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Abstract
We obtain closed formulas for some weighted sums of powers of bivariate
Fibonacci and Lucas polynomials of the form

Pq
n=0 �n (x, y)F k

tsn+l (x, y) andPq
n=0 �n (x, y)Lk

tsn+l (x, y), in the cases k = 1, 2, 3, 4, and some specific values
of the parameters t and l. We express these sums as linear combinations of the
Fibopolynomials

�q+m
tk

�
Fs(x,y)

, m = 1, 2, . . . , tk.

1. Introduction

The sequence of generalized bivariate Fibonacci polynomials Gn (x, y) is defined by
the second-order recurrence Gn+2 (x, y) = xGn+1 (x, y) + yGn (x, y), with arbitrary
initial conditions G0 (x, y) and G1 (x, y). When G0 (x, y) = 0 and G1 (x, y) = 1
we have the bivariate Fibonacci polynomials Fn (x, y), and when G0 (x, y) = 2 and
G1 (x, y) = x we have the bivariate Lucas polynomials Ln (x, y). (What we will use
about these polynomials is contained in reference [2].) The corresponding extensions
to negative indices are given by F�n (x, y) = � (�y)�n Fn (x, y) and L�n(x, y) =
(�y)�n Ln(x, y), n 2 N, respectively. In the case y = 1, we have the Fibonacci and
Lucas polynomials (in the variable x), Fn (x, 1) and Ln (x, 1), denoted simply as
Fn (x) and Ln (x). By setting x = 1 in these polynomials, we obtain the numerical
sequences Fn (1) and Ln (1), denoted as Fn and Ln, corresponding to the Fibonacci
sequence Fn = (0, 1, 1, 2, 3, 5, . . .) and the Lucas sequence Ln = (2, 1, 3, 4, 7, 11, . . .).

In a recent work [7] we showed that the sequence Gk
tsn+µ (x, y), where t, s, k 2 N

and µ 2 Z are given parameters, can be written as a linear combination of the
(s-)Fibopolynomials

�n+tk�i
tk

�
Fs(x,y)

, i = 0, 1, . . . , tk, according to

Gk
tsn+µ (x, y) = (�1)s+1

tkX
i=0

iX
j=0

(�1)
(sj+2(s+1))(j+1)

2

✓
tk + 1

j

◆
Fs(x,y)

(1)

⇥Gk
ts(i�j)+µ (x, y) y

sj(j�1)
2

✓
n + tk � i

tk

◆
Fs(x,y)

.
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Recall that for integers n, p � 0, we have
�n
0

�
Fs(x,y)

=
�n
n

�
Fs(x,y)

= 1 and
✓

n

p

◆
Fs(x,y)

=
Fsn (x, y)Fs(n�1) (x, y) · · ·Fs(n�p+1) (x, y)

Fs (x, y)F2s (x, y) · · ·Fps (x, y)
, 0 < p < n.

If n or p are negative, or p > n, we have
�n

p

�
Fs(x,y)

= 0. It is known that
�n

p

�
Fs(x,y)

are indeed polynomials in x and y. When x = y = 1 we have the s-Fibonomials�n
p

�
Fs

(see [6]), and when x = y = s = 1, we have the (usual) Fibonomials
�n

p

�
F
,

introduced and studied by Hoggatt [3] in 1967.
If � (x, y) is a (non-zero) given real function of the real variables x and y, we see

from (1) that
qX

n=0

�n (x, y)Gk
tsn+µ (x, y)

= (�1)s+1
tkX

i=0

iX
j=0

(�1)
(sj+2(s+1))(j+1)

2

✓
tk + 1

j

◆
Fs(x,y)

⇥Gk
ts(i�j)+µ (x, y) y

sj(j�1)
2

qX
n=0

�n (x, y)
✓

n + tk � i

tk

◆
Fs(x,y)

. (2)

Expression (2) can be written as
qX

n=0

�n (x, y)Gk
tsn+µ (x, y)

= (�1)s+1
tkX

m=1

tk�mX
i=0

iX
j=0

(�1)
(sj+2(s+1))(j+1)

2

✓
tk + 1

j

◆
Fs(x,y)

⇥Gk
ts(i�j)+µ (x, y) y

sj(j�1)
2 �i�tk+q+m (x, y)

✓
q + m

tk

◆
Fs(x,y)

+(�1)s+1��tk(x, y)
tkX

i=0

iX
j=0

(�1)
(sj+2(s+1))(j+1)

2

✓
tk + 1

j

◆
Fs(x,y)

⇥Gk
ts(i�j)+µ(x, y) y

sj(j�1)
2 �i (x, y)

qX
n=0

�n (x, y)
✓

n

tk

◆
Fs(x,y)

. (3)

This simple observation derived from (1) allows us to obtain closed formulas, in
terms of Fibopolynomials, for the weighted sums

Pq
n=0 �n (x, y)Gk

tsn+µ (x, y), as
the following proposition states (with a straightforward proof using (3)).

