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Abstract
We obtain closed formulas for some weighted sums of powers of bivariate
Fibonacci and Lucas polynomials of the form ! A" (z,y) Fj, ., (z,y) and
oA (z,y) Lfan (z,y), in the cases k = 1,2,3,4, and some specific values
of the parameters t and [. We express these sums as linear combinations of the

Fibopolynomials (qjkm)F (g = 1,2,...,tk.

1. Introduction

The sequence of generalized bivariate Fibonacci polynomials G, (x,y) is defined by
the second-order recurrence Gy 12 (x,y) = ©Gpi1 (2,y) + yGr (z,y), with arbitrary
initial conditions Gy (z,y) and G; (x,y). When Gy (z,y) = 0 and G; (z,y) = 1
we have the bivariate Fibonacci polynomials F, (x,y), and when Gy (z,y) = 2 and
G1 (z,y) = = we have the bivariate Lucas polynomials L,, (x,y). (What we will use
about these polynomials is contained in reference [2].) The corresponding extensions
to negative indices are given by F_,, (z,y) = — (—y)” " F,, (z,y) and L_,(z,y) =
(=) " L,(z,y), n € N, respectively. In the case y = 1, we have the Fibonacci and
Lucas polynomials (in the variable z), F, (z,1) and L, (z,1), denoted simply as
F, (z) and L,, (z). By setting x = 1 in these polynomials, we obtain the numerical
sequences F,, (1) and L, (1), denoted as F), and L,,, corresponding to the Fibonacci
sequence F,, = (0,1,1,2,3,5,...) and the Lucas sequence L,, = (2,1,3,4,7,11,...).

In a recent work [7] we showed that the sequence Gf,,,, (x,y), where t,s,k € N
and p € 7Z are given parameters, can be written as a linear combination of the

(s-)Fibopolynomials (”*f,’:*i)F () 1= 0,1, th, according to

th 1
st1 (it+2(s+ G+ [(th 4+ 1
G?S M(%y) ( 1) z :Z(_1> ’ ( j > ( ) (1)
n+ Fs(z,y

i=0 j=0 J

& siG=1) (n+tk —1
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Recall that for integers n,p > 0, we have (Z)F (y) = (Z)F (og) = 1 and
(n) _ Fy, (x,y) Fs(n—l) (:L'ay)"'Fs(n—p—&-l) (x,y) 0 <p<n
PJ Fy(zy) Fy(z,y) Fas (2,y) -~ Fps (2,9) ’

Z) P = 0. It is known that (Z) Fu(z.4)

are indeed polynomials in x and y. When x = y = 1 we have the s-Fibonomials
(Z)FS (see [6]), and when x = y = s = 1, we have the (usual) Fibonomials (;)F,
introduced and studied by Hoggatt [3] in 1967.

If A(x,y) is a (non-zero) given real function of the real variables x and y, we see

from (1) that

If n or p are negative, or p > n, we have (

q
Z )\n (:TJ, y) Gfsn—i—u (xa y)

n=0
tk 1
a1 (i+2+G+D [tk + 1
- Sy e (1
Fy(z,y)

i=0 j=0 J

k 5i=1) o " n—+tk—1
<Gz pyap @)y~ T Y A (2,y) b ) pen (2)
s(Z,Y

n=0

Expression (2) can be written as

q
Z A" (CE, y) Gicsn—&-/t (SL’, y)
n=0

tk thk—m 1

- Y Y

m=1 i=0 j=

si(=1) m q+m
XGyijyap (@y)y™ 7 ATt (x,y)< ik ) .
Fs(z,y

Git2s+1)G+D) [t + 1
(e ()
0 J o/ F(ay)

st1y —tk th & (si+2(s+))G+D [tk + 1
DTN @)y Y (<) .

i=0 j=0 J
sj(i—1)

q
% n n
Gl N e S @ (f) @
s(@,y

n=0

This simple observation derived from (1) allows us to obtain closed formulas, in
terms of Fibopolynomials, for the weighted sums Y.?_ A" (z,y) Gfme (z,y), as
the following proposition states (with a straightforward proof using (3)).

