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Abstract

It is well-known that any permutation can be written as a product of two involutions.
We provide an explicit formula for the number of ways to do so, depending only
on the cycle type of the permutation. In many cases, these numbers are sums of
absolute values of irreducible characters of the symmetric group evaluated at the
same permutation, although apart from the case where all cycles are the same size,
we have no good explanation for why this should be so.

1. Introduction

The authors were interested in finding a combinatorial model counted by the fol-
lowing sequence of integers:

1,4,9,27,61,185,469, . . . , (1)

And upon putting these terms into The On-Line Encyclopedia of Integer Sequences,
we received a match in sequence A164342 [3]. That entry was a stub however, simply
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2Research partially supported by a DePaul University Faculty Summer Research Grant
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defined as the row sums of the following table, given in entry A164341:

n/m 1 2 3 ⋯
1 1
2 2 2
3 3 2 4
4 4 3 6 4 10
5 5 4 6 6 6 8 26
6 6 5 8 12 8 6 20 12 12 20 76
7 7 6 10 12 10 8 12 18 16 12 20 30 24 52 232

(2)

But this was fantastic news, for our sequence could be refined in exactly the same
fashion!

We had generated the terms in (1) by computing the sums of the absolute values
of the irreducible characters of the symmetric group Sn, more precisely:

∑
λ,µ⊢n

∣χλ
µ∣,

and the entries in array (2) by fixing µ and considering

∑
λ⊢n
∣χλ

µ∣.
On the other hand, A164341 said entry (n,m) “counts the decompositions into
involutions of a permutation that has a cycle structure given by the mth partition
of n.”

Could this mean there might be a way to compute irreducible characters of Sn

by counting involution products in the right way? Well, no. Our refinement of the
sequence in (1) and the array in A164341 agreed for n ≤ 7, but diverged at n = 8.
Here is the row for n = 8 in our table, sitting atop the row for n = 8 in A164341.

∑
λ⊢8 ∣χλ

µ∣ 8 7 12 15 20 12 10 12 20 24 20 12 24 18 76

A164341 8 7 12 15 20 12 10 12 24 24 20 16 24 18 76

⋯ 36 24 36 78 52 148 764
40 24 40 78 60 152 764

(The differences are highlighted in boldface.) And here are the next few terms in
sequence (1), with the next few terms of A164342 below.

n 8 9 10 11 12 13

∑λ,µ⊢n ∣χλ
µ∣ 1428 4292 14456 50040 186525 724023

A164342 1456 4368 14720 50800 190149 735451

(overcount) 28 76 264 760 3624 11428
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In this note, we study the ways in which a permutation can be expressed as
a product of two involutions. This puts entries A164341 and A164342 of [3] on
solid footing, as there seem to be no references to this question in the literature.
Because the motivation for this problem is the study of irreducible characters of the
symmetric group, we try to explain what we can of the connection between the two
topics, using ideas of White [8] and Stanton and White [7].

Section 2 investigates involution products from a purely combinatorial point of
view. Section 3 discusses the relation to irreducible characters.

2. Products of Involutions in Sn

For a permutation σ ∈ Sn, we typically use cycle notation in this work. For example,
σ = (1236547) is the map 1↦ 2↦ 3↦ 6↦ 5↦ 4↦ 7↦ 1, while τ = (135)(26)(4)(7)
maps 1 ↦ 3 ↦ 5 ↦ 1, 2 ↦ 6 ↦ 2, and fixes 4 and 7. It is useful to draw our
permutations as digraphs on the set [n] ∶= {1,2, . . . , n}, in order to visualize the
cycle structure. For example,

τ =

1

2

3

45

6

7

The cycle structure of a permutation is encoded by a partition. A partition λ ⊢ n
is a collection of positive integers whose sum is n. We usually order the parts of
λ = (λ1,λ2, . . .) in nonincreasing order; that is, λ1 ≥ λ2 ≥ ⋯ and ∑λi = n. An
alternate notation is to let ji denote the number of parts of size i in λ, and to write
λ = 1j12j2⋯, often suppressing any ji = 1. For example, τ above has two one-cycles,
one two-cycle, and one three-cycle; we encode this information with the partition
λ = (3,2,1,1) = 122131 = 1223.

