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Abstract

If S is a set of linear equations, the 2-color disjunctive Rado number for the set S is
the least integer n, provided it exists, such that every coloring of the set {1,2,...,n}
with two colors admits a monochromatic solution to at least one equation in the
set S. If no such integer n exists, then the 2-color disjunctive Rado number for the
set S is infinite. In this paper, the disjunctive Rado number for the set consisting
of the two equations axy + o = x3 and bx; + x2 = x3 is determined for all integers
a and b, where 1 < a < b.

1. Introduction

Let N represent the set of natural numbers and let [a, b] denote the set {n € N: a <
n < b}. For every t € N, a function A : [1,n] — [0,¢—1] is referred to as a t-coloring
of the set [1,n], and the set [0,¢ — 1] is referred to as the set of colors. Given a
t-coloring A and a system L of linear equations or inequalities in m variables, a
solution (x1, %3, ..., Zmy) to the system L is monochromatic if and only if

Axy) = Azg) = ... = A(zy).

In 1916, I. Schur [31] proved that for every ¢t > 2, there exists a least integer n = S(¢)
such that for every t-coloring of the set [1,n], there exists a monochromatic solution
to x1 + x2 = x3.

The integers S(t) are called Schur numbers. It is known that S(2) = 5, S(3) = 14,
and S(4) = 45, but no other Schur numbers are known [33]. In 1933, R. Rado
generalized the concept of Schur numbers to arbitrary systems of linear equations.
Rado found necessary and sufficient conditions to determine if an arbitrary system
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of linear equations admits a monochromatic solution under every t-coloring of the
natural numbers [16, 17, 18]. For a given system L of linear equations, the least
integer n, provided that it exists, such that for every t-coloring of the set [1, n] there
exists a monochromatic solution to L is called the t-color Rado number (or t-color
generalized Schur number) for the system L. If such an integer n does not exist,
then the t-color Rado number for the system L is infinite. In recent years, the exact
Rado numbers for several families of equations and inequalities have been found
[4, 6, 7,8, 11, 12, 15, 23, 24, 25, 27, 28, 32].

We will need the following notation to proceed. For all integers m > 3, let L(m)
represent the equation

Lim): x1+x2+ ... + Type1 = Tin,

and let #(L(m)) represent the 2-color Rado number for this equation. In [1], it was
determined that for every m > 3, the 2-color Rado number for the equation L(m)
is

r(L(m)) =m? —m — 1.

It is routine to verify that for every m > 3, it is impossible to 2-color the values in
the set

{L,m—1,m,m? —2m+1,m? —m — 1}

2_m-—1.

and avoid a monochromatic solution to L(m), showing that r(L(m)) <
Several variations of L(m) have recently been considered. One such variation
will require the following notation. For all integers a > 1, let S(a) represent the

equation
S(a): axy + x9 = x5,

and let 7(S(a)) represent the 2-color Rado number for this equation. For every
integer a > 1, if (o, 3, 7) is a solution to S(a), then the (a+2)-tuple («, o, ..., &, 5,7)
is a solution to L(a+2). So, every 2-coloring that admits a monochromatic solution
to S(a) also admits a monochromatic solution to L(a + 2). It follows that for every
integer a > 1,

r(S(a)) = r(L(a +2)).
In [10], it was shown that for every integer a > 1,
r(S(a)=a*+3a+1=(a+2)? - (a+2)—1=r(L(a+2)).

It is also routine to verify that for every a > 1, it is impossible to 2-color the values
in the set

{l,a+1,a+2,a%® +2a +1,a® + 3a + 1}
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and avoid a monochromatic solution to S(a), showing that 7(S(a)) < a® + 3a + 1.
It should be noted that this result determines the 2-color Rado numbers for a more
general family of equations. Let positive integers a and [ be given and let T'(a)
represent any equation of the form

T(a): a1x1 + aso + ... + i + Tip1 = Tyq2

where a; € N for ¢ € [1,] and 22:1 a; = a. Let r(T(a)) represent the 2-color
Rado number for this equation. For reasons similar to the argument above, every 2-
coloring that admits a monochromatic solution to S(a) also admits a monochromatic
solution to T'(a), and every 2-coloring that admits a monochromatic solution to T'(a)
also admits a monochromatic solution to L(a + 2). Hence,

r(S(a)) > r(T(a)) > r(L(a+2)) and 7r(T(a))=a®+ 3a+ 1.

