# ON THE HIGHER-DIMENSIONAL GENERALIZATION OF A PROBLEM OF ROTH 

József Borbély<br>Department of Algebra and Number Theory, Eötvös Lóránd University, Budapest, Hungary

Received: 9/23/12, Revised: 3/12/13, Accepted: 8/7/13, Published: 9/26/13


#### Abstract

Long ago Roth conjectured that for any $k$-coloring of the positive integers the equation $x+x^{\prime}=n, x \neq x^{\prime}$ has a monochromatic solution in $\left(x, x^{\prime}\right)$ for more than $c M$ integers $n$ up to $M$ (where c is an absolute constant independent of $k$ ). Later Erdős, Sárközy and T. Sós proved this conjecture with $\frac{1}{2}-\varepsilon$ in place of $c$. In this paper we will prove a higher-dimensional generalization of this theorem by using a higher-dimensional extension of the well known Hilbert cube-lemma. We will also give bounds for the number of monochromatic solutions in higher dimension.


## 1. Introduction

K. F. Roth conjectured (see [2] and [6]) that for an arbitrary $k$-coloring of the positive integers there are more than $c M$ integers $n \leq M$ such that the equation $x+x^{\prime}=n, x \neq x^{\prime}$, has a monochromatic solution in $\left(x, x^{\prime}\right)$. In [1] Erdős, Sárközy and T. Sós proved this conjecture in the following form:

Theorem 1. For every $k \geq 2$ there exists a positive integer $M_{0}(k)$ such that for any $M \geq M_{0}(k)$ and an arbitrary $k$-coloring of the set $\mathbb{N}$, the number of positive integers $n \leq M$ for which there is a monochromatic solution of the equation $x+x^{\prime}=n$, $x \neq x^{\prime}$, is greater than $\frac{M}{2}-3 M^{1-2^{-k-1}}$

The proof of this theorem was based on the density version of Hilbert's cube lemma (for the original coloring version see [7] ). Szemerédi proved that if we consider a sequence of positive integers of positive density, then the sequence must contain a so-called Hilbert $d$-cube or affine $d$-cube, i.e., for every $d$ a set of the form $u+\sum_{i=1}^{d} \varepsilon_{i} v_{i}$, where $\varepsilon_{i}=0$ or 1 for every i. In [7] Hilbert used the coloring version of this lemma in studying irreducibility of polynomials with integer coefficients. Later, Szemerédi gave the density version of this lemma (see [3] and [10]). This density version of Hilbert's cube lemma is generally called Szemerédi's cube lemma. Erdős, Sárközy and T. Sós used the following quantitative version of this lemma:

Lemma 1. (Szemerédi's cube lemma): If $H$ is a subset of $(1, M)$ for $M$ large enough and $H$ has at least $3 M^{1-2^{-d}}$ elements, then $H$ contains a Hilbert-cube.

Our first goal is to give a higher-dimensional generalization of Lemma 1. With this generalization we will prove the following result:

Theorem 2. For fixed positive integers $r, s$, $k$, there is a positive integer $m_{0}$ with the following property: for any positive integer $m>m_{0}$ and for any $k$-coloring of the elements of the set $(1, m)^{r}$ there are at least $\left[\frac{m}{s}\right]^{r}-3 \cdot\left(2^{r-1} m^{r}\right)^{1-2^{-k s+k-1}}$ vectors $\vec{x}$ in $(1, m)^{r}$, such that one can find pairwise distinct vectors $\overrightarrow{x_{1}}, \overrightarrow{x_{2}}, \cdots, \overrightarrow{x_{s}}$ of the same color in $(1, m)^{r}$, whose sum is $\vec{x}$.