Proposition 1. If z = A (z,y) is a root of

tk i
Gi+2s+G+D [tk + 1 siG-1)
D) DG il ) IR DI M N )
Fs(way)

i=0 j=0 J
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n=0

then the weighted sum of k-th powers Y% _( X" (x,y) G, (x,y) can be expressed

as a linear combination of the s-Fibopolynomials (q'[km)F @y T 1,2,...,tk,
according to ‘
q
Z )\n—q (337 y) Gilfcsn+,u ({L‘, y)
n=0
tk tk—m 1
o1 (sit2+10)G+D) [tk + 1
- ()Y S
m=1 i=0 ;=0 J Fy(z,y)
$1G=1 i tkim q+m
Xy yan @Yy~ 7 AT (2,y) ( i > : (5)
Fs(z,y)

Moreover, suppose expression (5) is valid for some weight function A(x,y). Then
z=X(z,y) is a root of (4).

Let us consider the simplest case t = k = 1. Equation (4) is in this case

1 g

(si+2(s+1)G+1) (2 sii=1)
0 = LX) Gy T )
Fs(x,y)

i=0 j=0 J
= Gu (xay) + (Gs+u (a:,y) — Ly (xvy) Gu (a:,y)) Z.

If Goyp (x,y) — Ls (z,y) Gy (,y) # 0, we have from (6) the weight

Gll (xa y)

Az,y) = . 7
9 = L )Gy (a9) - Gy (2.0) "
Expression (5) for the corresponding weighted sum is in this case
q g+1
>N ) Gun ) = Gu )N ) (111 )
n=0 Fs (:c,y)
In the Fibonacci case we have, from (7) and (8), that if ;1 # s then
Z\ (=9)° Fus (2,0) A T ()

Similarly, from (7) and (8), we have in the Lucas case that

- L, (z,y) e - B M N
; ((—y)5 L,—s (»T,y)> Loty (@,y) = F, (z,y) Fyqeny (z,y). (10)
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Thus, if u # 0, s we can combine (9) and (10) together as

q

! Fux,y)  \"* N
Fﬂ(xvy) Z ((_y)SF S(m y)) FS”+H( 7y)

n=0 H=
- q ) n—q N
- o () e
= @Fs(qul) (.’I,‘,y) (11)

We call attention to the fact that the term mFS(qﬁl) (z,y)in (11) does not de-
pend on the parameter p. That is, in (11) we have infinitely many weighted sums of
q+1 biwariate Fibonacci and Lucas polynomaials that are equal to mFS(qul) (z,y).

We can have a slight generalization of (11) if we substitute z by L, (x,y) and y
by (—1)T'H y", where r € Z. By using the equations

By (@) B (Lo @) (-0 ) = P (@),
Lo (Le @) (<)) = Lo (29),

we get for  # 0 (and p # 0, s in the Fibonacci sums)

Ly Folry)  \"
Frp (x’ y) Z ((—y)rsF (x, y)) FT(S"‘*‘#) (z,y)

n=0 r(p—s)
1 1 < Ly, (z,y) )n_q
= . Lr sn (x,y)
Lr,u(xvy) Z (_y)TSLT(ufs)(xay) (ontn)
1

= Fo(ed) < Frs(g41) (7, y) . (12)

Some examples from (12) (corresponding to some specific values of p) are the

following:

e With s =1 we have

! g( 2 (2,0 >) Frtnn(@,9) (13)
TR, iry)nz:( ) Frin (2:9)
- ﬁZ (L<—(§>y)> i @2

— ; 1 M n—q N
o Py (xy) Z ((y)r F, (x,y)) Frmys) (2,9)
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1 q L2r (J?, y) n—q
L—2r (:an) Z <L3r (gj"y)> L”‘(n72) (l',y)
_ 1 9 2 n—q e 1 q Lo(z, )\ )
2 Z(L (W/)> Lenle )= ) ;(2(1/)’”) Ly(ns1) (@, 9)

x n—q FTq ASE
Z(Lr(’w) L,,.(n_n(rc,y)W'

