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Abstract

We derive a simple error estimate for equally spaced, polynomial interpolation of

power series that does not require the uniform bounds on derivatives of the Cauchy

remainder. The key steps are expressing Newton coefficients in terms of Stirling

numbers S(i, j) of the second kind and applying the concavity of lnS(i, j).

1. Introduction

Let f be in C[a, b] and let Pnf denote the unique polynomial of degree at most

n that interpolates f at n + 1 equally spaced nodes. By a classical result [3,

Theorem 4.3.1] of interpolation theory, Pnf converges uniformly to f if f can

be extended analytically to a certain region of the complex plane that contains the

interior of a lemniscate formed from disks centered at a and b with radii greater

than b− a. We show that more is true for real functions: if f is a Taylor series

about a or b, then there is a simple bound on the uniform error that implies

uniform convergence when the derived series f � is in C[a, b]. We expand the

Newton coefficients of Pnf in terms of Stirling numbers S(i, j) of the second

kind and use the well known log-concavity property of L. H. Harper and E. H. Lieb

([7], [9]):

for each i > 1 , the ratio
S(i, j + 1)

S(i, j)
is strictly decreasing. (1)
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2. The Main Result

By the transformation x �→ x−a
b−a , we may assume that the underlying interval is

[0, 1]. An analog of Abel’s partial summation formula [1, vol. I, Theorem 10.16]

will be used in our arguments:

n�

i=m

aibi =

�
n�

i=m

ai

�
bm +

n−1�

j=m




n�

i=j+1

ai



 (bj+1 − bj) . (2)

For example, by Abel’s theorem [2, p. 325] a power series
�

i≥0 aixi
is in C[0, 1]

if and only if the series
�

ai converges. In this case, since for fixed x < 1, bi = xi

decreases monotonically to zero, we have the error estimate

�����
�

i>n

aix
i

�����
∞

≤ 2�n(<ai>)

by (2), where

�n(<ai>) := max

������
�

i>k

ai

����� : k ≥ n

�

converges to zero. A similar estimate that is a refinement of [5, Theorem 1] holds

for polynomial interpolation:

Theorem 1. Let f be in C[0, 1] and let Pnf be its interpolating polynomial at
the nodes 0, 1/n, 2/n, . . . , 1. If either f(x) or the reflection f(1− x) of f(x)

about x =
1
2 is represented by a power series

�
aixi such that

�
ai converges,

then Pnf satisfies

�f − Pnf�∞ ≤ (2n + 1)�n(<ai>). (3)

In particular, Pnf converges to f uniformly whenever
�

iai converges.

Proof. Stirling numbers of the second kind are the coefficients in the formula that

converts powers to binomial coefficients: for i > 0

xi
=

i�

j=1

S(i, j)j!

�
x

j

�
(4)
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where j!
�x

j

�
= x(x − 1) · · · (x − j + 1) is a factorial polynomial. Since xi

= x

xi−1
and

�x
j

�
=

�x−1
j−1

�
+

�x−1
j

�
, we have the usual recurrence relation

S(i, j) = S(i− 1, j − 1) + jS(i− 1, j)

with

S(i, 1) = S(i, i) = 1 and S(i, j) = 0 for j > i.

Hence (4) may be easily solved for S(i, j) by induction on row i:

S(i, j) =
1

j!

j�

k=1

(−1)
j−kki

�
j

k

�
. (5)

By Lagrange’s form [1, vol. II, Theorem 15.2] for Pnf , we have that for linear

combinations, Pn(αf + βg) = αPnf + βPng; and if fm −→ f pointwise, then

Pnfm −→ Pnf . Moreover by (4), for i > 0,

Pnxi
=

n�

j=1

S(i, j)
ni j!

�
nx

j

�
=

n�

j=1

S(i, j)
ni−j x

�
x− 1

n

�
· · ·

�
x− j − 1

n

�

in Newton’s form [1, vol. II, Theorem 15.5]. Therefore, if
�

ai converges, then

Pn




�

i≥0

aix
i



 = a0 +

n�

j=1

�
�

i>0

S(i, j)
ni ai

�
j!

�
nx

j

�
.

Suppose first that f(x) =
�

aixi
where

�
ai converges. If fn(x) :=�n

i=0 aixi
, then fn = Pnfn by uniqueness and

�f − Pnf�∞ ≤ �f − fn�∞ + �Pn(f − fn)�∞

≤ 2�n(<ai>) +

������

n�

j=1

�
�

i>n

S(i, j)
ni ai

�
j!

�
nx

j

�������
∞

.

Clearly

���
�nx

j

���� ≤
�n

j

�
if j − 1 ≤ nx ≤ n. Suppose that k − 1 ≤ nx < k for some

integer k in [1, j−1]. Then j!
���
�nx

j

���� = (Π
k−1
i=0 |nx− i|)(Πj−1

i=k |nx− i|) ≤ k!(j−k)!

where k! ≤ n!
(n−k)! and (j − k)! ≤ (n−k)!

(n−j)! . It follows that j!
���
�nx

j

���� ≤ j!
�n

j

�
for all

x in [0, 1]. Thus, if

bij :=
S(i, j)

ni
j!