The special case $r=1$ and $s=2$ in Theorem 2 gives the result of Theorem 1 . After the proof of Theorem 2 we will study the number of solutions of the equation $\vec{x}+\overrightarrow{x^{\prime}}=\vec{n}, \vec{x} \neq \overrightarrow{x^{\prime}}$ for vectors $\vec{n}$ in $(1, m)^{r}$, where $\vec{x}$ and $\overrightarrow{x^{\prime}}$ are monochromatic. We will get the following result:

Theorem 3. For every positive real number $\alpha$ and $\beta$ with the property $\alpha^{r}+\beta^{r} \leq$ $\frac{1}{2^{2 r+1} k}$ there is a positive integer $m_{\alpha \beta}$, such that for every $m>m_{\alpha \beta}$ and for every $k$-coloring of $\mathbb{N}^{r}$ the number of elements in $(1, m)^{r}$ having representations as a sum of two monochromatic distinct vectors in more than $\frac{\beta^{r}}{2} m^{r}$ ways is more than $\alpha^{r} m^{r}$.

One can observe that the result of Theorem 2 is asymptotically independent of the number of the colors, if we fix $r$ and $s$. In Theorem 3 we want to search for an arbitrary $k$-coloring a "large number" of vectors with a "large number of representations". Here we will see that these "large numbers" already depend on the number of the colors for fixed $r$ and $s$. First we study only the case of two summands, later we show a way of studying the case of more summands.

## 2. The Generalization of Hilbert's Cube Lemma

Similarly to the original definition one can interprete $d$-cubes in the set of $r$ dimensional vectors.

Definition 1. If $\vec{u}, \overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \cdots, \overrightarrow{v_{d}}$ are r-dimensional vectors, then the set of the sums in the form $\vec{u}+\sum_{i=1}^{d} \varepsilon_{i} \overrightarrow{v_{i}}$, where $\varepsilon_{i}=0$ or 1 for every i , is an affine $d$-cube or a $d$-dimensional Hilbert cube.

Lemma 2. If $H$ is a subset of distinct vectors of $(1, m)^{r}$ and the set $H$ has at least $3 \cdot\left(2^{r-1} m^{r}\right)^{1-2^{-d}}$ elements, then $H$ contains an affine d-cube.

Proof. Our proof is a generalization of the proof given in [1]. We will define sets $H_{0}, H_{1}, \cdots, H_{d}$ and $r$-dimensional vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \cdots, \overrightarrow{v_{d}}$ in the following way:
(i) $H_{0}=H$
(ii) $H_{j} \cup\left\{\vec{b}+\overrightarrow{v_{j}} \mid \vec{b} \in H_{j}\right\}$ is a subset of $H_{j-1}$ for every $j=1,2, \cdots, d$
(iii) $\left|H_{j}\right| \geq|H|^{2^{j}}\left(3 \cdot 2^{r-1} m^{r}\right)^{-\left(2^{j}-1\right)}$

We construct $H_{0}, H_{1}, \cdots, H_{d}$ and $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \cdots, \overrightarrow{v_{d}}$ recursively. Let $H_{0}=H$. Assume that $0 \leq j \leq d-1$ and in the case $j>0$ sets $H_{0}, H_{1}, \cdots, H_{j}$ and vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \cdots, \overrightarrow{v_{j}}$ have been defined. Let $F$ be the set of the vectors in $(-(m-1),(m-1))^{r}$, whose first nonzero coordinate is positive. Denote by $f\left(H_{j}, \vec{h}\right)$ the number of solutions of the equation $\vec{b}-\overrightarrow{b^{\prime}}=\vec{h}$, where $\vec{b}, \overrightarrow{b^{\prime}} \in H_{j}$ and $\vec{h} \in F$.

Let $L$ be the maximum value of the numbers $f\left(H_{j}, \vec{h}\right)$, where $\vec{h} \in F$ and $\vec{h} \neq$ $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \cdots, \overrightarrow{v_{j}}$. For all $r$-dimensional vectors $\vec{h}$ we have $f\left(H_{j}, \vec{h}\right) \leq\left|H_{j}\right|$. Clearly $\sum_{\vec{h} \in F} f\left(H_{j}, \vec{h}\right)=\binom{\left|H_{j}\right|}{2}$. We give an estimate for $L$. We can majorize $f\left(H_{j}, \vec{h}\right)$ by $\left|H_{j}\right|$, if $\vec{h} \in\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \cdots, \overrightarrow{v_{j}}\right\}$ and by $L$ otherwise. Thus we get the estimate

$$
\binom{\left|H_{j}\right|}{2} \leq j\left|H_{j}\right|+\frac{(2 m-1)^{r}-1}{2} L<j\left|H_{j}\right|+2^{r-1} m^{r} L .
$$

