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Abstract
Concave compositions are ordered partitions whose parts are decreasing towards
a central part. We study the distribution modulo a of the number of concave
compositions. Let c(n) be the number of concave compositions of n having even
length. It is easy to see that c(n) is even for all n � 1. Refining this fact, we prove
that

#{n < X : c(n) ⌘ 0 (mod 4)}�
p

X

and also that for every a > 2 and at least two distinct values of r 2 {0, 1, . . . , a�1},

#{n < X : c(n) ⌘ r (mod a)} >
log2 log3 X

a
.

We obtain similar results for concave compositions of odd length.

1. Introduction and Statement of Results

In their 1967 paper, Parkin and Shanks [5] conjectured that the partition function
p(n) takes on even and odd values with equal likelihood. Very little is known about
the distribution of the parity of p(n). Recently, Ahlgren [1] (see also the work of
Berndt, Yee, and Zaharescu [3] as well as the works referenced therein) proved that
the number of integers with an even number of partitions less than X is on the
order of

p
X. This improved on work of Mirsky [4] showing that about log log X

numbers less than X have partition values in some nonzero residue class modulo
any integer a, for the special case a = 2.

A combinatorial object similar to the set of partitions is the set of concave compo-
sitions — ordered partitions whose summands decrease towards a center summand.
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We break up these compositions into the following three types, as defined by An-
drews in [2].

Concave compositions of even length are ordered partitions of the form a1 +a2 +
· · ·+ am + b1 + b2 + · · ·+ bm where

a1 > a2 > · · · > am = bm < bm�1 < · · · < b1

and am � 0. We denote the number of concave compositions of even length of an
integer n by ce(n).

Concave compositions of odd length of type 1 are ordered partitions of the form
a1 + a2 + · · ·+ am+1 + b1 + b2 + · · ·+ bm where

a1 > a2 > · · · > am+1 < bm < bm�1 < · · · < b1

and am+1 � 0. We denote the number of concave compositions of odd length of
type 1 of n by co1(n).

Finally, concave compositions of odd length of type 2 are ordered partitions of the
form a1 + a2 + · · ·+ am+1 + b1 + b2 + · · ·+ bm where

a1 > a2 > · · · > am+1  bm < bm�1 < · · · < b1

and am+1 � 0. We denote the number of concave compositions of odd length of
type 2 of n by co2(n). Note that all concave compositions of odd length of type 1
are also of type 2.

It is natural to consider the distribution of these functions modulo a. To this
end, we define

Ef (r, a;X) = #{n < X : f(n) ⌘ r (mod a)}.
Since the function co1(n) is odd exactly when n is a triangular number (see the
remark following Lemma 2.1), we define the function co01(n) by subtracting 1 from
co1(n) if n is triangular and keeping it the same otherwise. Then we have the
following theorem.

Theorem 1.1. The following are true.
(i) There exists an explicit constant c > 0 such that for su�ciently large X we have

Ece(0, 4;X) > c
p

X.

(ii) There exists an explicit constant c > 0 and 0 < ↵ < 1 such that for su�ciently
large X we have

Eco01
(0, 4;X) >

X log↵ X � cX

(
p

24X + 1 + 1) log↵ X
.

(iii) There exists an explicit constant c > 0 such that for su�ciently large X we
have

Eco2(0, 2;X) > c
p

X.
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If we consider the more general case of a modulus a, we get a result similar to
that of Mirsky [4].

Theorem 1.2. For every a > 2 and at least two distinct values of r among
{0, 1, . . . , a� 1}, we have

Ece(r, a;X) >
log2 log3 X

a
, (1.1)

Eco1(r, a;X) >
log2 log3 X

a
, and (1.2)

Eco2(r, a;X) >
log2 log3 X

a
(1.3)

for X su�ciently large. In the cases co1 and co2 this also applies when a = 2.

Although the above bound is the best we can prove, we expect the true distri-
butions to be much more balanced.

Conjecture. For any modulus a � 2, we have

Eco1(r, a;X) ⇠ X

a
, a odd

Eco1(r, a;X) ⇠ 2X
a

, a even, r even

Eco1(r, a;X) ⇠ 2
p

2X
a

, a even, r odd.

For ce, we expect similar asymptotics to hold, but without the last case. For co2,
we expect uniformity across residue classes for any a.

2. Proofs

2.1. Generating Functions

When faced with combinatorial objects such as concave compositions, it is natural
to consider the generating functions for each object. Andrews found q-series expan-
sions for each type of concave composition in Theorems 1-3 of [2], which we restate
here.