F_3T1(:I;7y) i (?Z: Ei:z;)nqﬂ(zn—a)(%y) (14)
T F, 1x’y) Eqi (gf&%)nqFr(zn—1>($7y)
TR (1x7y) i <y§3}ff£;))n_qFr<2n+3> (,9)
S RPN (o ) BT

_ 1 Lo (zy) \" 0 N
N L—T(mvy)Z(LBT (w,y)> Lran-n (@)

co zq:(_l)MLr(Q"* p(@,y) )T IS EDIEIE, o, (2, y)

yr(n=a) C Fi(zy) & y (=)

4 5 n—gq
— 3r Z‘ y ) }27‘(q 1) (l‘,y)
Lotonas (z,y) = —12 777
Z ( 2rp,. ) (2 +3)( y) Fy, (.T, y)

1 a -1 n—q
F(z,y) 2 <(y)TLT(;1;, y)) Er(sn+1)(2,y) (15)

1 K Le(my)\"*
— m Z ( N ) Fr(3n+2) (:L'7 y)

y27

1 Z (Lr(m, y) L)g:(xv y) ) Frnya)(7,y)

(~y

_ (_y)T L 1 n—q i
- By 2 (Lr(x,y) Lzr(fc,y)> Fran)(,9)
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1

L.

Lr(Snfl) (CC7 y)

M=

L4r z,y

( Lr((l%y) e

r(2,y) =

1 .
L, (z,y) Z

)
Lr(xa Z/) nod
((y)r Lo (z, y)) Ly an+1)(@,y)

1 4 Loy(z,y) \" ¢
Loy (z, )Z< L, (z, )) Ly(ant2) (2, y)

L47~(I’, Y

n—q

1 - Lyr (.Z’, y) FSr(q+1) ({L‘, y)
L'r‘ n T,Y)="""F -~ -

%;((—y)&b(:v,y) ) (@) =—p 7 (z,y)

In particular we have the following numerical identities (from (13), (14) and (15)

withz =y=r=1)

Fopr =

1
33+

q

q
=3 2" F, = ZFn 1= ()" F, (16)

n=0 n=0

q q n—q q _
%Z;J n an+3 = %z;) <%) Ly 2= Z_;J SH—LLTL—l
q
ZQ” 1L, _Z(* Y Lgs.

n=0

) n—q q q
(-) Fapg=3 27 "Fop 1= Fanps (17)

5 n=0 n=0

N = 3
M- L

n=0

1[4 .
2" Fyy gy = ~1 Z (ﬁ) Lon-3=—Y 47 "Ly 4

n=0

+q 1
(—1)"" Lopy1 = E 4" Loy s.
n=0

it

3
Il
=]

q

= Z F3p41 = Z D" Py = % > (=3)" " Fanga  (18)

n=0 n=0
q 1 q 1 n—q
= 2_%3“ 7 fan—1 Z7n 7Ln—1= ZJ( 3> L3n1
q 1
= Z3n7q71L3n+2 =z Z (=7)"" Lana.
n=0 n=0

Of course, some of the numerical results shown in (16), (17) and (18) are well-
known identities. For example, in [1]: (i) formula 7 _ 27=971L, = F ., of (16) is
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identity 236, (ii) formula "7 _ Fb,q1 = Fo(g41) of (17) is essentially identity 2, and

(iii) formula Y% Fyq1 = $F3(g41) in (18) is essentially identity 24 (corrected).
In the remaining sections of this work we consider only the case y = 1 of Propo-

sition 1. The corresponding weight function A (x, 1) will be denoted as A (x).

2. Weighted Sums of Cubes

In this section we will obtain expressions for some weighted sums of cubes of Fi-
bonacci polynomials. More specifically, we will consider the Fibonacci case of Propo-
sition 1 when k=3, p=0and t = 1.