The product of two permutations can be found by superimposing two digraphs
of the form described above. For example, if we wish to compute the product of
σ and τ from above, we draw the edges of σ and τ distinctly, say with solid and
dashed edges, respectively. Then στ(i) = j if there is a directed path from i to τ(i)
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along a dashed edge, and from τ(i) to j along a solid edge. For example,

στ =

1

2

3

45

6

7

=

1

2

3

45

6

7

= (16347)(25)

We now consider the special case of involutions ; that is, permutations whose
squares are the identity. In an involution, each cycle must have size one or two,
meaning that we can represent such elements graphically by partial matchings. For
example,

ι = (14)(23)(57)(6) =
1

2

3

45

6

7

The product of two involutions in Sn can then be expressed as a decorated graph
on [n] (with loops) for which every vertex has precisely one edge of each decoration,
counting a loop as a single edge. We call such a graph an involution product graph.
For example, with the involution ι as above, and κ = (1)(27)(35)(46), we have

ικ =
1

2

3

45

6

7 =
1

2

3

45

6

7 .

We see from this example that the set of involutions is not closed under multipli-
cation. Indeed, it is well-known that any permutation can be written as a product
of involutions (see [5, Exercise 10.1.17]), often in many different ways. Our goal is
to describe, and to count, all the ways in which this can be done.

If an involution product graph defines a permutation ρ, we say it is an involution
graph for ρ. In what follows, we identify the set of pairs of involutions whose product
is ρ with the set of involution graphs for ρ. Let N(ρ) denote the number of ways
ρ ∈ Sn can be written as a product of involutions. To be clear,

N(ρ) = ∣{(σ, τ) ∈ S2
n ∶ σ2 = τ2 = 1,στ = ρ}∣ = ∣{involution graphs for ρ}∣.
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Example 2.1. N((123)(456)) = 12, as depicted in Figure 1.

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

Figure 1: The involution product graphs depicting the twelve ways to write the
permutation (123)(456) as the product of two involutions, στ , where σ is denoted
with solid marks and τ with dashed marks.

Suppose ρ′ = gρg−1 for some g ∈ Sn. Let ρ = στ for some involutions σ and τ .
Then σ′ = gσg−1 and τ ′ = gτg−1 are also involutions, and we have ρ′ = σ′τ ′. Hence,
N(ρ) = N(ρ′), and we see that the number of ways to write an element of Sn as a
product of involutions depends only on its conjugacy class (we could make the same
observation in any finite group). Partitioning Sn by conjugacy class is equivalent to
partitioning it by cycle type. Thus, for any partition λ ⊢ n, we define N(λ) to be
the number of ways any particular permutation with cycle type λ can be written as
a product of involutions. Carter [1, Theorem C] shows that any element in a finite
Weyl group can be written as a product of two involutions, so one could study the
same question for conjugacy classes of Weyl groups.
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Define

Rm(k) = ∑
0≤i≤m/2

km−i
i!
( m

2,2, . . . ,2-................../..................0
i

) = ∑
0≤i≤m/2

km−im!

2ii!(m − 2i)! . (3)

We will prove the following formula for N(λ).
Theorem 2.2. Let λ = 1j12j2⋯. Then

N(λ) = n∏
i=1

Rji(i). (4)

Before proving the theorem, we need some preliminary results.

Lemma 2.3. Suppose an involution product graph for ρ has an alternating path of
the form:

1⇢ v1 → 2⇢ v2 → 3⇢ v3 → ⋯→ k ⇢ vk → 1,

where the first, third, fifth, . . . edges in this path are dashed and the second, fourth,
sixth, . . . edges are solid. Then both

(12⋯k) and (v1 vk⋯v2)
are (possibly identical) k-cycles in ρ.

Proof. Fix an involution product graph of ρ with the alternating path described.
Then obviously (12⋯k) is a k-cycle in ρ. Consider now (v1 vk⋯v2).

Since the involution graph has precisely one edge of each decoration at every
vertex, we see that vi ≠ vj if i ≠ j. That is, the path cannot have both i⇢ vi → (i+1)
and j ⇢ vi → (j + 1) if i ≠ j, where the first edges in each of these excerpts is
dashed and the second is solid. Hence, ∣{v1, . . . , vk}∣ = k, and because all arrows
in the product graph are reversible, we get another alternating path that shows(v1vkvk−1⋯v2) is a k-cycle in ρ:

v1⇢1→vk⇢k→vk−1⇢(k − 1)→⋯→v2⇢2→v1.

If differently decorated cycles in an involution product graph form an alternating
path as described in Lemma 2.3, then those cycles are interlaced. If a cycle does
not interlace with any other, then that cycle is isolated.

A first consequence of Lemma 2.3 is the following.

Corollary 2.4. The connected components of an involution product graph of a
permutation ρ each either describe a cycle in ρ or two disjoint cycles of the same
size. In particular,
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1. three or more cycles cannot be interlaced in an involution product graph, and

2. if k ≠ k′, then a k-cycle and a k′-cycle cannot be interlaced in an involution
product graph.