Proposition 1. If z = � (x, y) is a root of
tkX

i=0

iX
j=0

(�1)
(sj+2(s+1))(j+1)

2

✓
tk + 1

j

◆
Fs(x,y)

Gk
ts(i�j)+µ (x, y) y

sj(j�1)
2 zi = 0, (4)
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then the weighted sum of k-th powers
Pq

n=0 �n (x, y)Gk
tsn+µ (x, y) can be expressed

as a linear combination of the s-Fibopolynomials
�q+m

tk

�
Fs(x,y)

, m = 1, 2, . . . , tk,
according to

qX
n=0

�n�q (x, y)Gk
tsn+µ (x, y)

= (�1)s+1
tkX

m=1

tk�mX
i=0

iX
j=0

(�1)
(sj+2(s+1))(j+1)

2

✓
tk + 1

j

◆
Fs(x,y)

⇥Gk
ts(i�j)+µ (x, y) y

sj(j�1)
2 �i�tk+m (x, y)

✓
q + m

tk

◆
Fs(x,y)

. (5)

Moreover, suppose expression (5) is valid for some weight function � (x, y). Then
z = � (x, y) is a root of (4).

Let us consider the simplest case t = k = 1. Equation (4) is in this case

0 =
1X

i=0

iX
j=0

(�1)
(sj+2(s+1))(j+1)

2

✓
2
j

◆
Fs(x,y)

Gs(i�j)+µ (x, y) y
sj(j�1)

2 zi (6)

= Gµ (x, y) + (Gs+µ (x, y)� Ls (x, y)Gµ (x, y)) z.

If Gs+µ (x, y)� Ls (x, y)Gµ (x, y) 6= 0, we have from (6) the weight

� (x, y) =
Gµ (x, y)

Ls (x, y)Gµ (x, y)�Gs+µ (x, y)
. (7)

Expression (5) for the corresponding weighted sum is in this case

qX
n=0

�n (x, y)Gsn+µ (x, y) = Gµ (x, y)�q (x, y)
✓

q + 1
1

◆
Fs(x,y)

. (8)

In the Fibonacci case we have, from (7) and (8), that if µ 6= s then

qX
n=0

✓
Fµ (x, y)

(�y)s Fµ�s (x, y)

◆n�q

Fsn+µ (x, y) =
Fµ (x, y)
Fs (x, y)

Fs(q+1) (x, y) . (9)

Similarly, from (7) and (8), we have in the Lucas case that

qX
n=0

✓
Lµ (x, y)

(�y)s Lµ�s (x, y)

◆n�q

Lsn+µ (x, y) =
Lµ (x, y)
Fs (x, y)

Fs(q+1) (x, y) . (10)
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Thus, if µ 6= 0, s we can combine (9) and (10) together as

1
Fµ(x, y)

qX
n=0

✓
Fµ(x, y)

(�y)sFµ�s(x, y)

◆n�q

Fsn+µ(x, y)

=
1

Lµ(x, y)

qX
n=0

✓
Lµ(x, y)

(�y)sLµ�s(x, y)

◆n�q

Lsn+µ(x, y)

=
1

Fs (x, y)
Fs(q+1) (x, y) . (11)

We call attention to the fact that the term 1
Fs(x,y)Fs(q+1) (x, y) in (11) does not de-

pend on the parameter µ. That is, in (11) we have infinitely many weighted sums of
q+1 bivariate Fibonacci and Lucas polynomials that are equal to 1

Fs(x,y)Fs(q+1) (x, y).
We can have a slight generalization of (11) if we substitute x by Lr (x, y) and y

by (�1)r+1 yr, where r 2 Z. By using the equations

Fr (x, y)Fn

⇣
Lr (x, y) , (�1)r+1 yr

⌘
= Frn (x, y) ,

Ln

⇣
Lr (x, y) , (�1)r+1 yr

⌘
= Lrn (x, y) ,

we get for r 6= 0 (and µ 6= 0, s in the Fibonacci sums)

1
Frµ (x, y)

qX
n=0

✓
Frµ (x, y)

(�y)rsFr(µ�s) (x, y)

◆n�q

Fr(sn+µ) (x, y)

=
1

Lrµ(x, y)

qX
n=0

✓
Lrµ (x, y)

(�y)rsLr(µ�s)(x, y)

◆n�q

Lr(sn+µ)(x, y)

=
1

Frs (x, y)
Frs(q+1) (x, y) . (12)

Some examples from (12) (corresponding to some specific values of µ) are the
following:

• With s = 1 we have

1
F�2r (x, y)

qX
n=0

✓
F2r (x, y)
F3r (x, y)

◆n�q

Fr(n�2)(x, y) (13)

=
1

F�r (x, y)

qX
n=0

✓
1

Lr (x, y)

◆n�q

Fr(n�1) (x, y)

=
1

F2r (x, y)

qX
n=0

✓
Lr (x, y)
(�y)r

◆n�q

Fr(n+2) (x, y)

=
1

F3r (x, y)

qX
n=0

✓
F3r (x, y)

(�y)r F2r (x, y)

◆n�q

Fr(n+3) (x, y)
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=
1

L�2r (x, y)

qX
n=0

✓
L2r (x, y)
L3r (x, y)

◆n�q

Lr(n�2) (x, y)

=
1
2

qX
n=0

✓
2

Lr(x, y)

◆n�q

Lrn(x, y)=
1

Lr(x, y)

qX
n=0

✓
Lr(x, y)
2 (�y)r

◆n�q

Lr(n+1)(x, y)

=
1

L�r (x, y)

qX
n=0

✓
Lr (x, y)
L2r (x, y)

◆n�q

Lr(n�1) (x, y) =
Fr(q+1) (x, y)

Fr (x, y)
.