Lemma 2.1. Define the generating functions CE(q) =
1P

n=0
ce(n)qn, CO1(q) =

1P
n=0

co1(n)qn, and CO2(q) =
1P

n=0
co2(n)qn. Then we have

CE(q) =
1 +

1P
n=1

⇣
�q

3n2�n
2 + q

3n2+n
2

⌘

1 +
1P

n=1
(�1)n

⇣
q

3n2�n
2 + q

3n2+n
2

⌘ = 1 + 2q2 + 2q3 + 4q4 + 4q5 + · · · ,
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CO1(q) =
1 +

1P
n=1

⇣
�q6n2�2n + q6n2+2n

⌘

1 +
1P

n=1
(�1)n

⇣
q

3n2�n
2 + q

3n2+n
2

⌘ = 1 + q + 2q2 + 3q3 + 4q4 + 6q5 + · · · ,

CO2(q) =
1 +

1P
n=1

⇣
q6n2�8n+3 � q6n2�4n+1

⌘

1 +
1P

n=1
(�1)n

⇣
q

3n2�n
2 + q

3n2+n
2

⌘ = 1+2q+3q2 +4q3 +7q4 +10q5 + · · · .

Remark. It is easy to show that CO1(q) ⌘
P1

n=0 qn(n+1)/2 (mod 2), as follows. We
have by Lemma 2.1 that

CO1(q) =
1�

P1
n=1

�
q4n(3n�1)/2 � q4n(3n+1)/2

�
1 +

P1
n=1(�1)n

�
qn(3n�1)/2 + qn(3n+1)/2

� ⌘ (q)31 (mod 2)

where (q)1 =
1Q

n=1
(1� qn). By Lemma 12 of [2], we have that

1X
n=0

(�1)nqn(n+1)/2 = (q)1
1X

n=0

qn(n+1)

(q)2n
⌘ (q)1

 1X
n=0

qn(n+1)/2

(q)n

!2

⌘ (q)31 (mod 2)

since the partitions into distinct parts are conjugate to the partitions into 1, 2, . . . , n
missing nothing. The desired congruence follows.

Motivated by this congruence, we define CO0
1(q) =

1P
n=0

co01(n)qn = CO1(q) �P1
n=0 qn(n+1)/2, so that all of the coe�cients of CO0

1(q) are even. This will ease our
study of the series modulo 4. With these, we can now proceed to the proofs of our
main theorems.

2.2. Proofs of Theorems 1.1 and 1.2

Combining the expansions given by Andrews [2] with a generalization of Ahlgren’s
argument in [1], we prove our main theorem.

Proof of Theorem 1.1. (i) First, we show that the coe�cients ce(n) are all even for
n > 1. There is a natural pairing between non-palindromic concave compositions
of even length given by mirroring the sequence. There is furthermore a natural
pairing between palindromic compositions given by inserting or removing a pair of
zeroes at the center of the sequence. Alternatively, Lemma 2.1 makes it clear that
CE(q) ⌘ 1 (mod 2).

Thus we have that ce(n) is congruent to either 0 or 2 mod 4. From Lemma 2.1,
we have the following: 

1 +
1X

n=1

(�1)n
⇣
q

3n2�n
2 + q

3n2+n
2

⌘! 1X
n=0

ce(n)qn

!
= 1+

1X
n=1

⇣
�q

3n2�n
2 + q

3n2+n
2

⌘
.
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We will denote the right-hand side by
1P

n=0
a(n)qn. Thus, since �2 ⌘ 2 (mod 4),

we have that

a(n) ⌘ ce(n)+ce(n�1)+ce(n�2)+ce(n�5)+· · ·+ce
✓

n� 3k2 ± k

2

◆
+· · · (mod 4).

(2.1)
If a(n) is divisible by 4 and there are an odd number of summands, we can

conclude that one of the summands is also divisible by 4. It is easy to see that there
will be an odd number of summands exactly when 3k2+k

2 < n < 3(k+1)2�(k+1)
2 . As

X tends to infinity, it is easy to show that the number of such n < X tends to 2
3X

from below very quickly, since 3(k+1)2�(k+1)
2 is almost exactly two-thirds of the way

from 3k2+k
2 to 3(k+1)2+(k+1)

2 .
Thus for approximately 2

3X values of n, one of the terms ce(i) must be congruent
to 0 modulo 4. These terms may be overcounted by the number of decompositions
of the form (2.1) in which they appear. This is bounded above by twice the number
of pentagonal numbers less than X, which is

p
24X+1+1

3 . Thus we can conclude that
we have, for some small constant ✏,

Ece(0, 4;X) >
(2� ✏)Xp
24X + 1 + 1

,

as desired.
(ii) We first write out the expansion of CO0

1 as in (i):
 

1 +
1X

n=1

(�1)n
⇣
q

3n2�n
2 + q

3n2+n
2

⌘! 1X
n=0

co01(n)qn

!

=1 +
1X

n=1

⇣
�q6n2�2n + q6n2+2n

⌘
�

1X
j,k=1

✓
q

j2�j+3k2�k
2 + q

j2�j+3k2+k
2

◆
.

