(Q; + Q;) = 2 +4(8j + 16) this
is not in the restricted sumset. As regards the multiples of four, clearly none of
these can be obtained from Qoqa+Qodd 0F Qodd+Qeven. To confirm the elements we
claim to be excluded cannot be present note that Qcyer is symmetric w.r.t. 16(j+2):

Qeven = 16(] + 2) — Qeven- Hence Qeven‘T'Qeven = 16(2] +4) - (Qewen‘T'Qeven) and
Qeven +Qeven = 16(25+4) — (Qeven + Qeven ). The restricted sumset of the elements
of Qeyen less than or equal to 32 is

{0,2,4,12,24}4{0, 2,4, 12,24} = {2,4,6,12, 14, 16, 24, 26, 28, 36}.

Thus 0,8,20,32 and 48 are excluded from Q;+Q;. Whilst Q; + Q; contains 0,8
and 48 as the doubles of 0,4 and 24 respectively, it is easy to check that neither 20
nor 32 are in Q; + @;. By symmetry

16(25+4) — {0, 8,20, 32,48} = {4(8j+4), 4(8j+8), 4(8j +11), 4(85 +14), 4(8j +16)}

which has empty intersection with Q;+Q;.
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It remains to show that all other (relevant) multiples of 4 are in the (restricted)
sumset; we consider the cases 0,4,8 and 12 modulo 16 separately. We have the
following multiples of 16 in Qj—T—Qj:

{24,40,...,165 + 8}+{24,40,...,165 + 8} = {64,80,...,16(2j)}
(A416(j +1)F(12+16(j + 1)) = 4(8j + 12) = 16(2j + 3).
Furthermore Q; + Q; contains 48 and 16(2j + 1) = 2(16; + 8) and also 16(j + 2) +
16(5 + 2) = 4(8j + 16) = 16(25 + 4). We already saw 16(25 4+ 2) = 4(8j + 8) is not
in @Q; +Q;.
We obtain those congruent to 4 modulo 16 from
(12)+{24,40,...,165 + 8} = {36,52,...,4 + 16(j + 1)}
(4)+(16(j +2)) =4 +16(j + 2)
(12 +16(j +1))+{24,...,8 + 165} = {4+ 16(j + 3),...,4 + 16(2j + 2)}
(4+16(j 4+ 1))+(16(j +2)) = 4+ 16(25 + 3).

The elements congruent to 8 modulo 16 are given by

(0)+{24,40,...,8 4+ 165} = {24,40,...,8 + 165}
(4)F(4+16(j +1)) =8+16(j +1)
(12)+(12+16(j + 1)) = 8+ 16(j + 2)
(16(5 +2))+{24,40,...,8 + 165} = {8 +16(j +3),...,8 +16(2j + 2)}.

Also (124 16(j + 1)) + (124 16(j + 1)) = 8+ 16(2j + 3) € Q; + Q;. Finally the
elements congruent to 12 modulo 16 follow from

(4)+{24,...,8 +165} = {28,...,12 + 165}

(0)F(12+16(j + 1)) =12+ 16(j + 1)

))F{24,...,8 4165} = {12+ 16(j +2),...,12 4+ 16(2j + 1)}
(G4 1)F+(16(5 +2)) = 12+ 16(2j + 3).

(4416(j +1
(12 4 16

We now deal with the difference set. Again, it suffices to consider the non-negative
differences. Since all the differences which we claim are excluded are even we need
only consider differences of pairs of elements of @; of the same parity and therefore
divide into cases accordingly. The non-negative elements of Quqq — Qodd are

{0,4,...,4(45 + 8)}.
The even elements of @); have the form

Qeven = {0,2,4,12,8 + 16x,4 + 16(5 + 1),12 4+ 16(j + 1), 14 + 16(5 + 1), 16(5 + 2)}
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where x € Z with 1 < z < j. The positive differences of the elements of Qeyen are

{2,4,8,10,12,12 + 16(x — 1),4 + 16,6 + 162, 8 + 162,

12416(j —2),4+16(j —x +1),6 +16(j — 2+ 1),8 + 16(j — = + 1),
8+165,16(j +1),2+16(j +1),4+16(j + 1),8 + 16(j + 1),

10+ 16( +1),12+ 16(j + 1), 14 + 16(j + 1), 16(j + 2)}.