• With s = 2 we have

1
F�3r (x, y)

qX
n=0

✓
F3r (x, y)
F5r (x, y)

◆n�q

Fr(2n�3)(x, y) (14)

=
1

F�r (x, y)

qX
n=0

✓
Fr (x, y)
F3r (x, y)

◆n�q

Fr(2n�1)(x, y)

=
1

F3r (x, y)

qX
n=0

✓
F3r (x, y)

y2rFr (x, y)

◆n�q

Fr(2n+3)(x, y)

=
1

L�3r (x, y)

qX
n=0

✓
L3r (x, y)
L5r (x, y)

◆n�q

Lr(2n�3)(x, y)

=
1

L�r (x, y)

qX
n=0

✓
Lr (x, y)
L3r (x, y)

◆n�q

Lr(2n�1)(x, y)

=
(�1)rq

Lr(x, y)

qX
n=0

(�1)rnLr(2n+1)(x, y)
yr(n�q)

=
(�1)(r+1)q

Fr(x, y)

qX
n=0

(�1)(r+1)nFr(2n+1)(x, y)
yr(n�q)

=
1

L3r (x, y)

qX
n=0

✓
L3r (x, y)

y2rLr (x, y)

◆n�q

Lr(2n+3)(x, y) =
F2r(q+1) (x, y)

F2r (x, y)
.

• With s = 3 we have

1
Fr(x, y)

qX
n=0

✓
�1

(�y)rLr(x, y)

◆n�q

Fr(3n+1)(x, y) (15)

=
1

F2r(x, y)

qX
n=0

✓
�Lr(x, y)

y2r

◆n�q

Fr(3n+2)(x, y)

=
1

F4r(x, y)

qX
n=0

 
Lr(x, y)L2r(x, y)

(�y)3r

!n�q

Fr(3n+4)(x, y)

= � (�y)r

Fr(x, y)

qX
n=0

✓
1

Lr(x, y)L2r(x, y)

◆n�q

Fr(3n�1)(x, y)
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=
1

L�r(x, y)

qX
n=0

✓
Lr(x, y)
L4r(x, y)

◆n�q

Lr(3n�1)(x, y)

=
1

Lr(x, y)

qX
n=0

✓
Lr(x, y)

(�y)r L2r(x, y)

◆n�q

Lr(3n+1)(x, y)

=
1

L2r(x, y)

qX
n=0

✓
L2r(x, y)

y2rLr(x, y)

◆n�q

Lr(3n+2)(x, y)

=
1

L4r(x, y)

qX
n=0

 
L4r(x, y)

(�y)3rLr(x, y)

!n�q

Lr(3n+4)(x, y) =
F3r(q+1) (x, y)

F3r (x, y)
.

In particular we have the following numerical identities (from (13), (14) and (15)
with x = y = r = 1)

Fq+1 = �
qX

n=0

2q�nFn�2 =
qX

n=0

Fn�1 =
qX

n=0

(�1)n+q Fn+2 (16)

=
1
2

qX
n=0

(�2)n�q Fn+3 =
1
3

qX
n=0

✓
3
4

◆n�q

Ln�2 =
qX

n=0

�1
3n�q

Ln�1

=
qX

n=0

2n�q�1Ln =
qX

n=0

(�2)q�n Ln+1.

F2(q+1) =
1
2

qX
n=0

✓
2
5

◆n�q

F2n�3 =
qX

n=0

2q�nF2n�1 =
qX

n=0

F2n+1 (17)

=
qX

n=0

2n�q�1F2n+3 = �1
4

qX
n=0

✓
4
11

◆n�q

L2n�3 = �
qX

n=0

4q�nL2n�1

=
qX

n=0

(�1)n+q L2n+1 =
qX

n=0

4n�q�1L2n+3.

1
2
F3(q+1) =

qX
n=0

F3n+1 =
qX

n=0

(�1)n�q F3n+2 =
1
3

qX
n=0

(�3)n�q F3n+4 (18)

=
qX

n=0

1
3n�q

F3n�1 = �
qX

n=0

1
7n�q

L3n�1 =
qX

n=0

✓
�1

3

◆n�q

L3n+1

=
qX

n=0

3n�q�1L3n+2 =
1
7

qX
n=0

(�7)n�q L3n+4.

Of course, some of the numerical results shown in (16), (17) and (18) are well-
known identities. For example, in [1]: (i) formula

Pq
n=0 2n�q�1Ln = Fq+1 of (16) is
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identity 236, (ii) formula
Pq

n=0 F2n+1 = F2(q+1) of (17) is essentially identity 2, and
(iii) formula

Pq
n=0 F3n+1 = 1

2F3(q+1) in (18) is essentially identity 24 (corrected).
In the remaining sections of this work we consider only the case y = 1 of Propo-

sition 1. The corresponding weight function � (x, 1) will be denoted as � (x).

2. Weighted Sums of Cubes

In this section we will obtain expressions for some weighted sums of cubes of Fi-
bonacci polynomials. More specifically, we will consider the Fibonacci case of Propo-
sition 1 when k = 3, µ = 0 and t = 1.