The next consequence is the key to our enumeration of involution product graphs.

Corollary 2.5. For all k ≥ 3,
1. There are precisely k ways to write a k-cycle as a product of involutions.

2. There are precisely k ways to write two disjoint k-cycles as a product of invo-
lutions, given that their elements are in the same connected component of the
involution graph.

Proof. If the cycles from Lemma 2.3 are fixed, then the designation of the label
v1 uniquely determines all the edges of this connected component of the involution
graph.

Proposition 2.6. Suppose λ = km = (k, k, . . . , k) ⊢ km. Then,

N(km) = Rm(k),
where Rm(k) is defined in Equation (3).

Proof. Let ρ be a fixed permutation of cycle type λ. By Corollary 2.4, an involution
graph for ρ either has all the k-cycles in disjoint connected components, or some
pairs of the cycles are connected. For example, with m = 7 k-cycles, perhaps two
pairs of them are interlaced, while the other three are isolated, as in the following
picture.

k-cycle

k-cycle

k-cycle

k-cyclek-cycle

k-cycle

k-cycle

There are precisely

1

i!
( m

2,2, . . . ,2,m − 2i) =
m!

2ii!(m − 2i)!
ways to choose a matching of i pairs of the k-cycles, leaving m − 2i of the k-cycles
isolated. Given such a matching, Corollary 2.5 tells us there are k ways to draw
each connected component, giving ki ⋅ km−2i = km−i choices. Hence, the number of
involution product graphs for ρ that have i pairs of k-cycles is:

km−im!

2ii!(m − 2i)! .
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To count all possible involution graphs for ρ, we sum over all i to obtain the
desired result:

N(ρ) = ∑
0≤i≤m/2

km−im!

2ii!(m − 2i)! = Rm(k).

We are now able to prove Theorem 2.2.

Proof of Theorem 2.2. Let ρ be a permutation of type λ = 1j12j2⋯. By Corol-
lary 2.4, two cycles of ρ are in different connected components if they are of different
size. Hence, for k ≠ k′, the k-cycles and k′-cycles are mutually independent, and
to count the number of involution product graphs for ρ, we simply multiply the
number of possibilities for each cycle size:

N(λ) = N(1j1) ⋅N(2j2)⋯ = n∏
j=1

Rji(i).

3. Connections with the Character Table of Sn

Now that we have enumerated the number of pairs of involutions with a fixed prod-
uct, we will describe why understanding such involution products may be related
to characters of the symmetric group. Our tone is primarily expository here, built
upon substantial work of White [8] and Stanton and White [7]. (A more recent
approach to many of the same topics can be found in [2].) Omitted details may be
found in those papers.

To begin, we recall that the well-known Murnaghan-Nakayama rule provides the
following formula for an irreducible character of the symmetric group Sn:

χλ
µ =∑

T

(−1)ht(T ),
where the sum is taken over all rim-hook tableaux T of shape λ and content µ, and
ht(T ) is the sum of the heights of the hooks in T minus the number of hooks. In
general, (−1)ht(T ) gives the sign of a tableau T . For example,

T =
1 1 1 1 3
1 2 3 3 3
2 2 4 6
2 4 4
5



INTEGERS: 13 (2013) 9

is a rim-hook tableau with content µ = (5,4,4,3,1,1), its height is calculated by
ht(T ) = 2+ 3+ 2+ 2+ 1+ 1− 6 = 5, and (−1)ht(T ) < 0 so T is a negative tableau. See
either [4, Sec. 4.10] or [6, Sec. 7.17] for precise definitions and further discussion.

This formula is lovely in that it gives an explicit combinatorial description for
the characters. However, it involves tremendous cancellation. For instance, consider
the character table for S6 in Figure 2. There are 40 rim-hook tableau of content(2,2,1,1), yet in the column indexed by µ = (2,2,1,1) we see that only 12 terms are
non-cancelling; that is, the sum of the absolute values of the entries in this column
is 1 + 1 + 1 + 2 + 1 + 2 + 1 + 1 + 1 + 1 = 12.
λ/µ 6 51 42 411 33 321 3111 222 2211 21111 111111
6 1 1 1 1 1 1 1 1 1 1 1
51 -1 0 -1 1 -1 0 2 -1 1 3 5
42 0 -1 1 -1 0 0 0 3 1 3 9
411 1 0 0 0 1 -1 1 -2 -2 2 10
33 0 0 -1 -1 2 1 -1 -3 1 1 5
321 0 1 0 0 -2 0 -2 0 0 0 16
3111 -1 0 0 0 1 1 1 2 -2 -2 10
222 0 0 -1 1 2 -1 -1 3 1 -1 5
2211 0 -1 1 1 0 0 0 -3 1 -3 9
21111 1 0 -1 -1 -1 0 2 1 1 -3 5
111111 -1 1 1 -1 1 -1 1 -1 1 -1 1
N(µ) 6 5 8 8 12 6 12 20 12 20 76

Figure 2: The character table of S6, along with N(µ), the number of ways to write
a permutation of cycle type µ as a product of involutions.