In this case, equation (4) is (after some simplifications)

F3(2)z (2 +2Ls(z) 2 + (1)) = 0. (19)

Thus, we have two weights, namely

A (@) = —Lo(z) +/Li(x) = (=1)7 , A2 (x) = —Ls(x) — /L3(z) — (=1)°. (20)

The corresponding weighted sum (5) can be written as

g:o N(2) F, () = F3(a) ((—1)8*1 @ (7 1)&(@ +(137) FS@)) )

where A (x) is any of the weights (20).
In the case x = 1, we have in particular the following numerical identities (ob-
tained by setting s = 1 and s = 2 in (21) with the corresponding weights (20))

i (-1+ ﬁ)niq F3= % (-1 V2) Pyt + Fyya) (22)

n=0

K n—gq F F
> (-3+2v2) E, = U (- (<322VE) Faony + Fagen) - (23)
n=0
We will show now some different versions of (21), involving Chebyshev polyno-
mials of the first kind T, (x), or of the second kind U, (x). The results are the

following.

Proposition 2. (a) If s is even, we have the following weighted sums of cubes of
Fibonacci polynomials, valid for any integer I > 0

S T (~Ls () F2, () (24)

n=1

~ R () (—Tq% (e (3 )Fsquﬂ (Lo (2)) (qf)w)
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Z Unti-1(—Ls (2)) Fsgn (2) (25)

— F () <—Uq+l L) (7 1>Fs(w) U (L) (177) w) .

(b) If s is odd, we have the following weighted sums of cubes of Fibonacci poly-

nomials (where i> = —1), valid for any integer | > 0
q
D ()" T (=il () F, () (26)
n=1

I
!
—~

S
S~—"
/N

0 T iz (1)

D ()" Ui (il (2)) FS, (2) (27)

n=1

~ Fi (@) ((—z’)q vt (131

- ) +2
) Uy (i @) (1) ) |
Fy(x)
Proof. Recall that Chebyshev polynomials of the first kind T;, (z) can be calculated

Tn(x)zl((:r—i—\/x?—l)n—&—(x— x2—1)n), (28)

2
and that Chebyshev polynomials of the second kind U, (z) can be calculated as

U, (z) = 2\/% ((x+ V2 1)”+1 — (v— a2 1)n+1> (29
We can write (21) as
zq: N () F3 () (30)
n=0
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where [ is a non-negative integer. If s is even, the weights (20) are

A (z) = —Lg(x) +/L2(z) =1 , A2(z) = —Ls(x) — /L2(x) — 1. (31)

Thus, (24) follows from (28), (30) and (31). Similarly, (25) follows from (29),
(30) and (31).

On the other hand, if s is odd the weights (20) are A1 (x) = —Lg(z)++/L2(x) + 1,
Ao () = —Lg(x) — \/L2(x) + 1. These weights can be written as

wi) = =i (=in i) 1), (32)
Ao (z) = —i <—iLs(x)— (—iLS(x))Q—l).

From (28) and (32) we see that

(=1)" T (—iLs (2)) = % (AT (2) + A3 (2)), (33)
and from (29) and (32) we see that
An+1 . _ 1 n+1 ) — \"? 1 T
(_Z) Un (_ZLS (1’)) - 22\/W ()‘1jL ( ) )‘2+ ( )) . (34)
Thus, (26) follows from (30), (32) and (33). Similarly, (27) follows from (30),
(32) and (34). O

We note that the integer parameter I > 0 gives us, in (24) and (25), infinitely
many weighted sums of cubes of Fibonacci polynomials for each even s, and in (26)
and (27) gives us infinitely many weighted sums of cubes of Fibonacci polynomials
for each odd s.

We show some numerical examples from formulas (24) to (27). We set x = 1 and
q =5 in them.

If s = 2, the sequence (T}, (—L2)),~, involved in (24) is

(T, (—L2))>%, = (3,17, —99, 577, —3363, 19601, —114243, 665857, . ..) .

(See [5, A001541] for the unsigned version.) Thus, we have the following weighted
sums of cubes of Fibonacci numbers (corresponding to [ = 0,1)

IoFro

—3F3 +1TF} — 99F¢ 4+ 577F3 — 3363F;, = 75 (“19601F — 3363F14),
246
17F5 — 99F} 3 3 s = ol
S — 99F} + 5TTFS — 3363F3 + 19601F}, = T, 7 (114243 F5 + 19601 Fy4) .