In this case, equation (4) is (after some simplifications)

F 3
s (x) z

�
z2 + 2Ls(x) z + (�1)s� = 0. (19)

Thus, we have two weights, namely

�1 (x) = �Ls(x) +
q

L2
s(x)� (�1)s , �2 (x) = �Ls(x)�

q
L2

s(x)� (�1)s. (20)

The corresponding weighted sum (5) can be written as
qX

n=0

�n�q(x)F 3
sn(x) = F 3

s (x)

 
(�1)s+1 �(x)

✓
q + 1

3

◆
Fs(x)

+
✓

q + 2
3

◆
Fs(x)

!
, (21)

where � (x) is any of the weights (20).
In the case x = 1, we have in particular the following numerical identities (ob-

tained by setting s = 1 and s = 2 in (21) with the corresponding weights (20))
qX

n=0

⇣
�1 ±

p
2
⌘n�q

F 3
n =

Fq+1Fq

2

⇣⇣
�1 ±

p
2
⌘

Fq�1 + Fq+2

⌘
. (22)

qX
n=0

⇣
�3 ± 2

p
2
⌘n�q

F 3
2n =

F2(q+1)F2q

24

⇣
�
⇣
�3 ± 2

p
2
⌘

F2(q�1) + F2(q+2)

⌘
. (23)

We will show now some di↵erent versions of (21), involving Chebyshev polyno-
mials of the first kind Tn (x), or of the second kind Un (x). The results are the
following.

Proposition 2. (a) If s is even, we have the following weighted sums of cubes of
Fibonacci polynomials, valid for any integer l � 0

qX
n=1

Tn+l (�Ls (x))F 3
sn (x) (24)

= F 3
s (x)

 
�Tq+l+1 (�Ls (x))

✓
q + 1

3

◆
Fs(x)

+ Tq+l (�Ls (x))
✓

q + 2
3

◆
Fs(x)

!
.
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qX
n=1

Un+l�1 (�Ls (x))F 3
sn (x) (25)

= F 3
s (x)

 
�Uq+l (�Ls (x))

✓
q + 1

3

◆
Fs(x)

+ Uq+l�1 (�Ls (x))
✓

q + 2
3

◆
Fs(x)

!
.

(b) If s is odd, we have the following weighted sums of cubes of Fibonacci poly-
nomials (where i2 = �1), valid for any integer l � 0

qX
n=1

(�i)n Tn+l (�iLs (x))F 3
sn (x) (26)

= F 3
s (x)

 
(�i)q+1 Tq+l+1 (�iLs (x))

✓
q + 1

3

◆
Fs(x)

+(�i)q Tq+l (�iLs (x))
✓

q + 2
3

◆
Fs(x)

!
.

qX
n=1

(�i)n�1 Un+l�1 (�iLs (x))F 3
sn (x) (27)

= F 3
s (x)

 
(�i)q Uq+l (�iLs (x))

✓
q + 1

3

◆
Fs(x)

+(�i)q�1 Uq+l�1 (�iLs (x))
✓

q + 2
3

◆
Fs(x)

!
.

Proof. Recall that Chebyshev polynomials of the first kind Tn (x) can be calculated
as

Tn (x) =
1
2

⇣⇣
x +

p
x2 � 1

⌘n
+
⇣
x�

p
x2 � 1

⌘n⌘
, (28)

and that Chebyshev polynomials of the second kind Un (x) can be calculated as

Un (x) =
1

2
p

x2 � 1

✓⇣
x +

p
x2 � 1

⌘n+1
�
⇣
x�

p
x2 � 1

⌘n+1
◆

. (29)

We can write (21) as
qX

n=0

�n+l (x)F 3
sn (x) (30)

= F 3
s (x)

 
(�1)s+1 �q+l+1 (x)

✓
q + 1

3

◆
Fs(x)

+ �q+l (x)
✓

q + 2
3

◆
Fs(x)

!
,
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where l is a non-negative integer. If s is even, the weights (20) are

�1 (x) = �Ls(x) +
p

L2
s(x)� 1 , �2 (x) = �Ls(x)�

p
L2

s(x)� 1. (31)

Thus, (24) follows from (28), (30) and (31). Similarly, (25) follows from (29),
(30) and (31).

On the other hand, if s is odd the weights (20) are �1 (x) = �Ls(x)+
p

L2
s(x) + 1,

�2 (x) = �Ls(x)�
p

L2
s(x) + 1. These weights can be written as

�1 (x) = �i

✓
�iLs(x) +

q
(�iLs(x))2 � 1

◆
, (32)

�2 (x) = �i

✓
�iLs(x)�

q
(�iLs(x))2 � 1

◆
.

From (28) and (32) we see that

(�i)n Tn (�iLs (x)) =
1
2

(�n
1 (x) + �n

2 (x)) , (33)

and from (29) and (32) we see that

(�i)n+1 Un (�iLs (x)) =
1

2i
p

L2
s (x) + 1

�
�n+1

1 (x)� �n+1
2 (x)

�
. (34)

Thus, (26) follows from (30), (32) and (33). Similarly, (27) follows from (30),
(32) and (34).

We note that the integer parameter l � 0 gives us, in (24) and (25), infinitely
many weighted sums of cubes of Fibonacci polynomials for each even s, and in (26)
and (27) gives us infinitely many weighted sums of cubes of Fibonacci polynomials
for each odd s.

We show some numerical examples from formulas (24) to (27). We set x = 1 and
q = 5 in them.

If s = 2, the sequence (Tn (�L2))
1
n=1 involved in (24) is

(Tn (�L2))
1
n=1 = (�3, 17,�99, 577,�3363, 19601,�114243, 665857, . . .) .