Thus none of the differences in ); — @; have the form which we claim is excluded.
To confirm the presence of the remaining differences we have that all the differences
congruent to 1 modulo 4 are present since

{1,5,...,14+4(45+8)} — {0} ={1,5,...,1+4(4j +8)} CQ, — Q;.
The elements congruent to 3 modulo 4 follow from
{1,5,...,14+4(4j+8)} — {2} ={-1,3,....3+4(4+ 7} CQ, — Q;.
The multiples of 4 are obtained from
{1,5,...,14+4(45+8)} — {1} ={0,4,...,4(4j + 8)}.

For elements congruent to 2 mod 4, the only elements congruent to 2 mod 16 we
are claiming to get are 2 and 2 + 16(j + 1); 2 is clearly in, and 2 + 16(j + 1) =
144+ 16(5 + 1) — 12.

The elements congruent to 6 modulo 16 can be obtained from

{24,40,...,8 + 165} — {2} = {22,38,...,6 + 165}

The only elements congruent to 10 mod 16 we are claiming are 10 + 16(j + 1) =
124+ 16(j + 1) — 2 and 10 = 12 — 2. Finally, the only element congruent to 14 mod
16 we claim is present is 14 + 16(j + 1) € Q;. O

Corollary 13. For the set Q); defined above we have

|Q;| =55+ 17,|Q;+Q;| = 32j + 56 for j > 2,|Q; + Q,| = 32j + 63 for j > 1,
|Qj _Qj| :26]+61 fO?”j 2 1

(and |Q1+Q1| =90). Thus Q; is an restricted-sum-dominant set for all j > 1.

3. The Proportion of Restricted-Sum-Dominant Sets Is Strictly Positive

Martin and O’Bryant prove that for n > 15 the number of sum-dominant subsets
of [0,n — 1] is at least (2 x 1077)2" (see Theorem 1 of [5]). Their result has been
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improved by Zhao [11] who shows that the proportion of sum-dominant sets tends
to a limit and that that limit is at least 4.28 x 104, In this section we will show that
the proportion of subsets of {0,1,2,...n — 1} which are restricted-sum-dominant is
bounded below by a much weaker constant. It may well be that Zhao’s techniques,
or others, can be modified to improve the result but at least a substantial piece
of computation would appear to be required and our concern at present is simply
to show that a positive proportion of sets are restricted-sum-dominant sets. Note
that the fact that a positive proportion of sets have more differences than restricted
sums is an immediate consequence of Theorem 14 in [5]. Many lemmas etc. in what
follows are very slight modifications of corresponding results in [5] and we merely
present these proofs without further comment. However the construction of the two
‘fringe sets’ U and L is notably more involved.

Lemma 14. Let n,¢ and u be integers such that n > £ +u. Fiz L C [0,¢ — 1] and
U C [n—u,n—1]. Suppose R is a uniformly randomly selected subset of [¢,n—u—1]
(where each element is chosen with probability 1/2) and set A= LURUU. Then
for every integer k satisfying 20 — 1 < k <n —wu— 1, we have

1\ ILl /3y (k+1)/2—£ e
P(k ¢ A+A) = {(f) (1) , if k is odd,

(2)‘L| (%)k/%z, if k is even.

Proof. Define an indicator variable

1ifjeA
Xj:{,lje :

0, otherwise.

Since A = LURUU the X are independent random variables for £ < j <n—u—1,
each taking values 0 or 1 equiprobably. For 0 < j</—landn—-u<j<n-1
the values of X; are dictated by the choices of L and U.