�
n

j

�
,

then

�f − Pnf�∞ ≤ 2�n(<ai>) +

n�

j=1

�����
�

i>n

aibij

����� (6)
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where < bij : j = 1, . . . , n > is a probability vector for each i > n: bij ≥ 0, and

by (5) and the identity
�n

j

��j
k

�
=

�n
k

��n−k
j−k

�
,

n�

j=1

bij =

n�

k=1

�
k

n

�i



n�

j=1

(−1)
j−k

�
n

j

��
j

k

�

 =

n�

k=1

�
k

n

�i �
n

k

�
δnk = 1

where δnk is the Kronecker delta.

Consider the term j = n in (6). If n = 1, then bin = 1. And if n > 1, then

the sequence bin (i > n) increases to 1 since

i. bi+1,n > bin if and only if S(i+1, n) > n S(i, n). But S(i+1, n) = S(i,
n− 1) + n S(i, n) > n S(i, n).

ii. By (5),

bin =

n�

k=1

(−1)
n−k

�
k

n

�i �
n

k

�
−→ 1.

Therefore by (2), for all n,

�����
�

i>n

aibin

����� ≤ �n(<ai>). (7)

Next, suppose that j < n. We show that {bij : i > n} is unimodal: There

exists some integer i(j) > n such that for i > n,

bi+1,j ≤ bij ifandonlyif i ≥ i(j). (8)

As above, (8) is equivalent to

S(i + 1, j) ≤ nS(i, j) ifandonlyif i ≥ i(j).

Clearly i(1) = n + 1 so assume that j > 1. We first verify that the sequence ln

S(i, j) (i ≥ j) is concave, i.e., the ratio
S(i+1,j)

S(i,j) is strictly decreasing. It is easy

to check the case j = 2 with (5). Then for j > 2, the following inequalities are

equivalent:

S(i + 2, j)

S(i + 1, j)
=

S(i + 1, j − 1)

S(i + 1, j)
+ j <

S(i + 1, j)

S(i, j)
=

S(i, j − 1)

S(i, j)
+ j

S(i + 1, j − 1)

S(i + 1, j)
=

S(i, j − 2) + (j − 1)S(i, j − 1)

S(i, j − 1) + jS(i, j)
<

S(i, j − 1)

S(i, j)

S(i, j)

S(i, j − 1)
− S(i, j)

S(i, j − 2)
<

S(i, j − 1)

S(i, j − 2)
.

The last inequality is true by (1). Thus by (5), the sequence
S(i+1,j)/ji

S(i,j)/ji strictly

decreases to j < n, and therefore (8) holds.
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Also by (5),

bij =

j�

k=1

(−1)
j−k

�
k

n

�i �
n

j

��
j

k

�

converges to zero. Hence by (2), for j = 1, . . . , n− 1,
�����
�

i>n

aibij

����� ≤ 2bi(j),j�n(<ai>) ≤ 2�n(<ai>)

and (3) now follows from (6) and (7).

Finally suppose that g(x) := f(1 − x) =
�

i≥0 aixi
where

�
ai converges.

The polynomial (Pnf)(1− x) is of degree at most n and interpolates g at the

nodes 0, 1
n , 2

n , ..., 1. Hence by uniqueness, (Pnf)(1−x) = (Png)(x) and we have

that for x in [0, 1],

| f(x)− (Pnf)(x)| ≤ max {|g(x)− (Png)(x)| : 0 ≤ x ≤ 1}= �g − Png�∞ .

Thus (3) is a consequence of the first case.

Assume now that
�

iai converges. By (2),
�

ai converges and

�n(<ai>) = max

������
�

i>k

1

i
(iai)

����� : k ≥ n

�

≤ max

�
2

k + 1
�k(<iai>) : k ≥ n

�
≤ 2

n + 1
�n(<iai>).

Hence

(2n + 1)�n(<ai>) ≤ 4�n(<iai>)− �n(<ai>)

and therefore Pnf −→ f uniformly by (3). ✷

3. Examples

Runge’s famous example f(x) =
1

x2+1 on [−5, 5] is not the uniform limit of Pnf
([4], [8, Sec. 3.4]). However, Theorem 1 implies uniform convergence on [0, 1]:

Example 2. For f(x) =
1

x2+1 in C[0, 1], we have that

f(1−x) =
1

2i

�
1

x− (1 + i)
− 1

x− (1− i)

�
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=
i

4



(1− i)
�

k≥0

�
x

1 + i

�k

− (1 + i)
�

k≥0

�
x

1− i

�k


 =

�

k≥0

sin[(k + 1)π/4]

2(k+1)/2
xk.

Therefore,

�f − Pnf�∞ ≤ 2n + 1

(
√

2− 1)(
√

2)n+1
−→ 0.

Uniform convergence of Pnf holds for functions f in the large class of Taylor

series about 0 or 1 with absolutely summable coefficients [6]. This also follows

from the proof above since if
�

i>n |ai| <∞, then in (6),

n�

j=1

�����
�

i>n

aibij

����� ≤
�

i>n

|ai|




n�

j=1

bij



 =

�

i>n

|ai| .

Moreover, �f − Pnf�∞ ≤ 2
�

i>n |ai| in this case since
���

i>n aixi
��
∞ ≤

�
i>n |ai|.

Thus we have an improvement for Example 2:

�f − Pnf�∞ ≤ 1

(
√

2− 1)(
√

2)n−1
.

Example 3. The coefficients of f(x) =
�

i≥2
(−1)ixi

i ln i are not absolutely summable

by the integral test. However, f and f � are in C[0, 1] by the alternating series

test and therefore

�f − Pnf�∞ ≤ 2n + 1

(n + 1) ln (n + 1)
.
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