Again writing the right-hand side as
1P

n=0
a(n)qn, we notice that a(n) = 0 whenever

n is not expressible as 6k2 ± 2k or as the sum of a triangular and a pentagonal
number. To obtain a bound on how many such terms there are, we first notice
that there are at most

p
6X+1�1

3 values of n < X expressible as 6k2 ± 2k. To find
how many numbers less than X are expressible as the sum of a triangular and a
pentagonal number, we use the result that if Q(x, y) is a positive definite binary
quadratic form,

#{n < X : n = Q(x, y) for some x, y 2 Z} ⇣ X

log↵ X

for some 0 < ↵ < 1. For a presentation of a similar result, see Section 2 in [6].
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Thus we have that there are at least X
⇣

log↵ X�c
log↵ X

⌘
numbers n < X such that

a(n) = 0. Then by an argument analogous to that in (i), we can conclude that

Eco01
(0, 4;X) >

X log↵ X � cX

(
p

24X + 1 + 1) log↵ X
.

(iii) This proof is analogous to the proof of (i), the only di↵erence being that we
need to exclude the values of n for which a(n) is nonzero. Thus the bound we get
in this case is, for some small constant ✏,

Eco2(0, 2;X) >
(2� ✏)X � 4�

p
6X � 2p

24X + 1 + 1
,

implying the desired result.

We adapt the strategy of Mirsky in [4] to prove Theorem 1.2.

Proof of Theorem 1.2. Let E⇤
ce(r, a;X) = #{n  X : ce(n) 6⌘ r (mod a)}, and

define E⇤
co1

(r, a;X) and E⇤
co2

(r, a;X) similarly. Fix r; then, in the case of CE , we
claim that E⇤

ce(r, a;X) > log2 log3 X � C for some constant C.

Recall that (q)1 =
1Q

n=1
(1 � qn). Then we have by Lemma 2.1, considering the

coe�cient of q`(3`+1)/2+2 in (q)1CE(q), that

ce(`(3` + 1)/2 + 2) +
X̀
k=1

(�1)k ce
✓

`(3` + 1)
2

+ 2� k(3k � 1)
2

◆

+
`�1X
k=1

(�1)k ce
✓

`(3` + 1)
2

+ 2� k(3k + 1)
2

◆
+ (�1)` ce(2) = 0

for all ` � 1. For ` = 2m� 1 this becomes

ce((2m� 1)(3m� 1) + 2) +
2m�1X
k=1

(�1)k ce((2m� 1)(3m� 1) + 2� k(3k � 1)/2)

(2.2)

+
2m�2X
k=1

(�1)k ce((2m� 1)(3m� 1) + 2� k(3k + 1)/2) = 2.

(2.3)

We claim that some element of ce(2m+1), ce(2m+2), . . . , ce((2m�1)(3m�1)+2)
is not congruent to r (mod a). Suppose otherwise; then the above equation gives

0 ⌘ r +
2m�1X
k=1

(�1)kr +
2m�2X
k=1

(�1)kr ⌘ 2 (mod a),



INTEGERS: 13 (2013) 7

which is a contradiction. We would like to construct a sequence mj so that the terms
appearing in Equation 2.2 for mj and mi do not overlap for i 6= j, hence giving a
value of ce not congruent to r (mod a) for each j. Since the lowest-indexed term in
Equation 2.2 for mj is 2mj +1 and the highest is (2mj�1)(3mj�1)+2, it su�ces to
set 2mj+1 > (2mj�1�1)(3mj�1�1)+2, or 2mj > 6m2

j�1�5mj�1+2. Hence we can
choose m1 = 1, mj = 3m2

j�1, so that mj = 32j�1�1. This gives E⇤
ce(r, a; 32j�1�1) � j

for all j. Setting j = blog2 log3 Xc gives E⇤
ce(r, a;X) � log2 log3 X � C, as desired.

Since E⇤
ce(0, a;X) =

P
r0 6=0

Ece(r0, a;X), we can write

X
r0 6=0

Ece(r0, a;X) > log2 log3 X � C,

from which there is some r1 so that

Ece(r1, a;X) >
1

a� 1
log2 log3 X � C >

1
a

log2 log3 X

for X su�ciently large. Then we also have
P

r0 6=r1
Ece(r0, a;X) = E⇤

ce(r1, a;X) >
log2 log3 X � C, giving some r2 6= r1 so that Ece(r2, a;X) > 1

a log2 log3 X. This
gives us two residues, r1 and r2, with the desired bound in the CE case.

For CO1 and CO2, the same argument applies almost verbatim, with the remark
that we use the coe�cient of q(2m�1)(3m�1) in (q)1CO1(q), (q)1CO2(q) respectively,
rather than q(2m�1)(3m�1)+2. In both cases we can guarantee that this coe�cient
must equal 0. In the case CO1 the di↵erence between (2m � 1)(3m � 1) and the
nearest exponent of a nonzero coe�cient is 3m� 1; in the case CO2 it is m. Noting
that co1(0) = co2(0) = 1 6= 0, the rest of the argument follows.
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