Recently, several variations of the classical Rado numbers have been developed
(2, 3, 5, 14, 19, 20, 21, 26, 29, 30]. Specifically, the concept of ¢-color disjunctive
Rado numbers has been introduced [9, 13, 22]. Given a set S of linear equations,
the least integer n, provided that it exists, such that for every ¢-coloring of the set
[1,7n] there exists a monochromatic solution to at least one equation in S is called
the t-color disjunctive Rado number for the set S. If such an integer n does not
exist, then the t-color disjunctive Rado number for the set S is infinite. Given a set
of linear equations, it is clear that the t-color disjunctive Rado number for this set
is less than or equal to the t-color Rado number for each equation in the set.

Specifically, the 2-color disjunctive Rado numbers for the set S = {L(m), L(n)}
were recently considered. Let r4(L(m), L(n)) represent the 2-color disjunctive Rado
number for this set. In [13], it was determined that

m2—m—1 fn=m+1

m2—2m+1 fm+2<n<m?-—2m+2
ra(L(m), L(n)) = o )

n—1 ifm*—2m+3<n<m —-m-1

m2—m-—1 ifn>m2—m

for all integers m and n such that 3 < m < n. In this paper we consider the 2-color
disjunctive Rado numbers for the set S = {S(a), S(b)}. Let r4(S(a), S(b)) represent
the 2-color disjunctive Rado number for this set. Just as it was easy to see that
r(S(a)) > r(L(a + 2)), it is also easy to see that for all integers a and b where
1<a<b,

ra(S(a),S(b)) > rq(L(a+2), L(b+ 2)).

One may wonder if equality also holds in this situation. The answer is some-
times, but not always. For ease of comparison, we will express the formula for
ra(L(m), L(n)) as rq(L(a + 2), L(b+ 2)). For all integers a and b where 1 < a < b,
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a?+3a+1 ifb=a+1

a2+ 2a+1 ifa+2<b<a?+2a

b+1 ifa?+2a+1<b<a?+3a-1
a?+3a+1 ifb>a%+3a

ra(L(a+2), L(a+2)) =

The main result of this paper is the following theorem. We will need to introduce
the value r, which is the remainder when a2 + 2a + 1 is divided by b.

Theorem 1. For all integers a and b where 1 < a < b,
ra(S(a), S(b)) = ra(L(a +2), L(b+2))+

1 ifa+3§b§%andr:0
a ifa+3§b§%andr2a+1andr§bfa+1

b—r—+1 ifa—ﬁ—?)gbgwandr2a+1andr2b—a+2

: _ a2+3a—2
a—2 if b= *=50==
2
a if ‘1—42'3“ <b<a’+a
0 otherwise

where a? +2a+1=¢gb+r and 0 <r <b—1.

It should be noted that this theorem also gives upper bounds for the 2-color
disjunctive Rado numbers for a more general family of sets of equations. Let positive
integers a and b be given where a < b, and let equations T'(a) and T'(b) of the form
described above be given. Let r4(T(a), T(b)) represent the 2-color disjunctive Rado
number for the set {T'(a),T'(b)}. If (o, B,7) is a solution to {S(a),S(b)}, then
(v, B,7) is a solution to S(a) or S(b). For reasons similar to the argument above,
we have that

ra(S(a), S(b)) > rq¢(T(a), T()) > ra(L(a +2), L(b+ 2)).

This gives upper and lower bounds for r4(T(a), T'(b)) for all values of a and b, with
the difference between the bounds the difference between r4(S(a), S(b)) and
ra(L(a+2), L(b+2)) given in Theorem 1. For values of a and b where the difference
is zero, the inequality gives the exact values of r4(T'(a), T(b)).

II. Main Result

Before proving Theorem 1, we will first state and prove two lemmas. For the
remainder of this paper we will assume, without loss of generality, that every 2-
coloring A colors the first integer 0. We will need the following definition.
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Definition 1. For all positive integers a and n, a 2-coloring A : [1,n] — [0,1] is
said to be a-good if A avoids a monochromatic solution to the equation S(a).

Lemma 2. For every positive integer a, every a-good coloring A : [1,a?+2a+1] —
[0,1] satisfies the property

0 ifl<z<a
Alz) =<1 ifa+l1<z<a’+4+a+1 (1)
0 if v =a% 4 2a + 1.

Proof. Let a positive integer a be given and let an a-good coloring A : [1,a® +
2a + 1] — [0,1] be given. If A(a+ 1) = 0, then (1,1,a + 1) is a solution to S(a)
monochromatic in color 0. So, we are able to conclude that A(a + 1) = 1.

If A(a® 4+ 2a+ 1) = 1, then (a + 1,a + 1,a® + 2a + 1) is a solution to S(a)
monochromatic in color 1, so we have A(a? 4 2a + 1) = 0.