Thus we have $L \geq \frac{1}{2^{r} m^{r}}\left(\left|H_{j}\right|^{2}-\left|H_{j}\right|-2 j\left|H_{j}\right|\right)=\frac{\left|H_{j}\right|}{3 \cdot 2^{r-1} \cdot m^{r}}\left(\frac{3}{2}\left|H_{j}\right|-\frac{3}{2}-3 j\right)$. According to our assumption we have (for $m$ large enough) the estimate

$$
\begin{aligned}
\left|H_{j}\right| & \geq|H|^{2^{j}}\left(3 \cdot 2^{r-1} m^{r}\right)^{-\left(2^{j}-1\right)}>\left(3 \cdot\left(2^{r-1} m^{r}\right)^{1-2^{-d}}\right)^{2^{j}}\left(3 \cdot 2^{r-1} m^{r}\right)^{-\left(2^{j}-1\right)} \\
& =3 \cdot\left(2^{r-1} m^{r}\right)^{1-2^{j-d}}>3 \cdot\left(2^{r-1} m^{r}\right)^{1-2^{-1}}>3+6 d>3+6 j
\end{aligned}
$$

So we have $\frac{\left|H_{j}\right|^{2}}{3 \cdot 2^{r-1} m^{r}}<L$. By (iii) we get $L>|H|^{2^{j+1}}\left(3 \cdot 2^{r-1} m^{r}\right)^{-\left(2^{j+1}-1\right)}$. This means that the vector $\vec{h}$ can play the role of $\overrightarrow{v_{j+1}}$ and we are able to define set $H_{j+1}$, too. Thus indeed we can define sets $H_{0}, H_{1}, \cdots, H_{d}$ and r-dimensional vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \cdots, \overrightarrow{v_{d}}$ recursively.

## 3. The Proof of the Generalization of Roth's Problem

Here we give a proof of Theorem 2.
Proof. Assume to the contrary that there is an appropriate $k$-coloring for infinitely many positive integers $m$, such that the number of vectors $\vec{x}$ with the given property in $(1, m)^{r}$ is less than $\left[\frac{m}{s}\right]^{r}-3 \cdot\left(2^{r-1} m^{r}\right)^{1-2^{-k s+k-1}}$. We will get a contradiction via Lemma 2. Let $S$ be the subset of $(1, m)^{r}$, in which all the $r$ coordinates of the elements are divisible by $s$. Let $S^{\prime}$ denote the set of those elements of $S$, which do
not have a representation in the given form. According to our assumption we have $3 \cdot\left(2^{r-1} m^{r}\right)^{1-2^{-k s+k-1}}<\left|S^{\prime}\right|$. Now we can apply Lemma 2. In $S^{\prime}$ one can find an affine $(k s-k+1)$-cube, so that there are $r$-dimensional vectors $\vec{u}, \overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \cdots, \overrightarrow{v s-k+1}$ in $(-(m-1),(m-1)))^{r}$, such that all the sums $\vec{u}+\sum_{i=1}^{k s-k+1} \varepsilon_{i} \overrightarrow{v_{i}}$ are in $S^{\prime}$, where $\varepsilon_{i}=0$ or 1 for every $i$. By the pigeonhole principle there are $s$ vectors in the set $\left\{\frac{1}{s} \vec{u}+\overrightarrow{v_{i}}, i=1,2, \cdots, k s-k+1\right\}$ with the same color. We can assume without loss of generality, that these vectors are $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \cdots, \overrightarrow{v_{s}}$. By the definition of the Hilbert-cube the vector $\vec{u}+\sum_{i=1}^{s} \overrightarrow{v_{i}}=\sum_{i=1}^{s}\left(\frac{1}{s} \vec{u}+\overrightarrow{v_{i}}\right)$ is an element of $S^{\prime}$, which contradicts the definition of $S^{\prime}$.