On the other hand, there are precisely 12 rim hook tableaux of content (3,3),
and so there is no cancellation in this column. As we will see shortly, it follows
from work of White [8] that, when all parts of µ are the same size, the Murnaghan-
Nakayama formula for χλ

µ is cancellation-free (Corollary 3.6). Such a partition µ is
called rectangular. Our feeling is that understanding involution products may lead
to a similar cancellation-free formula for any content µ.

The idea begins with the following observation. For any λ, the Murnaghan-
Nakayama rule gives

χλ
1n = ∣{standard Young tableaux of shape λ}∣.

On the other hand, the Schensted insertion algorithm gives a bijection between the
set of standard Young tableaux with n boxes and the set of involutions in Sn. If we
let Iλ = {σ ∈ Sn ∶ σ2 = 1, sh(σ) = λ}, where sh(σ) denotes the shape of the image of
σ upon the Schensted insertion, then

χλ
1n = ∣Iλ∣.
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To generalize this idea to µ ≠ 1n, we first need to discuss a more general insertion
algorithm.

In [8], White defines a map Sch that generalizes the usual Schensted insertion
algorithm. Given a pair of rim hook tableaux (P,Q) of the same shape and content,
we say the pair is positive if P and Q have the same sign; the pair is negative
otherwise. The map Sch provides a bijection that maps a positive pair (P,Q) of
content µ to either a negative pair (P ′,Q′) of tableaux of content µ or to a “hook
permutation” of content µ.

Definition 3.1. Fix a positive integer m. A hook permutation (H1,H2, . . . ,Hm)
of type ρ = (ρ1,ρ2, . . . ,ρm) = 1j12j2⋯kjk and shapes (τ (1), τ (2), . . . , τ (m)) has the
properties

• the Hi are each hook tableaux of shape τ (i),
• ρi = ∣τ (i)∣, and
• if ρi > ρj , then the content of Hi is less than the content of Hj .

Using the notation of Definition 3.1, define the intervals I1 = [1, jk], I2 = [jk +
1, jk +jk−1], I3 = [jk +jk−1 +1, jk +jk−1 +jk−2], and so on. Then a hook permutation
maps each I" bijectively onto itself, and the image of i ∈ I" is assigned a hook
consisting of k+1− ( boxes, whose shape is τ (i). We can think of this as a sequence
of m hooks, where the lengths of the hooks is nonincreasing, and the entries of the
k-hooks are I1, the entries of the (k − 1)-hooks are I2, and so on.

Example 3.2. The following is an example of a hook permutation of type ρ =
133435.

H =
⎛⎜⎜⎜⎜⎜⎝

1 1 1 1

1

4

4

4

4

2 2

2

2

3

3

3

3

5 5

5

8 7 6 ⎞⎟⎟⎟⎟⎟⎠
It is easy to see that the number of hook permutations of type (ρ1,ρ2, . . . ,ρm) =

1j12j2⋯kjk is 1j1j1!2j2j2!⋯kjkjk!, since there are ji different hooks of length i.

We will choose to think of Sch as a map from the set of hook permutations of
a given content to the non-cancelling positive pairs of rim-hook tableaux (P,Q)
having that same content. The algorithm involved in which turns a hook permu-
tation (H1, . . . ,Hm) into a pair of rim hook tableaux (P,Q) builds the tableaux
by successively inserting the hooks H1, . . . ,Hm. The first tableau is the insertion
tableau, and the second is the recording tableau. We briefly describe the process
here, and the full details can be found in [8].

The first hook H1 is inserted into a pair of empty tableaux (P0,Q0), yielding(P1,Q1). Subsequently, the hook Hi is inserted into (Pi−1,Qi−1) to form (Pi,Qi).
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When inserting the hook Hi with content a and size (, the tableau Pi−1 is divided
into an inside part consisting of all entries less than a, and an outside part consisting
of all entries greater than a.