Now, k ¢ A+A if and only if X;X)_; =0 forall 0 < j <k/2—-1. (j = k/2
would not give a restricted sum). The random variables X;X_; for 0 < j < k/2
are independent of each other. Hence

P(k ¢ A+A) = Mocj<p/2—1P(X; Xp—j = 0).
When £ is odd we have

—1 (k—1)/2
P(k ¢ A+A) = [[P(X; Xk =0) [ P(X;Xe—;=0)
§=0 j=t
(k—1)/2
=[[PXi;=0) J] P(X;=00rXs_; =0)
jer j=t

1 1Ll /gy (bt 1)/2-¢
T \2 4 ’
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When £ is even

—1 k/2—1
P(k ¢ A+A) = [[P(X; X =0) [] P(X;Xej=0)
j=0 j=t
k/2-1 1 |L| 3 k/2—¢
= TP, =0 JT B = 00r Xy = 0) = (§> <1) .
JjeEL j=t

O

Lemma 15. Let n,l,u, L,U, R and A be defined as in Lemma 14. Then for every
integer k satisfyingn +£€ —1 <k <2n—2u—1, we have

T3y F0R2 i ks odd,

, if k is even.

P(k ¢ A+A) = {

—
SIS
SN—

Ul ) 1k /2
) ()

4

(

Proof. This is similar to the previous lemma, but we consider different intervals for
the summands. For k£ odd, we have

n—u—1 n—1

Pk AtA) = [ POGX;=0) J] POX;Xe—; =0)
j=(k+1)/2 J=nou
n—u—1
= H P(X; :Ooer,j:O)H]P’(Xk—j =0)
=(k+1)/2 jev

3 n—(k+1)/2—u 1 |U|
\4 2)

For k even, as k = k/2 + k/2 is forbidden,

n—u—1 n—1
Pk ¢ A+A) = [[ PX;X;=0) J[ P(X;Xe; =0)
j=k/2+1 j=n—u
n—u—1
= ] P&X;=00rX;_;=0)[[P(Xe—j=0)
j=k/2+1 jeu

O

Proposition 16. Let n,¢ and u be integers such that n > £ +u. Fiz L C [0, — 1]
and U C [n —wu,n — 1]. Suppose R is a uniformly randomly selected subset of
[6,n —u — 1] (where each element is chosen, independently of all other elements,

O
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with probability 1/2) and set A = LU RUU. Then for every integer k satisfying
20—1<n—u-—1,

P(20 —1,n—u—1]U[n+0—1,2n—2u—1] C AFA) > 1 — 82 1Fl 4 271U,
Proof. We crudely estimate

P([20 —1,n—u—1U[n+£—1,2n—2u—1] £ A+A)

n—u—1 2n—2u—1
< > PhgAFA)+ > Pk ¢ AtA).
k=2/—1 k=n+£¢—1

The left summation of the line above can be bounded using Lemma 14:

SR ata < 3 (%)'L' (Z)<k+l>/2_e+k§1 (%)'L (%)MH

k=20—1 k>20—1
k odd k even
|L] oo m |L| oo m |L]
1 3 1 3 1
=5 = = 2) =s8(z) .
) 206 +G) 20) —06)

The summation on the right can be bounded similarly, using Lemma 15, to give

2n—2u—1 1 |U|
> Iwk¢A4A)<8<§) .
k=n+£—1
Thus P([26,n —u — 1] U[n+ ¢ —1,2n — 2u — 1] € A+A) is bounded above by
8((1/2)IF1 4 (1/2)IU1), which is equivalent to the claim of Proposition 16. O

We now come to the main result. Whilst the respective lower and upper fringes
U=1{0,2,3,7,8910} and L={n—11,n—10,n—9,n—8,n—6,n—3,n—2,n—1}
used by Martin and O’Bryant are sufficient for the sum-dominant case these fall
some way short of what is required for a restricted-sum-dominant result. However
we can again use Spohn’s idea of repeating interior blocks. After a few iterations
we get the new fringes, which we shall henceforth refer to as L and U, to fit with
the earlier lemmas. Thus from now on