(See [5, A001541] for the unsigned version.) Thus, we have the following weighted
sums of cubes of Fibonacci numbers (corresponding to l = 0, 1)

�3F 3
2 + 17F 3

4 � 99F 3
6 + 577F 3

8 � 3363F 3
10 =

F10F12

L2F6
(�19601F8 � 3363F14) ,

17F 3
2 � 99F 3

4 + 577F 3
6 � 3363F 3

8 + 19601F 3
10 =

F10F12

L2F6
(114243F8 + 19601F14) .

Similarly, the sequence (Un (�L2))
1
n=1 involved in (25) is

(Un (�L2))
1
n=1 = (�6, 35,�204, 1189,�6930, 40391,�235416, 1372105, . . .) .
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(See [5, A001109] for the unsigned version.) Thus, we have (for l = 1, 2)

�6F 3
2 + 35F 3

4 � 204F 3
6 + 1189F 3

8 � 6930F 3
10 =

F10F12

L2F6
(�40391F8 � 6930F14) ,

35F 3
2 � 204F 3

4 + 1189F 3
6 � 6930F 3

8 + 40391F 3
10 =

F10F12

L2F6
(235416F8 + 40391F14) .

If s = 1, the sequence ((�i)n Tn (�iL1))
1
n=1 involved in (26) is

((�i)n Tn (�iL1))
1
n=1 = (�1, 3,�7, 17,�41, 99,�239, 577,�1393, 3363,�8119, . . .) .

(See [5, A001333] for the unsigned version.) Then, we have the weighted sums
(for l = 0, 1)

�F 3
1 + 3F 3

2 � 7F 3
3 + 17F 3

4 � 41F 3
5 =

F6F5

2
(99F4 � 41F7) ,

3F 3
1 � 7F 3

2 + 17F 3
3 � 41F 3

4 + 99F 3
5 =

F6F5

2
(�239F4 + 99F7) .

Similarly, if s = 3, the sequence ((�i)n Un (�iL3))
1
n=1 involved in (27) is

((�i)n Un (�iL3))
1
n=1

=(�8, 65,�528, 4289,�34840, 283009,�2298912, 18674305, . . .) .

(See [5, A041025] for the unsigned version.) Then, we have the weighted sums
(for l = 1, 2)

�8F 3
3 + 65F 3

6 � 528F 3
9 + 4289F 3

12 � 34840F 3
15

=
F 2

3 F18F15

F6F9
(283009F12 � 34840F21) ,

65F 3
3 � 528F 3

6 + 4289F 3
9 � 34840F 3

12 + 283009F 3
15

=
F 2

3 F18F15

F6F9
(�2298912F12 + 283009F21) .

3. Other Weighted Sums

In this section we will obtain expressions for some other weighted sums of Fibonacci
and Lucas polynomials. More specifically, we will set µ = 0 in Proposition 1 and
consider the following cases: (i) k = t = 2 and G = F or G = L; (ii) k = 4, t = 1,
G = F .
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Let us begin with the case (i). When G = F , equation (4) is

0 =
4X

i=0

iX
j=0

(�1)
(sj+2(s+1))(j+1)

2

✓
5
j

◆
Fs(x)

F 2
2s(i�j) (x) zi (35)

= (�1)s+1 F 2
2s (x, y) z (z + 1)

�
z2 � (�1)s L2s (x) z + 1

�
,

and with G = L is

0 =
4X

i=0

iX
j=0

(�1)
(sj+2(s+1))(j+1)

2

✓
5
j

◆
Fs(x)

L2
2s(i�j) (x) zi (36)

= (�1)s+1 �L2
2s (x) z2 � (3L4s (x) + 2) z + 4

� �
z2 � (�1)s L2s (x) z + 1

�
.

Observe that

z2 � (�1)s L2s (x) z + 1 =
�
z � (�1)s ↵2s (x)

� �
z � (�1)s �2s (x)

�
,

where ↵ (x) = 1
2

�
x +

p
x2 + 4

�
and � (x) = 1

2

�
x�

p
x2 + 4

�
.

Since z2� (�1)s L2s (x) z + 1 is a factor of the right-hand sides of (35) and (36),
we have for both, the Fibonacci and the Lucas cases, the following weights

�1 (x) = (�1)s ↵2s (x) , �2 (x) = (�1)s �2s (x) . (37)

In the Fibonacci case we have in addition the weight � (x) = �1 (from the factor
z + 1 of the right-hand side of (35)). In the Lucas case we have in addition the
following weights (from the factor L2

2s (x) z2� (3L4s (x) + 2) z +4 of the right-hand
side of (36))

�3 (x) =
2

L2s (x)

0
@3L4s (x) + 2

4L2s (x)
+

s✓
3L4s (x) + 2

4L2s (x)

◆2

� 1

1
A ,

�4 (x) =
2

L2s (x)

0
@3L4s (x) + 2

4L2s (x)
�

s✓
3L4s (x) + 2

4L2s (x)

◆2

� 1

1
A . (38)

In the Fibonacci case the corresponding sum (5) is

1
F 2

2s (x)

qX
n=0

�n�q (x)F 2
2sn (x) = �� (x)

✓
q + 1

4

◆
Fs(x)

+
✓

q + 3
4

◆
Fs(x)

(39)

+
✓

��1 (x) + (�1)s+1 L3s (x)
Ls (x)

◆✓
q + 2

4

◆
Fs(x)