Similarly, the sequence (U, (—Ls)), -, involved in (25) is
(Up (—Lo))2 (—6, 35, —204, 1189, —6930, 40391, —235416, 1372105, .. .) .

n=1 "
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(See [5, A001109] for the unsigned version.) Thus, we have (for [ =1,2)

FioF
—6F3 + 35F) — 204F3 + 1189F3 — 6930F3, = Lw F” (—40391F5 — 6930F4)
21476
3 3 3 3 3 FioFia
35F5 — 204F] + 1180F — 6930F +40391Ff) = —"* (235416 + 40391 F14)
2146

If s = 1, the sequence ((—i)" T}, (—iL1)),, involved in (26) is
(=0)" Ty (—iL1))>, = (~1,3, 7,17, 41,99, —230, 577, —1393, 3363, —8119,...) .

(See [5, A001333] for the unsigned version.) Then, we have the weighted sums
(for 1 =0,1)

FsF,
—F? 4 3F} —TF3 +17F} —41F? = =52 (99F, — 41F;),
FsF,
3FP —TF} +17F3 — A1F5 + 99F3 = 62 5 (—239F, + 99F) .

Similarly, if s = 3, the sequence ((—i)" U, (—iL3)), ., involved in (27) is

((=1)" Un (—iLs)),,
= (8,65, 528, 4289, —34840, 283009, —2298912, 18674305, ...) .

(See [5, A041025] for the unsigned version.) Then, we have the weighted sums
(for 1 =1,2)

—8F3 + 65F; — 528F + 4280F}, — 34840F};
F3F;gF
=23 18715 (983009 F, — 34840F}; ),
FsFy

65F5 — 528F3 + 4289F3 — 34840F}, + 283009F
F3FigFs
= 315700 (_92298912F5 + 283009F%;) .
FoFy ( 12 + b1)

3. Other Weighted Sums

In this section we will obtain expressions for some other weighted sums of Fibonacci
and Lucas polynomials. More specifically, we will set ¢ = 0 in Proposition 1 and
consider the following cases: (i) k=t=2and G=For G=1L; (ii) k=4, t =1,
G=F.
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Let us begin with the case (i). When G = F, equation (4) is

4 (SJ+Z(S+1))(J+1) 5 i
] Ropws @)
Fy(x

i=0 j=0 J

=
|

= ()T E @y z+1) (2 ( 1)° Los () 2+ 1) ,

and with G = L is

4 7
> > 1 ’ ( ) L3y (2) 2 (36)
Fs(x)

i=0 j=0 J

o
|

= (-1)""" (L3, () 2% — (3Las () +2) 2 +4) (2% — (=1)° Loy () 2 + 1) .
Observe that
22— (<1)° Lou (@) 2+ 1= (2 — (=1)° a® (1)) (= — (~1)° 8% (),

where o (z) = § (z+ V22 +4) and 8 (z) = 5 (v — Va2 +4).
Since 22 — (=1)° Las () 2 + 1 is a factor of the right-hand sides of (35) and (36),
we have for both, the Fibonacci and the Lucas cases, the following weights

M () = (=1)"a® (2) , A2 (2) =(-1)" > (2). (37)

In the Fibonacci case we have in addition the weight A (z) = —1 (from the factor
z + 1 of the right-hand side of (35)). In the Lucas case we have in addition the
following weights (from the factor L3, (z) 22 — (3L4s (x) + 2) 2 + 4 of the right-hand
side of (36))

2 [ 3Ly (2)+2 3Ly, (x) +2
As () T (@) z&%@)'+¢<fi;GTJ —1],

2 3Lys () +2 8Las (z) +2
M@ = e T _\/<427<x>) _1) v

In the Fibonacci case the corresponding sum (5) is
1 < q+1 q+3
L@ R = 2@ (") (17 (39
FQZS ((E) Z 2 4 Fy(z) 4 Fy(x)