L =1{0,2,3,7,9,10,14,16,17,21, 23,24, 28, 30, 31, 35,
37,38, 42,44, 45,49, 51,52, 56, 57, 58, 59, 60},
U =n — {59,58,57,55,52, 51, 50, 48, 45, 44, 43, 41, 38, 37, 36, 34, 31,
30,29, 27, 24, 23, 22,20, 17,16, 15, 13, 10,9, 8,6,3,2,1}

Theorem 17. For n > 120, the number of restricted-sum-dominant subsets of
[0,n — 1] is at least (7.52 x 10737)2",
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Proof. With L and U as just defined, one can check that

U-L=[n-119n-1\{n—7,n—14,n—21,n — 28,
n—35n—42n—49,n — 56}.
Now since n—7,n—14,n—21,n—28 n—35,n—42, n—49,n—56 ¢ U—L it follows that
+(n—7),£(n—14), £(n—21), £(n—28), £(n—35), £(n—42), £(n—49), £(n—56) ¢
A—AC[—(n—1),n—1]. With eight pairs of differences excluded from A — A we
have |A — A| < 2n — 17. On the other hand one can check

L+L =[0,120] \ {0, 1,4,6,8,15,22,29, 36,43, 50, 120}
U+L =U + L =[n — 59,n + 59]
U+U =[2n — 118,2n — 2] \ {2n — 118,2n — 6,2n — 2}.

Hence for 120 < n < 178 we have that A+ A contains
[0,2n — 2]\ {0,1,4,6,8,15,22,29, 36,43, 50,120, 2n — 118,2n — 6,2n — 2}

so that |A+A| > 2n — 16. There are n — 120 numbers between 61 and n — 60
inclusive. Therefore the number of such A is 277120,

For n > 178 applying Proposition 16 with £ = 61 and u = 59 implies that when A
is chosen uniformly randomly from all such sets, the probability that A+ A contains
[61,n — 60] U [n 4 60,2n — 119] is at least

4294967231
1—-82 427U =1 82729 4 973%) = ———_——
( + ) ( * ) 4294967296
That is, there are at least 27 120429880723L ~ (7,52 x 10737)2" such sets A with

A+A=1[0,2n— 2]\ {0,1,4,6,8,15,22, 29, 36,43, 50, 120, 2n — 118,2n — 6,2n — 2},

whilst at the same time eight pairs of differences are excluded from A — A. Thus
all such sets A are restricted-sum-dominant sets. O

Martin and O’Bryant’s Lemma 7 and Theorem 16 for a subset S of an arithmetic
progression of length n can also be adapted to give the following result.

Theorem 18. Given a subset S of an arithmetic progression P of length n for
every positive integer n, we have

> IS+S|=2"(2n —15) +

scp

26-3=1/2 " ifn is odd,
{ (4)

15-3%2, ifn is even.

Thus ZSQP\SJ-SW ~ 2n — 15. This combined with Martin and O’Bryant’s
Theorem 3, that 5~ >_scplS =S| ~2n —T gives that on average the difference set
has eight elements more than the restricted sumset. Details will appear in [10].
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4. How Much Larger Can the Sumset Be?

As in Section 4 of [3] we consider this question in terms of f(A) = In|A+A|/In|A—A|
(and the analogous quantity f(A) = In|A+A|/In|A — A]). It is known — see, e.g.,
[1] — that 2 < f(A) < 5. The reason for considering the ratio of logarithms rather
than (say) the ratio is explained in [3] in terms of the base expansion method. Some
authors, e.g., Granville in [2], prefer to use g(A) = In(JA+ A|/|A])/In(|A — A|/|A|)
for which the analogous bounds are 1/2 < g(A4) < 2.