If A(a> 4+ a+1) = 0, then (1,a®> + a + 1,a% + 2a + 1) is a solution to S(a)
monochromatic in color 0, so we have

A(a® +2a+1)=1.

We will now prove the following claim.

Claim. For every k € [1,a — 1], we have A(a+1—k) =0.

We will prove this via induction on k. First assume that k = 1. If A(a+1—-1) =
A(a) =1, then (a,a + 1,a® + a + 1) would be a solution to S(a) monochromatic is
color 1, so we have A(a) = 0. Now, let k € [1,a—2] and assume that A(a+1—k) = 0.
If A(a®? +a(l —k)+1) =0, then (a +1—k,1,a% + a(1 — k) + 1) is a solution to
S(a) monochromatic in color 0, so we have

Ala?+a(l—Fk)+1)=1.

Now, if A(a — k) = 1, then (a — k,a + 1,a® + a(1 — k) + 1) is a solution to S(a)
monochromatic is color 1, so we have A(a — k) = 0 and the proof of the claim is
complete.

To complete the proof of Lemma 2 it remains to be shown that A(z) = 1 for
z € [a+2,a> 4+ a]. Let z € [a+ 2,a® + a] be given, and note that there exists
unique integers «, 5 € [1,a] such that x = aa + 8. If A(z) =0, then («, 8, z) is a
solution to S(a) monochromatic in color 0, so A(z) = 1 and the proof of Lemma 2
is complete. O]

It can be verified that property (1) characterizes all a-good 2-colorings on the
set [1,a® + 2a + 1]. In fact, we can arbitrarily color all the numbers in the set
[a® + a + 2,a® + 2a] and the colorings will be a-good, as long as property (1) is
satisfied. As we will see in Lemma 3, the number of a-good colorings decreases
as the length of the interval being colored increases until there is a unique a-good
2-coloring of the set [1,a? + 3a].
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Lemma 3. For every positive integer a and every integer p € [1,a—1], every a-good
coloring A : [1,a® + 2a + 1+ p] — [0, 1] satisfies the property

0 ifl<z<a
Alz) =11 ifa+l1<z<a’4+a+1+p (2)
0 ifa?+2a+1<r<a?>+2a+1+p.

Proof. Let a € N and p € [1,a — 1] be given and let an a-good coloring

A i [1,a% +2a + 1+ p] — [0,1] be given. Now, the coloring A restricted to the
domain [1, a? +2a+ 1+ p] will also be a-good, and hence, satisfies property (1). So,
we will only need to show that

A(@®>+a+1+¢q) =1and A(a®?+2a+1+q) =0 for q € [1,p)].
Let q € [1,p] be given. If A(a? +2a+ 1+ q) = 1, then
(a+1,a+1+q,a®+2a+1+q)
is a solution to S(a) monochromatic is color 1, so we have
A(a®> +2a+14q) =0.
If A(a®+a+1+q) =0, then
(1,2 +a+1+q,a® +2a+1+q)
is a solution to S(a) monochromatic is color 0, so we have
Al@®+a+1+q) =1
The proof of Lemma 3 is complete. O

Before proving Theorem 1, we first restate the theorem in a more expanded form.

Theorem 4. For all integers a and b where 1 < a < b, rq(S(a), S()) =

a?+3a+1 ifb=a+1

a’>+2a+1 ifb=a+2

aZ+2a+2 ifa+3§b§%andr20

a?+2a+1 ifa+3<b< 430t gng1<r<q

a®+3a+1 ifa+3§b§%aneraJrlanderfaJrl
a’>+2a+b—1r+2 ifa+3§b§%andr2a+1andr2b—a—|—2
a?+3a—1 isz%

aZ+3a+1 if‘lz—'53a§b§a2+a

a?+2a+1 ifa’+a+1<b<a’®+2a

b+1 ifa2+2a+1§b§a2+3afl

a?+3a+1 if a> +3a < b
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where a® +2a+1=¢b+7r and 0 <r <b—1.

Proof. Let integers a and b be given where 1 < a < b. Let r and ¢ be the unique

integers such that a24+2a+1= qgb+1r and 0 < r < b— 1. Note that when
2

a+3<b< %, it follows that g € [2,a —1]. Recall from the introduction that

ra(S(a), S(b)) < r(S(a)) =a® +3a+1 (3)
and r4(S(a), S(b)) > rq(L(a+2),L(b+2)) =

a?+3a+1 ifb=a+1

a2+ 2a+1 ifa+2<b<a?+2a

b+1 ifa?+2a+1<b<a?>+3a—1
a®+3a+1 if b > a® + 3a.