= + (A-l (2) + (—1)*! LLS:((;))> (q s 2> F(z)
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(where A (z) is any of the weights (37) or A(x) = —1). In the Lucas case the sum
(5) is

ni_o N @) B (0) =~ 13, @A) (1] ) ot ("7 . (10)

(0 B @) L ()M @)~ 1, () ¥ @) (7] 2)F @

+ (407 (@) = L2 (2) (BLas () = 2(~1)")) (q s 3)F @

(where A (z) is any of the weights (37) or (38)).
For the weight A (x) = —1 of the Fibonacci case, we have from (39) the following
alternating sum of squares of Fibonacci polynomials

q

> ()RR, () (41)

+1 s +2 +3
— 2 () [ (? + (1) Loy (a) (1 + (1 :
4 Fy(x) 4 Fy(z) 4 Fy(z)

When z = s = 1, the weights (37) are —LQ‘/S. In this case we have the following

numerical formulas for weighted sums of squares of Fibonacci and Lucas numbers
in terms of Fibonomials:

q n—q ]

> (=) B = AT+ HACT) ()
n=0

g —

()", = e, e,

n=0

+ (=17 £2v5) (") p 401

By using the weights (37) in (39) and (40), we can obtain expressions for weighted
sums of squares of Fibonacci and Lucas polynomials, in which the weight functions
are in turn certain Fibonacci or Lucas polynomials. This is the content of the
following proposition.

Proposition 3. For | € Z we have the following weighted sums of squares of
Fibonacci and Lucas polynomials
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(a)

ST (0 I By () F,, (@) (42)

n=0

1
F3, (@)

g+1 q+2
= Fzs(q+z+1)($)< 4 > + Fs(fl?)Ls(zq+2z+1)(93)( 4 )
Fs(a:) Fb(w)

s q+3
) @ (10
Fy(x)

(b)
F22 1($) Z (_1)8(n+q+1)+1 L2s(n+l) (x) F22sn (JJ) (43)

n=0

q+1 q+2
= Los(gti41) () ( 1 ) " + (332 + 4) Fy (z) Fy2q42141) () < 4 ) "
Fy(x Fs(x

s +3
HED L @ (1]7)
Fy(z)
(c)

q

ST (=1 By (@) L3, () (44)
n=0
s q —+ 4
— @) () Fageaen @) (") +aRan @ (1)
F,(x) Fq(x)
3 2 q+2
+ (Ls (l‘) L3s (CC) F2S(q+l+1) (37) — L3, (x) F25(q+l+2) (1‘)) 4 "
Fo(x
s 2 s q+ 3
+ (4(-1)° Pas(qrimy (@) = L2 (&) (3Las (@) = 2(=1)°) Fas(gin) (@) (1 .
Fy(z)

(d)

ST (0 Ly (@) L3, (2) (45)

n=0

s q+1 q+4
=(-1)""" L3, (z) Las(g4i+1) () +4Log(q11) (%)
4w 4 ) pw)

q+2
(20 B @) arorasn @)~ B, ) Baorasn @) (%)
Fs(x

+ (4(=1)° Los(gri1y (=) — L2 (x) (3Las (z) — 2 (—1)*) Lag(gss) (2)) (q 1’ 3)F .
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Proof. First write the sum (39) as

F2 Z )\n—H FZSn ) (46)
25 n=0

— >\¢Z+l+1 (:L') (q + ]‘) 4 )\qul ((E) (q + 3>
4 ) F@) 4 ) F@)

+(W”_W@*W—Dﬁ4é%é?Aﬁ%@>(q12>ﬂuf

where [ € Z. Substitute the weights (37) in (46), take the difference of the resulting

1
expressions, multiply both sides of this difference by (x2 + 4) 2, and use the Binet’s
formula F,. (z) = ﬁ (a” () — 8" (x)), to obtain that

1 q
(71)S(n+q+1)+1F25 n-+l (ZL’) F2sn (IE)
A 2 e

qg+1 s+1 q+3
= Fos(gyi41) () < 4 > + (1" Fogqy) () ( 4 )
Fs(z) Fy(x)