Hegarty’s set Ajs is easily checked to have f(A;5) = 1.0208..., which is often
quoted as the largest known value of f(A). In fact, the set X (our T3) which Hegarty
uses to write A15 = X U (X + 20) already does fractionally better:

Lemma 19. Let X = {0,1,2,4,5,9,12,13,17,20,21,22,24,25}. Then X + X =
[0,50] but X — X = [—25,25)\{+6, +14}. Thus f(X) = In(51)/In(47) ~ 1.0212.

Proof. This is just a short calculation. O
We do better than either of these using the sets @); at the end of Section 2.

Theorem 20. There is a set A of integers for which

_ In(J]A+ AJ)

= ——F-< 1 1...
(A 4]) 03059778

f(4)

and another set B of integers for which

A In(|B+B)
B)= ———- ~1.028377107...
1(B) In(|B — B|)
Proof. Take A = Q1 for the first claim and A = @9 for the second claim. O

It is easy to check that neither any other @;, nor any of the T}, T}, M; or R;
give better results than the two @;s listed above.

The function g has a slightly different behaviour, as it is monotone increasing as
7 increases in our sequences. The result here is

Theorem 21. Given € > 0, there is a set C of integers for which

_In(|C+Cl/|C]) S In(32/5)

g(C) = (e —C1IeD > W6 <= 1.125944426

Proof. Take Q; for j sufficiently large. O

(For comparison, g(A;s) ~ 1.0717).

The corresponding suprema are In(16/3)/1n(14/3) ~ 1.0867 for both (¢(7})) and
(9(T})), In(23/4)/1In(11/2) ~ 1.0261 for (g(R;)) and In(11/2)/In(5) ~ 1.0592 for
(9(M;)). None of these do as well as the supremum for the (Q;).
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Note also that because the sumsets and restricted sumsets in each of our families
T;, M;, R; and @Q; only differ in order by a constant, the function

o m(lATA)/AD
A = A= alA)

will give similar insights to g.

5. The Smallest Order of a Restricted-Sum-Dominant Set

We noted above that we have two restricted-sum-dominant sets of order 16, namely
T3 and Ms: we know of no smaller examples. In this section we reduce the range
in which the smallest restricted-sum-dominant set can be.

Hegarty ([3], Theorem 1) proves that no 7-element subset of the integers is
sum-dominant, and that up to linear transformations Conway’s set is the unique
8-element sum-dominant subset of Z. As Conway’s set is not a restricted-sum-
dominant set there is no 8-element restricted-sum-dominant set of integers.

Further Hegarty finds all 9-element sum-dominant sets A of integers with the
additional property that for some x € A + A there are at least four ordered pairs
(a,a’) € Ax A with a+a’ = x. There are, up to linear transformations, 9 such sets,
listed in [3] as A2 and A4 through to Ajq. It is easy to check that none of these
nine sets is restricted-sum-dominant.

Thus, the only possible 9-element restricted-sum-dominant sets of integers have
the property that for every x € A+ A there are fewer than four ordered pairs (a, a’)
such that z = a+a’. This condition implies that there is no solution of z+y = u+v
with 2, y, u, v all distinct, so such a set is a weak Sidon set in the sense of Ruzsa [8].

Defining §(n) for n € A — A to be the number of ordered pairs (x,y) such that
x —y = n, it is shown in the proof of Theorem 4.7 in [8] that for a weak Sidon set,
d(n) < 2 whenever n # 0 and at most 2|A| elements n have §(n) = 2.

Thus, noting 0 has |A| = 9 representations and putting m = |A — A|,

81 <9+ (2%x9) X2+ (m—19) = m > 55

so if such a set were to be sum-dominant its sumset would have to have order at
least 56. But of course |[A + A| < 9 x 10/2 = 45, and we have proven

Theorem 22. All sum-dominant sets of integers of order 9 are linear transforma-
tions of one of Hegarty’s nine sets Ay and Ay to A11. None of these is restricted-
sum-dominant, so there is no restricted-sum-dominant set of order 9.

We thus know that the smallest restricted-sum-dominant set of integers has order
between 10 and 16. It appears a non-trivial computational challenge to find the
order of the smallest restricted-sum-dominant set.
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