The hook Hi is first placed so that its upper left corner coincides with the upper
left corner of the inside part of Pi−1, and it slides (changing shape, in the process)
down the first column of Pi−1, ( units at a time, until it is completely beyond the
inside part of the tableau. It then slithers up the outer rim of the inside part of
Pi−1, ( units at a time, until it reaches a position so that the union of this rim hook
and the inside part is a partition. This new rim hook is now considered part of the
inside part of the tableau.

Now the rim hooks in the outside part of Pi−1 successively move into the inside
part, in increasing order of content. If the rim hook being added does not overlap
the inside part at all, then it joins the inside part without changing position. If
it overlaps the inside part but does not lie completely inside the inside part, then
it joins the inside part after the overlapping entries each move one step southeast,
and the non-overlapping entries do not move. Finally, if the rim hook being added,
of length (′, overlaps the inside part completely, then it slithers up the outer rim of
the inside part, (′ units at a time, until it reaches a position for which the union of
this rim hook and the inside part is a partition. Once the entire outside part has
been moved to the inside, the result is (Pi,Qi), where Qi records the newly added
boxes. Finally, (P,Q) = (Pm,Qm).
Example 3.3. Given the rim hook permutation H of Example 3.2, the insertion
algorithm produces the following sequence of tableaux:

P1 = 1 1 1 1
1

, P2 =
1 1 1 1
1 4
4 4
4

, P3 =
1 1 1 1
1 2 2
2 2 4
4 4 4

, P4 =
1 1 1 1 4
1 2 2 4 4
2 2 3 4
3 3 3

,

P5 =
1 1 1 1 4
1 2 2 4 4
2 2 3 4
3 3 3
5 5 5

, P6 =
1 1 1 1 4
1 2 2 4 4
2 2 3 4
3 3 3
5 5 5
8

, P7 =
1 1 1 1 4
1 2 2 4 4
2 2 3 4
3 3 3
5 5 5
7 8

,

P8 =
1 1 1 1 4
1 2 2 4 4
2 2 3 4
3 3 3
5 5 5
6 7 8
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and thus the algorithm Sch produces the following pair of tableaux:

Sch(H) =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 4
1 2 2 4 4
2 2 3 4
3 3 3
5 5 5
6 7 8

,

1 1 1 1 4
1 2 3 4 4
2 2 3 4
2 3 3
5 5 5
6 7 8

⎞⎟⎟⎟⎟⎟⎟⎟⎠
The following facts describe the aspects of the Sch construction that are most

relevant to our work here.

Proposition 3.4. Fix a positive integer m and a composition ρ = (ρ1, . . . ,ρm) =
1j1⋯kjk . Let H = (H1, . . . ,Hm) be a hook permutation of type ρ.

(a) If the content of all the hooks {H1, . . . ,Hi} is less than the content of all
the hooks {Hi+1, . . . ,Hm}, then the tableaux built from the hook permuta-
tion (H1, . . . ,Hi) are stable for the duration of the procedure. That is, if
Sch(H1, . . . ,Hi) = (P ′,Q′), and Sch(H1, . . . ,Hm) = (P,Q), then the rim hook
tableau P ′ is a subtableau of the rim hook tableau P , and similarly Q′ is a
subtableau of Q.

(b) In Sch, the shape being constructed propagates down and to the right, never
upward; that is, once the top row of the shape has been established, it is main-
tained as the top row for the duration of the procedure.

White [8] shows many of the properties of Sch are particularly nice in the special
case of rectangular content; that is, when all rim hooks have the same length. In
[7], Stanton and White consider this case in further detail.

Proposition 3.5 ([8], Corollaries 9 and 10). If µ = km, then the inverse procedure
Sch−1 is a bijection from hook permutations of content µ to the set of all pairs (P,Q)
of rim hook tableaux of the same shape and content µ. In particular, every pair of
tableaux (P,Q) is positive.

The following is immediate.

Corollary 3.6. Any two rim hook tableaux of the same shape and the same rect-
angular content have the same sign. Hence,

∣χλ
km ∣ = ∣{P ∶ P has shape λ and content km}∣.

In other words, there is no cancellation in the Murnaghan-Nakayama formula for
χλ
µ when µ is rectangular.

We now show how this result is related to involution products.
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Definition 3.7. A hook permutation H of type ρ is a hook-block involution if

• the underlying permutation is an involution, and

• the hooks associated to the letters in each cycle of the involution are the same.

Example 3.8. The hook permutation

⎛⎜⎜⎜⎝
1 1 1

1

1

4

4

4

3

3

3 2

2

2

5

5

7 7 6 6 8 ⎞⎟⎟⎟⎠
is a hook-block involution. In this case, the underlying permutation is the involution(1)(24)(3)(5)(67)(8), and the shape equalities are τ (2) = τ (4) and τ (6) = τ (7).