+(§fé£F£WH)() Fﬂw“*”cw>(qz2>&@f

Finally, use the identity

L3 ()
%@Fzs(qﬂ) () = Fag(gri—1) () = Fs (%) Lyag42141) (),

to obtain (42). Similarly, if we substitute the weights (37) in (46), then take the sum
of the resulting expressions, then use the Binet’s formula L, () = o (z) + 8" (z),
and then use the identity

Lss ()
Lgs(x) Los(gt) () = Las(gri-1y () = (22 +4) Fy (2) Fyagrar) (@),

we obtain (43).
In a similar fashion, if we begin now with (40), written as

q

oA (@)L, () (47)
n=0
72 () aati (g (4T gl (g (44
- ()( 4 >Fb(m)+4>\ ()< 4 ) (z)
+ ((=1)° L2 (2) L (2) XTHH (2) — L3, (2) A2 (2)) (q Z 2)
Fs(z)

+ (4/\q+l71 (x) — L2 (x) (3Las (z) — 2(—1)%) P (55)) (q 1— 3)F ( )7
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we see that (44) and (45) are obtained by using the weights (37) in (47), together
with Binet’s formulas. O

Observe that the case [ = 0 of (42) and (45) gives us sums of cubes of Fi-
bonacci and Lucas polynomials. More precisely, if s is even we have the following
(unweighted) sums of cubes

1 q
= D Fosn (2) (48)
CAEPIRY

qg+1 q+2
P @ (1]1) R @) L @) (177
Fs(z) Fy(x)
+3
+ Fayg () (q i ) .
Fy(z)
q
+1 +4
> @) =13 @ Laen @ (17 1) tatan@ (1T
n=0 Fy(x) Fq(x)
3 2 q+2
+ (L5 (%) Las () Las(qt) (%) = Lag (2) Las(qr2) (@) {
Fy(x)
q+3
+ (4L25(q71) (z) = Ls (¥) (3L3s (w) + Ls () Lasq ($>) 4 .
Fy(x
If s is odd, we have the following alternating sums of cubes
LSy, ) (50)
Fj, (x) .
n=0
g+1 q-+2
= F25(q+1) (517) < 4 ) + FS (J}) Ls(2q+1) (37) ( 4 )
Fs(z) Fs(z)
+3
+ Fayg () (q i ) .
Fy(z)
q
Z (_1)n+ngsn (JJ) (51)
n=0

q+1 q+4
— B @) e @) (1) e @) (77 )
Fy(x) Fy(z)

+ (L3 (2) Lss (2) Las(g1) (2) — L3, () Lag(g+2) () (q jl_ 2) Fu()

— (4Lay(go1) (@) + Ly (2) (3Las () — Ly () Lasg () (q I 3) "
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For the remaining weights (38) of the Lucas case, we have in particular the
following numerical identity (case s = x = 1)

q _
Z 234385\ " " ;2 _ 234385 (q+1)
18 2n — 2 4

n=0

F

. 61132\/% (qZQ)F . 7112\/% (ng)p +4(qi4)F.

In fact, we can proceed in a similar fashion of the proof of Proposition 2 (using
now (38) and (40)) to obtain that, if

3Ly (Z‘) + 2
Ay =7

@) = =i @)

we have the following weighted sum of squares of Lucas polynomials, valid for
integers [ > 0,

q 9 n—g 2
;) (L2s <w)> Tt (As (@) Lien (2) (52)

= —2L, (2) Tyt141 (As (2)) <q ) 1) Fy(z)

4
+ <(—1)S %@?@TQHH (A (2)) = ATgri42 (As (x))) (q Z 2> F.(2)

+ (2Las () Tysi—1 (As (2)) = L2 (2) (3Las (2) 2 (—1)°) Tyri (A4 (2))) (q Z 3) .