We will use eleven cases based on the values of b and r. Note that when

€ [1,2], some cases have no values of b that satisfy the assumption. Also note
that r4(S(1), S(2)), ra(S(1), S(3)), and r4(S(2), S(4)) are each in two cases, but the
values given in the two cases agree. For all the cases where the lower bound is not
given by (4), the lower bound will be established by the coloring
A :[1,a2 + 3a] — [0,1] defined by

0 fl1<z<a
Alz) =<1 ifa+l<z<a®+2a
0 ifa?+2a+1<z<da®+3a

or a truncation of this colorlng It is easy to check that the coloring Ais a- good
so every truncation of A is also a- -good. In fact, from Lemma 2, we see that A is
the unique a-good 2-coloring of the set [1,a? + 3a], and if we are considering only
colorings where 1 is colored 0 then A is the unique coloring. For every

0 € [a® + 2a + 1,a® + 3a], let 3[[1,0] : [1,6] — [0,1] represent the coloring A
restricted to the set [1,6]. To establish the lower bounds we will need to show that
the coloring ﬁ[[Lg] is b-good for some values of b and §. That is, we will need
to show that if the triple (z1,22,3) is monochromatic, then (z1, 2, x3) is not a
solution to S(b). Let b > a + 1 and 0 € [a? + 2a,a® + 3a] be given. If the triple
(1,2, z3) is monochromatic in color 1, then

bry +2o >bla+1)+(a+1)=ba+b+a+1>a®+2a> s,

so (x1,T2,23) is not a solution to S(b). If the triple (z1,z2,x3) is monochromatic
in color 0 and z; € [1,a] for i € [1, 3], then

by + 22 >b(1)+1>a> s,



INTEGERS: 13 (2013) 8

so (21,2, 23) is not a solution to S(b). If the triple (z1, 2, x3) is monochromatic
in color 0 and either x1 € [a® + 2a + 1,0] or 22 € [a? + 2a + 1, 6], then

bry +x9 > b(1) + (a®> +2a+1) > a® +3a+ 1 > a3,

so (z1, 2, x3) is not a solution to S(b). Hence, to show the coloring A [[1,6] is both
a-good and b-good, it only remains to be demonstrated that if the triple (1, z2, x3)
is monochromatic in color 0 and z; € [1,a] for i € [1,2] and z3 € [a? + 2a + 1,0],
then (x1,x2,x3) is not a solution to S(b).

Case 1: Assume that b = a + 1. The upper bound follows from (3) and the lower
bound follows from (4).

Case 2: Assume that b = a + 2. The lower bound follows from (4). For the upper
bound, let a coloring A : [1,a? + 2a + 1] — [0, 1] be given. We must show that A is
either not a-good or not b-good. Since b = a + 2, the triple (a,1,a® + 2a + 1) is a
solution to S(b). If A is a-good, then from Lemma 2, this triple is monochromatic
in color 0, so A is not b-good.

Case 3: Assume that a+3 < b < % and r = 0. It follows that a®>+2a+1 = ¢b.
For the lower bound, we will show that the coloring A [[1’ a® 4 2a +1]1s both a-good
and b-good. If 21 € [q,q — 1], 72 € [1,a], and 23 = a® + 2a + 1, then

by + 22 <blg—1)+a=a*+2a+1—-b+a<a’+2a+1=uz;.
If 21 € [g,a], x2 € [1,4a], and 23 = a? + 2a + 1, then
bri +x9 >bg+1=0a’+2a+2 > x3.

From this and the argument above, the lower bound is complete. For the upper
bound, let a coloring A : [1,a? + 2a + 2] — [0, 1] be given. We must show that A is
either not a-good or not b-good. Since a®+2a+1 = ¢b, the triple (a, 1,a®+2a+2) is
a solution to S(b). If A is a-good, then from Lemma 2, this triple is monochromatic
in color 0, so A is not b-good.

Case 4: Assume thata+3 <b < % and 1 < r < a. The lower bound follows
from (4). For the upper bound, let a coloring A : [1,a% + 2a + 1] — [0, 1] be given.
We must show that A is either not a-good or not b-good. Since a?+2a+1 = gb+r,
the triple (q,r,a? + 2a + 1) is a solution to S(b). If A is a-good, then from Lemma
2 and the fact that r < a, this triple is monochromatic in color 0. Thus, A is not
b-good.