,
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(where � (x) is any of the weights (37) or � (x) = �1). In the Lucas case the sum
(5) is

qX
n=0

�n�q (x)L2
2sn (x) =� L2

2s (x)� (x)
✓

q + 1
4

◆
Fs(x)

+ 4
✓

q + 4
4

◆
Fs(x)

(40)

+
�
(�1)s L3

s (x)L3s (x)� (x)� L2
2s (x)�2 (x)

�✓q + 2
4

◆
Fs(x)

+
�
4��1 (x)� L2

s (x) (3L2s (x)� 2 (�1)s)
�✓q + 3

4

◆
Fs(x)

,

(where � (x) is any of the weights (37) or (38)).
For the weight � (x) = �1 of the Fibonacci case, we have from (39) the following

alternating sum of squares of Fibonacci polynomials

qX
n=0

(�1)n+q F 2
2sn (x) (41)

= F 2
2s (x)

 ✓
q + 1

4

◆
Fs(x)

+ (�1)s+1 L2s (x)
✓

q + 2
4

◆
Fs(x)

+
✓

q + 3
4

◆
Fs(x)

!
.

When x = s = 1, the weights (37) are �3±
p

5
2 . In this case we have the following

numerical formulas for weighted sums of squares of Fibonacci and Lucas numbers
in terms of Fibonomials:

qX
n=0

⇣
�3±

p
5

2

⌘n�q
F 2

2n = 3±
p

5
2

�q+1
4

�
F

+ 5±
p

5
2

�q+2
4

�
F

+
�q+3

4

�
F
,

qX
n=0

⇣
�3±

p
5

2

⌘n�q
L2

2n = 9(3±
p

5)
2

�q+1
4

�
F
� 51±23

p
5

2

�q+2
4

�
F

+
�
�17 ± 2

p
5
� �q+3

4

�
F

+ 4
�q+4

4

�
F
.

By using the weights (37) in (39) and (40), we can obtain expressions for weighted
sums of squares of Fibonacci and Lucas polynomials, in which the weight functions
are in turn certain Fibonacci or Lucas polynomials. This is the content of the
following proposition.

Proposition 3. For l 2 Z we have the following weighted sums of squares of
Fibonacci and Lucas polynomials
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(a)

1
F 2

2s (x)

qX
n=0

(�1)s(n+q+1)+1 F2s(n+l) (x)F 2
2sn (x) (42)

= F2s(q+l+1)(x)
✓

q + 1
4

◆
Fs(x)

+ Fs(x)Ls(2q+2l+1)(x)
✓

q + 2
4

◆
Fs(x)

+ (�1)s+1F2s(q+l)(x)
✓

q + 3
4

◆
Fs(x)

.

(b)

1
F 2

2s (x)

qX
n=0

(�1)s(n+q+1)+1 L2s(n+l) (x)F 2
2sn (x) (43)

= L2s(q+l+1) (x)
✓

q + 1
4

◆
Fs(x)

+
�
x2 + 4

�
Fs (x)Fs(2q+2l+1) (x)

✓
q + 2

4

◆
Fs(x)

+ (�1)s+1 L2s(q+l) (x)
✓

q + 3
4

◆
Fs(x)

.

(c)

qX
n=0

(�1)s(n+q) F2s(n+l) (x)L2
2sn (x) (44)

= L2
2s (x) (�1)s+1 F2s(q+l+1) (x)

✓
q + 1

4

◆
Fs(x)

+ 4F2s(q+l) (x)
✓

q + 4
4

◆
Fs(x)

+
�
L3

s (x)L3s (x)F2s(q+l+1) (x)� L2
2s (x)F2s(q+l+2) (x)

�✓q + 2
4

◆
Fs(x)

+
�
4 (�1)s F2s(q+l�1) (x)� L2

s (x) (3L2s (x)� 2 (�1)s)F2s(q+l) (x)
�✓q + 3

4

◆
Fs(x)

.

(d)

qX
n=0

(�1)s(n+q) L2s(n+l) (x)L2
2sn (x) (45)

= (�1)s+1 L2
2s (x)L2s(q+l+1) (x)

✓
q + 1

4

◆
Fs(x)

+ 4L2s(q+l) (x)
✓

q + 4
4

◆
Fs(x)

+
�
L3

s (x)L3s (x)L2s(q+l+1) (x)� L2
2s (x)L2s(q+l+2) (x)

�✓q + 2
4

◆
Fs(x)

+
�
4 (�1)s L2s(q+l�1) (x)� L2

s (x) (3L2s (x)� 2 (�1)s)L2s(q+l) (x)
�✓q + 3

4

◆
Fs(x)

.
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Proof. First write the sum (39) as

1
F 2

2s (x)

qX
n=0

�n+l (x)F 2
2sn (x) (46)

=� �q+l+1 (x)
✓

q + 1
4

◆
Fs(x)

+ �q+l (x)
✓

q + 3
4

◆
Fs(x)

+
✓

�q+l�1 (x) + (�1)s+1 L3s (x)
Ls (x)

�q+l (x)
◆✓

q + 2
4

◆
Fs(x)

,

where l 2 Z. Substitute the weights (37) in (46), take the di↵erence of the resulting
expressions, multiply both sides of this di↵erence by

�
x2 + 4

�� 1
2 , and use the Binet’s

formula Fr (x) = 1p
x2+4

(↵r (x)� �r (x)), to obtain that

1
F 2

2s (x)

qX
n=0

(�1)s(n+q+1)+1F2s(n+l) (x)F 2
2sn (x)

= F2s(q+l+1) (x)
✓

q + 1
4

◆
Fs(x)

+ (�1)s+1 F2s(q+l) (x)
✓

q + 3
4

◆
Fs(x)

+
✓

L3s (x)
Ls (x)

F2s(q+l) (x)� F2s(q+l+1) (x)
◆✓

q + 2
4

◆
Fs(x)

.