+4
+ 4T (A (7)) (q4 ) .
F,(x)

For example, if z = 1 and s = 2, the sequence (Tn (ﬁ))zozo involved in (52) is

28
143\\%°
(Tn ( 28 ))n:O
_ (1 143 20057 2840123 402206417 56958853523 8066283596057 1142314618945643 )
o 7287 392 7 5488 7 76832 7 1075648 15059072 210827008 i)

For g =4 and [ =0, 1, we have the weighted sums

(%)‘4 L+ (%)‘3 sz (%)‘2 2005772 4 (2)—1 2840123 72 | 402206417 72

392 7 5488 76832
__ _ 56958853523 (5) 4 400320800329 (6) _ 68220633199 (7) 4 402206417 (8)
- 76832 1 Fy 76832 2) 7y 76832 3/ Ry 19208 \4/ >
and
2\—4 143 72 2\ 3 20057 12
(7) 28 L0+(7) 590 L1
2\ ~2 2840123 12 2\ 1 402206417 12 56958853523 1 2
+(3) " BEeLls+(3) 7os32 L12 T “1o7seas - L6
_ _ 8066283596057 (5) 4 56691820586491 (6) 9661131494701 (7)
- 1075648 Py 1075648 2/ Fy 1075648 3) Fy
56958853523 (8
+ 268012 (4)F2'
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Finally, let us consider the case (ii) mentioned at the beginning of this section
(Fibonacci case of Proposition 1, with ¢ = 0, £k = 4 and ¢ = 1). In this case,
equation (4) is

4 j+2(s+1))(J+1 .
0 = LR () e (53
= ()M EH@) 2 (2 4+ 1) (22 4+ (<1)° (BLas () +4(=1)%) 2+ 1).

Thus we have the weights A\; () = —1 and

s s\ 2
i) = Y@ ¢<3L25<x>2+4(—1>) o
Az (z) = —SL%(;():;LS(_DS—\/<3L25(x)2+4(_1)5) —1.  (54)

The corresponding weighted sum (5) (of fourth powers of Fibonacci polynomials)
is in this case

F41(x) Z X' (2) Fy, (@) (55)

S n=0
1 3
(), ()
Fi(x) Fy(x)

~(B(=1)"Las (@) +5) A (@) + X (@) (qf)m Y

With the weight A; () = —1 we obtain from (55) the following alternating sum
of fourth powers of Fibonacci polynomials

q

> UEL (@) (56)

n=0

B <_1)qF;1 @ <<q Z 1) Fs(os)+ ¢ (_1)5 fas ()4 <q Z 2) Fs(ac)+ <q I 3) &(z)) .

(The case x = 1 of (56), after some transformations, is contained in [4].) By
setting s = 1 in the weights (54), we have in particular the numerical identity from
(55)

q n—gq
1
Z(&%/ﬁ) F;:x:_si%/ﬁ(qir )

n=0

F % (QIQ)F + (qZS)F' (57)
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However, following the ideas of the proof of Proposition 2, we can see from (54)
and (55) that for any integer [ > 0 we have

1 q
) ;Tw (05 (x)) Fy,, () (58)
_ (¢ +1 (4 +3
=—Ty+141 (05 (2)) ( 4 )Fs(m) + Tyt (Os () ( 4 )Fs(m)
—(B(=1)° s () +5) Tyris1 (O, (2)) + Typira (O, (2))) <q * 2) ,
Fy(z)
where

3Los (z) +4(-1)°
B 2(—1)°

O (x) =

For example, if z = 1 and s = 2, we have 05 (1) = —22—5, and the sequence
o0 . . .
(T (—%)),_, involved in (58) is
_25)\*°
(T (=%)) 2y
_ (_25 623 388127 _ 9687625 6035374825 150642568127
= (—22,823 7775, 388121 | 9687625 450901249, — 8035374825 g o)

(See [5, A090733] for 2T;, (%).) With ¢ =5 and [ = 0,1 we have the weighted
sums

23 14 623 14 4 388127 14 9687625 14
_?FQ + TF4 - 7775F6 + TFS - TFIO

_ 6\ 251490123 (T\ _ 9687625 (8

= —120901249(3) Fy 72 (3) F 72 (4) Fy
SB8 g — rrrsky 4 388120 e 9687625 pd 4 150001249 F

__ 6035374825 (6 6277177323 (7 8

= 2 (5) T 2 () T 120001249 ) Fy
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