To any pair of involutions we may assign a hook-block involution as follows. We
look at all of the k-cycles in the involution product graph, in decreasing order of k.
Suppose that we have examined the k′-cycles for all k′ > k, and so far created a hook-
block involution on the letters {1, . . . ,M}. Now suppose that there are r k-cycles in
the involution product graph. Label these {M+1, . . . ,M+r} in order of the smallest
element appearing in each. We thus inherit an involution of {M+1, . . . ,M+r}, based
on which k-cycles are interlaced. To each letter in this involution, we associate a
hook, where the choice of v1 in Lemma 2.3 determines the height of the first column
in each hook of the 2-cycle: if v1 is in the ith position when the cycle is written
with the smallest letter in the first position, then the height of that first column in
the hook is i. Note that any pair of letters that are each other’s images under the
involution get assigned the same hook shape, by Lemma 2.3. We demonstrate with
an example.

Example 3.9.

1

2

3

45

6

7 ←→ ( 1 1 1
3
3

2
2
)

First of all, the product is (146)(25)(37), which has cycle type (3,2,2). Hence we
know the hook-block involution will have a 3-hook and two 2-hooks. Since 1 is the
smallest element of the 3-cycle, we see where its dashed arrow points to determine
the height of the 3-hook. It points to itself, so we choose the hook of height 1. (If
the 1 had had a dashed arrow to the 4, then the 3-hook would have had height
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2. If it had pointed to the 6 it would have had height 3.) There are two 2-cycles,
and they lie in the same connected component of the matching graph. Hence, the
corresponding 2-hooks are transposed in the hook permutation. The shape of the
hooks is determined by where the 2 is connected with its dashed edge. If it had
been connected to the 3, then the 2-hooks would be horizontal. However, the dashed
edge connects to the 7 (which is the second-largest element in its cycle), and so the
hooks have height 2.

A hook-block involution in which all hooks are the same size k is a “k-partial
involution” [7].

Example 3.10. 1. The hook permutation

⎛⎜⎜⎜⎝
3

3

3

2

2

2 1

1

1

5

5

5 4

4

4 6 6 6 ⎞⎟⎟⎟⎠
is a 3-partial involution because the underlying permutation is (13)(2)(45)(6),
which is an involution, and it has the shape equalities τ (1) = τ (3) and τ (4) =
τ (5).

2. The hook permutation

⎛⎜⎜⎜⎝
3

3

3

5

5

5 1

1

1

2

2

2 4

4

4 6 6 6 ⎞⎟⎟⎟⎠
is not a 3-partial involution because the underlying permutation (13)(254)(6)
is not an involution.

3. The hook permutation

⎛⎜⎜⎜⎝
3

3

3

2

2

2 1

1

1

5

5

5 4

4

4

6 6 6 ⎞⎟⎟⎟⎠
is not a 3-partial involution because, although the underlying permutation is
the involution (13)(2)(45)(6), this hook permutation has the shape inequality
τ (4) ≠ τ (5).

Indeed, k-partial involutions have nice properties.

Theorem 3.11 ([7]). A hook permutation H of type µ = km is a k-partial involution
if and only if Sch(H) = (P,P ). That is, we have a bijection,

{ k-partial involutions } Sch←?→ { rim-hook tableaux P of content km }.
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Now let

Iλk = {H ∶H is a k-partial involution and Sch(H) has shape λ}.
Then, together with Corollary 3.6, we obtain the following.

Corollary 3.12. Let k and m be positive integers. Then for all λ ⊢ n,
∣χλ

km ∣ = ∣Iλk ∣.
BecauseN(µ) counts all hook-block involutions of content µ, Theorem 2.2 implies

the following result.

Corollary 3.13. Let k and m be positive integers. Then,

∑
λ⊢km

∣χλ
km ∣ = N(km) = ∑

0≤i≤m/2
km−im!

2ii!(m − 2i)! .
This leads one to wonder whether something similar is true for non-rectangular

µ.

Question 1. For which µ ⊢ n is it true that

∑
λ⊢n
∣χλ

µ∣ = N(µ)? (5)

Note that the sums of the characters themselves, not the absolute values of the
characters, have been studied in other contexts, and have been shown in [2] to
equal the number of certain hook-block involutions. Not taking the absolute values
of characters allows the possibility of canceling terms, a possibility we are interested
in avoiding.