Finally, use the identity

L3s (x)
Ls (x)

F2s(q+l) (x)� F2s(q+l�1) (x) = Fs (x)Ls(2q+2l+1) (x) ,

to obtain (42). Similarly, if we substitute the weights (37) in (46), then take the sum
of the resulting expressions, then use the Binet’s formula Lr (x) = ↵r (x) + �r (x),
and then use the identity

L3s (x)
Ls (x)

L2s(q+l) (x)� L2s(q+l�1) (x) =
�
x2 + 4

�
Fs (x)Fs(2q+2l+1) (x) ,

we obtain (43).
In a similar fashion, if we begin now with (40), written as
qX

n=0

�n+l (x)L2
2sn (x) (47)

=� L2
2s (x)�q+l+1 (x)

✓
q + 1

4

◆
Fs(x)

+ 4�q+l (x)
✓

q + 4
4

◆
Fs(x)

+
�
(�1)s L3

s (x)L3s (x)�q+l+1 (x)� L2
2s (x)�q+l+2 (x)

�✓q + 2
4

◆
Fs(x)

+
�
4�q+l�1 (x)� L2

s (x) (3L2s (x)� 2 (�1)s)�q+l (x)
�✓q + 3

4

◆
Fs(x)

,
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we see that (44) and (45) are obtained by using the weights (37) in (47), together
with Binet’s formulas.

Observe that the case l = 0 of (42) and (45) gives us sums of cubes of Fi-
bonacci and Lucas polynomials. More precisely, if s is even we have the following
(unweighted) sums of cubes

1
F 2

2s (x)

qX
n=0

F 3
2sn (x) (48)

=� F2s(q+1) (x)
✓

q + 1
4

◆
Fs(x)

� Fs (x)Ls(2q+1) (x)
✓

q + 2
4

◆
Fs(x)

+ F2sq (x)
✓

q + 3
4

◆
Fs(x)

.

qX
n=0

L3
2sn (x) = �L2

2s (x)L2s(q+1) (x)
✓

q + 1
4

◆
Fs(x)

+ 4L2sq (x)
✓

q + 4
4

◆
Fs(x)

(49)

+
�
L3

s (x)L3s (x)L2s(q+1) (x)� L2
2s (x)L2s(q+2) (x)

�✓q + 2
4

◆
Fs(x)

+
�
4L2s(q�1) (x)� Ls (x) (3L3s (x) + Ls (x))L2sq (x)

�✓q + 3
4

◆
Fs(x)

.

If s is odd, we have the following alternating sums of cubes

1
F 2

2s (x)

qX
n=0

(�1)n+qF 3
2sn (x) (50)

= F2s(q+1) (x)
✓

q + 1
4

◆
Fs(x)

+ Fs (x)Ls(2q+1) (x)
✓

q + 2
4

◆
Fs(x)

+ F2sq (x)
✓

q + 3
4

◆
Fs(x)

.

qX
n=0

(�1)n+qL3
2sn (x) (51)

= L2
2s (x)L2s(q+1) (x)

✓
q + 1

4

◆
Fs(x)

+ 4L2sq (x)
✓

q + 4
4

◆
Fs(x)

+
�
L3

s (x)L3s (x)L2s(q+1) (x)� L2
2s (x)L2s(q+2) (x)

�✓q + 2
4

◆
Fs(x)

�
�
4L2s(q�1) (x) + Ls (x) (3L3s (x)� Ls (x))L2sq (x)

�✓q + 3
4

◆
Fs(x)

.
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For the remaining weights (38) of the Lucas case, we have in particular the
following numerical identity (case s = x = 1)

qX
n=0

⇣
23±

p
385

18

⌘n�q
L2

2n =� 23±
p

385
2

�q+1
4

�
F

� 61±3
p

385
2

�q+2
4

�
F
� �1±

p
385

2

�q+3
4

�
F

+ 4
�q+4

4

�
F
.

In fact, we can proceed in a similar fashion of the proof of Proposition 2 (using
now (38) and (40)) to obtain that, if

�s (x) =
3L4s (x) + 2

4L2s (x)
,

we have the following weighted sum of squares of Lucas polynomials, valid for
integers l � 0,

qX
n=0

✓
2

L2s (x)

◆n�q

Tn+l (�s (x))L2
2sn (x) (52)

= �2L2s (x)Tq+l+1 (�s (x))
✓

q + 1
4

◆
Fs(x)

+
✓

(�1)s 2L3
s (x)L3s (x)
L2s (x)

Tq+l+1 (�s (x))� 4Tq+l+2 (�s (x))
◆✓

q + 2
4

◆
Fs(x)

+
�
2L2s (x)Tq+l�1 (�s (x))�L2

s (x) (3L2s (x)�2 (�1)s)Tq+l (�s (x))
�✓q + 3

4

◆
Fs(x)

+ 4Tq+l (�s (x))
✓

q + 4
4

◆
Fs(x)

.