Case 5: Assume that a +3<b < % andr>a+1landr <b—a-+1. The
upper bound follows from (3). For the lower bound, we will show that the coloring
A is both a-good and b-good. If z1 € [1,q], 22 € [1,a], and 23 € [a®+2a+1, a?+3al,
then, since r > a + 1,

bri+xo<bg+a=a’+2a+1—r+a<a®+2a+1<as.
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If v1 € [g+1,a], 22 € [1,a], and 23 € [a®+2a+1,a® + 3a], then since r < b—a+ 1,
bry + 1o >b(g+1)+1>bg+7r+a=a®>+3a+1> 3.

From this and the argument above, the lower bound is complete.

Case 6: Assume that a +3 <b < % andr >a+1andr>b—a+ 2. For

the lower bound we will show that the coloring 3[[1, a® +2a+b—r+1] is both
a-good and b-good. Note that since r > b — a + 2, it follows that

a*+2a+b—r+1€fa®+2a+1,a%+3a+1].

If 21 € [1,q], 72 € [1,a], and 23 € [a® + 2a + 1,a® + 2a + b — r + 1], then since
r>a+1,

bri+xo<bg+a=a’+2a+1—r+a<a®>+2a+1<uzs.
If 21 € [g+ 1,a], 2 € [1,a], and z3 € [a® + 2a + 1,a® +2a + b — r + 1], then
by + w0 >b(qg+1)+1=bg+r+b—r+1=a>+2a+b—7r+2> 3.

From this and the argument above, the lower bound is complete. For the upper
bound let a coloring A : [1,a® 4+ 2a + b — 7 + 2] — [0,1] be given. We must show
that A is either not a-good or not b-good. Since ¢b + r = a? + 2a + 1, the triple
(g+1,1,a% 4+ 2a+b—r+2) is a solution to S(b). If A is a-good, then from Lemma
2, this triple is monochromatic in color 0, so A is not b-good.

Case 7: Assume b = ‘m% For the lower bound we will show that the coloring

Al[1,a? + 3a — 2] 18 both a-good and b-good. If 21 =1, 3 € [1,a], and
23 € [a® + 2a + 1,02 + 3a — 2], then since b = ©°+39=2

bxl—i-xggb—&—a:% <a?+2a+1<z;.
If 1 € [2,a], 72 € [1,a], and 23 € [a® +2a +1,a® + 3a — 2|, then since b = %,
bri+29>2b+1=0a*+3a—1>a’+3a—2>z;.

From this and the argument above, the lower bound is complete. For the upper
bound, let a coloring A : [1,a? + 3a — 1] — [0, 1] be given. We must show that A is
either not a-good or not b-good. Since b = ‘IQ'H)’T“_Q, the triple (2,1,a% + 3a — 1) is
a solution to S(b). If A is a-good, then from Lemma 2 this triple is monochromatic
in color 0, so A is not b-good.

Case 8: Assume that “2+T3“ < b < a? 4+ a. The upper bound follows from (3). For
the lower bound we will show that the coloring A is both a-good and b-good. If
71 =1, 22 € [1,a], and z3 € [a® + 2a + 1,a? + 3a, then since b < a? + a,

bry+ 29 <b+a<a?+2a<a?+2a+1<zx;.
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If 1 € [2,a], 22 € [1,a], and z3 € [a® + 2a + 1,a® + 3a], then since b > “2;—3“,
bry + 22 >2b+1>a%+3a+1>a%+3a> x3.
From this and the argument above, the lower bound is complete.

Case 9: Assume that a® +a+1 < b < a? + 2a. The lower bound follows from (4).
For the upper bound, let a coloring A : [1,a® + 2a + 1] — [0, 1] be given. We must
show that A is either not a-good or not b-good. Let b = a? + a + k for k € [1,a], so
the triple (1,a + 1 — k,a® + 2a + 1) is a solution to S(b). If A is a-good, then from
Lemma 2, this triple is monochromatic in color 0, so A is not b-good.

Case 10: Assume that a2+2a+1 < b < a®+3a—1. The lower bound follows from
(4). For the upper bound let a coloring A : [1,b+ 1] — [0,1] be given. We must
show that A is either not a-good or not b-good. The triple (1,1,b+ 1) is a solution
to S(b). Note that b+ 1 = a® + 2a + 1 + p where p € [1,a — 1], so if A is a-good,
then from Lemma 3, this triple is monochromatic in color 0, so A is not b-good.

Case 11: Assume that a? + 3a < b. The upper bound follows from (3) and the
lower bound follows from (4).
Since we have shown upper and lower bounds for all cases, the proof is complete. [
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