Corollary 3.12 shows that Equation (5) holds for µ = km and by computer we
have checked that it holds for all µ ⊢ n when n ≤ 7. However, when n = 8, we begin
to see some discrepancies. In each of these cases N(µ) is greater than ∑λ⊢n ∣χλ

µ∣. See
Table 1, where for n ≤ 10 we have listed all the shapes µ ⊢ n for which Equation (5)
does not hold.

If we check all shapes µ ⊢ n with n ≤ 16, we find that there are indeed a number
of cases in which Equation (5) holds. We summarize the number of agreements
(N(µ) = ∑λ⊢n ∣χλ

µ∣) and discrepancies (N(µ) > ∑λ⊢n ∣χλ
µ∣) in Table 2. We have also

included the number of rectangular partitions µ = km since in these cases we know
that equality holds. For example, when n = 16 there are 64 shapes µ ⊢ 16 for which
N(µ) =∑λ⊢n ∣χλ

µ∣, yet we can only explain 5 of these: 116,28,44,82, and 161.

If we are to move beyond the rectangular case, we need to understand how to
associate involution products, or hook-block involutions, to a collection of rim-hook
tableaux. Theorem 3.11 does this in the case when µ is rectangular. In the more
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µ N(µ) −∑λ⊢n ∣χλ
µ∣

224 4
1224 4
144 4
1223 4
1422 8
162 4
234 4
1234 4
1224 4
1324 4
154 4
1332 8
233 4
12223 4
1423 4
163 20
1323 4
1522 8
172 4

µ N(µ) −∑λ⊢n ∣χλ
µ∣

235 4
1235 4
1325 4
155 8
234 8
12224 8
1424 8
164 8
2232 8
1432 8
13223 8
1523 16
173 56
1224 8
1423 28
1622 48
182 32

Table 1: When Equation (5) does not hold.

n ≤ 7 8 9 10 11 12 13 14 15 16

Discrepancies: 0 6 13 17 24 46 60 83 114 167
Agreements: all 16 17 25 32 31 41 52 62 64

Known agreements(µ = km): - 4 3 4 2 6 2 4 4 5
Partitions of n: - 22 30 42 56 77 101 135 176 231

Table 2: Counting the number of shapes µ for which N(µ) = ∑λ⊢n ∣χλ
µ∣.
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Positive pairs (P,Q)
Negative pairs (P ′,Q′)

Hook permutations

Non-cancelling
diagonal pairs(P,P )

Hook-block
involutions

Sch

Restriction of Sch

(Theorem 3.14)

Figure 3: Schematic diagram for the Sch bijection with fixed shape λ and content
µ.

general case, Theorem 3.14 below shows that Sch does something similar, giving a
bijection between hook-block involutions and the set of tableaux P for which (P,P )
is a non-cancelling pair. See Figure 3 for an illustration of these results and their
scopes.

Theorem 3.14. A hook permutation H of content µ is a hook-block involution if
and only if Sch(H) = (P,P ). That is, the non-cancelling pairs (P,P ) of content µ
are in bijection with the set of hook-block involutions.

Proof of Theorem 3.14. Fix an integer m > 0 and a composition µ = (µ1, . . . , µm) =
1j1⋯kjk . Let H = (H1, . . . ,Hm) be a hook permutation of type µ.

Suppose that Sch(H) = (P,P ). By Theorem 3.11 and Proposition 3.4(a), the
initial jk letters and hooks in H must form a k-partial involution. Inductively,
suppose now that all hooks {H1, . . . ,Hr} of length greater than ( have been inserted,
forming the pair (P ′, P ′) of shape ν. Note that the entries of P ′ are all less than
or equal to r. Let π = ν ∪ α be the shape obtained by appending ( sufficiently long
rows, each of length at least ∣ν∣ + (j", on top of ν, and such that ∣π∣ = (t for some t.

Let P̂ be a rim hook tableau of shape π, and content (t, whose entries are {r−t+
1, r−t+2, . . . , r} (allowing entries to be non-positive). By Proposition 3.5 and Theo-
rem 3.11, Sch−1(P̂ , P̂ ) equals some hook permutation Ĥ = (Ĥr−t+1, Ĥr−t+2, . . . , Ĥr)
which is in fact an (-partial involution. (We are allowing permutations of sets that
include non-positive values due to the content of P̂ .)