For example, if x = 1 and s = 2, the sequence
�
Tn

�
143
28

��1
n=0

involved in (52) is�
Tn

�
143
28

��1
n=0

=
�
1, 143

28 , 20057
392 , 2840123

5488 , 402206417
76832 , 56958853523

1075648 , 8066283596057
15059072 , 1142314618945643

210827008 , . . .
�
.

For q = 4 and l = 0, 1, we have the weighted sums�
2
7

��4
L2

0 +
�

2
7

��3 143
28 L2

4 +
�

2
7

��2 20057
392 L2

8 +
�

2
7

��1 2840123
5488 L2

12 + 402206417
76832 L2

16

= �56958853523
76832

�5
1

�
F2

+ 400320800329
76832

�6
2

�
F2
� 68220633199

76832

�7
3

�
F2

+ 402206417
19208

�8
4

�
F2

,

and �
2
7

��4 143
28 L2

0 +
�

2
7

��3 20057
392 L2

4

+
�

2
7

��2 2840123
5488 L2

8 +
�

2
7

��1 402206417
76832 L2

12 + 56958853523
1075648 L2

16

=� 8066283596057
1075648

�5
1

�
F2

+ 56691820586491
1075648

�6
2

�
F2
� 9661131494701

1075648

�7
3

�
F2

+ 56958853523
268912

�8
4

�
F2

.
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Finally, let us consider the case (ii) mentioned at the beginning of this section
(Fibonacci case of Proposition 1, with µ = 0, k = 4 and t = 1). In this case,
equation (4) is

0 =
4X

i=0

iX
j=0

(�1)
(sj+2(s+1))(j+1)

2

✓
5
j

◆
Fs(x)

F 4
s(i�j) (x) zi (53)

= (�1)s+1 F 4
s (x) z (z + 1)

�
z2 + (�1)s (3L2s (x) + 4 (�1)s) z + 1

�
.

Thus we have the weights �1 (x) = �1 and

�2 (x) = �3L2s (x) + 4 (�1)s

2 (�1)s +

s✓
3L2s (x) + 4 (�1)s

2

◆2

� 1 ,

�3 (x) = �3L2s (x) + 4 (�1)s

2 (�1)s �

s✓
3L2s (x) + 4 (�1)s

2

◆2

� 1 . (54)

The corresponding weighted sum (5) (of fourth powers of Fibonacci polynomials)
is in this case

1
F 4

s (x)

qX
n=0

�n�q (x)F 4
sn (x) (55)

=� � (x)
✓

q + 1
4

◆
Fs(x)

+
✓

q + 3
4

◆
Fs(x)

�
�
(3 (�1)s L2s (x) + 5)� (x) + �2 (x)

�✓q + 2
4

◆
Fs(x)

.

With the weight �1 (x) = �1 we obtain from (55) the following alternating sum
of fourth powers of Fibonacci polynomials

qX
n=0

(�1)n F 4
sn (x) (56)

=(�1)qF 4
s (x)

 ✓
q + 1

4

◆
Fs(x)

+ (3 (�1)s L2s (x) + 4)
✓

q + 2
4

◆
Fs(x)

+
✓

q + 3
4

◆
Fs(x)

!
.

(The case x = 1 of (56), after some transformations, is contained in [4].) By
setting s = 1 in the weights (54), we have in particular the numerical identity from
(55)

qX
n=0

⇣
5±
p

21
2

⌘n�q
F 4

n = �5±
p

21
2

�q+1
4

�
F
� 3±

p
21

2

�q+2
4

�
F

+
�q+3

4

�
F
. (57)
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However, following the ideas of the proof of Proposition 2, we can see from (54)
and (55) that for any integer l � 0 we have

1
F 4

s (x)

qX
n=1

Tn+l (⇥s (x))F 4
sn (x) (58)

=� Tq+l+1 (⇥s (x))
✓

q + 1
4

◆
Fs(x)

+ Tq+l (⇥s (x))
✓

q + 3
4

◆
Fs(x)

� ((3 (�1)s L2s (x) + 5)Tq+l+1 (⇥s (x)) + Tq+l+2 (⇥s (x)))
✓

q + 2
4

◆
Fs(x)

,

where
⇥s (x) = �3L2s (x) + 4 (�1)s

2 (�1)s .

For example, if x = 1 and s = 2, we have ⇥2 (1) = �25
2 , and the sequence�

Tn

�
�25

2

��1
n=1

involved in (58) is
�
Tn

�
�25

2

��1
n=1

=
�
�25

2 , 623
2 ,�7775, 388127

2 ,�9687625
2 , 120901249,�6035374825

2 , 150642568127
2 , . . .

�
.

(See [5, A090733] for 2Tn

�
25
2

�
.) With q = 5 and l = 0, 1 we have the weighted

sums

�23
2 F 4

2 + 623
2 F 4

4 � 7775F 4
6 + 388127

2 F 4
8 � 9687625

2 F 4
10

= �120901249
�6
2

�
F2
� 251490123

2

�7
3

�
F2
� 9687625

2

�8
4

�
F2

,

623
2 F 4

2 � 7775F 4
4 + 388127

2 F 4
6 � 9687625

2 F 4
8 + 120901249F 4

10

= 6035374825
2

�6
2

�
F2

+ 6277177323
2

�7
3

�
F2

+ 120901249
�8
4

�
F2

.
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