Now define the hook permutation

H+ = (Ĥr−t+1, Ĥr−t+2, . . . , Ĥr,Hr+1,Hr+2, . . . ,Hr+j!),
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where {Hr+1, . . . ,Hr+j!} are the hooks of size ( inH. The point of Proposition 3.4(b)
is that adding ( rows on top of the shape ν to form π does not affect the insertion
of the (-hooks {Hr+1, . . . ,Hr+j!} via Sch, except to allow us to create a shape with
rectangular content. Because all content in the hooks {Hr+j!+1, . . . ,Hm} is less
than the content of the hooks {Hr+1, . . . ,Hr+j!}, we must have that Sch(H+) =(P +, P +) by Proposition 3.4(a). Moreover, the hooks with content {r+1, . . . , r+ j"}
in P + without α, its top ( rows, occupy the same positions that they do in P .
Theorem 3.11 implies that H+ must be an (-partial involution. Because Ĥ was
an (-partial involution as well, this means that (Hr+1,Hr+2, . . . ,Hr+j!) itself is an
(-partial involution. Consequently, by the inductive hypothesis, H must be a hook-
block involution.

Now suppose that Sch(H) = (P,Q) where P ≠Q. Then the tableaux first diverge
during the insertion of the hooks of length i for some i. A similar argument to
the above shows that this means that the hooks of length i do not form a i-partial
involution. Thus the full hook permutation H is not a hook-block involution.

Theorem 3.14 shows it is possible to associate a collection of N(µ) rim-hook
tableaux of content µ to the set of all hook-block involutions of content µ. Unfortu-
nately, it is not obvious how to deduce when ∑λ⊢n ∣χλ

µ∣ and N(µ) coincide from this
result. Moreover, as the following example shows, even when N(µ) and ∑λ⊢n ∣χλ

µ∣
are equal, applying Sch to the set of hook-block involutions does not necessarily
yield a result like Corollary 3.12.

Example 3.15. While N(2211) = 12, applying Sch to the corresponding twelve
hook-block involutions yields no tableaux of shape 6 or shape 51, while χ6

2211 =
χ51
2211 = 1. Compare Figures 4 and 5 with the column corresponding to 2211 in

Figure 2.

( 1 1 2 2 3 4 ) ( 1 1
2
2

3 4 ) ( 1
1

2 2 3 4 ) ( 1
1

2
2

3 4 )

( 1 1 2 2 4 3 ) ( 1 1
2
2

4 3 ) ( 1
1

2 2 4 3 ) ( 1
1

2
2

4 3 )

( 2 2 1 1 3 4 ) ( 2
2

1
1

3 4 ) ( 2 2 1 1 4 3 ) ( 2
2

1
1

4 3 )

Figure 4: The hook-block involutions corresponding to the involution product
graphs for σ = (12)(34)(5)(6).
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1 1
2
2
3
4

1 1
2 2
3
4

1 2
1 2
3
4

1
1
2
2
3
4

1 1
2 4
2
3

1 1
2 2
3 4

1 2
1 2
3 4

1 4
1
2
2
3

1 1 2 2
3
4

1 2 2
1
3
4

1 1 2 2
3 4

1 2 2
1 4
3

Figure 5: The image under Sch of the hook-block involutions of content (2,2,1,1).
3.1. Connection with commuting pairs

As a final thought, we communicate an observation of Allan Trojan, shared with us
via private communication, in response to an early draft of this paper.

For a positive integer n, let C(n) denote the set of all ordered pairs of commuting
elements of Sn,

C(n) = {(σ, τ) ∈ S2
n ∶ στ = τσ}.

Define an equivalence relation on C(n) by conjugacy acting diagonally; that is, say(σ, τ) ∼ (gσg−1, gτg−1) for each g ∈ Sn. For µ ⊢ n, define
C(µ) = {(σ, τ) ∈ S2

n ∶ στ = τσ and sh(σ) = µ} ⊆ C(n).
Let c(µ) denote the number of conjugacy classes in C(µ).
Example 3.16. There are five conjugacy classes of commuting pairs in S4 whose
first element has cycle type (2,2), so c((2,2)) = 5. Taking σ = (12)(34) in each
class, they are:

(σ,1), (σ, (12)), (σ, (12)(34)), (σ, (13)(24)), (σ, (1324)).
Let nz(µ) count the nonzero entries in column µ of the character table of Sn.

Trojan observes that c(µ) is linked to nz(µ) in much the same way that our numbers
N(µ) are linked to the sum of absolute values of the entries in column µ. Namely,

• c(µ) = nz(µ) for all µ ⊢ n where n ≤ 7,
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• if µ = km is rectangular, then c(µ) = nz(µ), and
• if n = 8,9, or 10, the partitions µ for which c(µ) and nz(µ) differ are precisely
those listed in Table 1.

This certainly suggestions some interesting connections to explore.
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