## 4. On the Number of Representations as the Sum of Two Monochromatic Distinct Vectors

In this section we study the number of representations, if the number of summands is $s=2$. Our goal is to prove Theorem 3. The key will be the following lemma:

Lemma 3. If for positive real numbers $\alpha$ and $\beta$ there exist infinitely many positive integers $m$, such that there is a $k$-coloring of $\mathbb{N}^{r}$, for which at most $\alpha^{r} m^{r}$ elements of $(1, m)^{r}$ have representations as a sum of two monochromatic distinct vectors of $\mathbb{N}^{r}$ in more than $\frac{\beta^{r}}{2} m^{r}$ ways, then $\alpha^{r}+\beta^{r}>\frac{1}{2^{2 r+1} k}$.

Proof. Let be $m$ a positive integer with the given property. Let $a$ be the minimal and $b$ the maximal positive integer such that $\frac{a}{m} \geq \alpha$ and $\frac{b}{m} \leq \beta$. In this case at most $a^{r}$ elements of $(1, m)^{r}$ have representations as a sum of two monochromatic distinct vectors in more than $\frac{b^{r}}{2}$ ways. Let $f(\vec{x})$ denote the number of representations of $\vec{x}=\left(x_{1}, x_{2}, \cdots, x_{r},\right)$ as the sum of two distinct vectors in $\left(1, x_{1}\right) \times\left(1, x_{2}\right) \times \cdots \times$ $\left(1, x_{r}\right)$. Clearly $f(\vec{x})=\left[\frac{\prod_{i=1}^{r}\left(x_{i}-1\right)}{2}\right]$, because one can order the vectors of this set (except at most one vector) into disjoint pairs such that each pair consists of two distinct vectors with sum $\vec{x}$. For all vectors $\vec{x}$ of the set $(1, m)^{r}$ let $g(\vec{x})$ denote the number of representations of $\vec{x}$ as the sum of two distinct monochromatic vectors of $(1, m)^{r}$. Let $m_{i}$ be the number of vectors with the $i$-th color in $\left(1,\left[\frac{m}{2}\right]\right)^{r}$. Clearly $\sum_{i=1}^{k} m_{i}=\left[\frac{m}{2}\right]^{r}$ and $\sum_{i=1}^{k}\binom{m_{i}}{2} \leq \sum_{\vec{x} \in(1, m)^{r}} g(\vec{x})$. We give an upper estimate for the sum $\sum_{\vec{x} \in(1, m)^{r}} g(\vec{x})$, too. If one can write the vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \cdots, \overrightarrow{v_{t}}\left(t \leq a^{r}\right)$, in more than $\frac{b^{r}}{2}$ ways as the sum of two monochromatic distinct vectors, then

$$
\sum_{i=1}^{t} g\left(\vec{v}_{i}\right) \leq \sum_{\vec{x} \in(m-a+1, m)^{r}} f(\vec{x})
$$

Hence we have the following upper estimate:

$$
\begin{aligned}
\sum_{\vec{x} \in(1, m)^{r}} g(\vec{x}) & \leq \frac{b^{r}}{2}(m)^{r}+\sum_{\vec{x} \in(m-a+1, m)^{r}} f(\vec{x}) \\
& \leq \frac{b^{r}}{2} m^{r}+\frac{1}{2} \sum_{x_{r}=m-a+1}^{m} \cdots \sum_{x_{1}=m-a+1}^{m}\left(x_{1}-1\right)\left(x_{2}-1\right) \cdots\left(x_{r}-1\right) \\
& =\frac{b^{r}}{2} m^{r}+\frac{1}{2} \sum_{x_{r}=m-a}^{m-1} \cdots \sum_{x_{1}=m-a}^{m-1} x_{1} x_{2} \cdots x_{r}=\frac{b^{r}}{2} m^{r}+\frac{1}{2}\left(a m-\frac{a^{2}+a}{2}\right)^{r} \\
& <\frac{b^{r}}{2} m^{r}+(a m)^{r}
\end{aligned}
$$

Using the Cauchy-Schwarz-inequality we get

$$
\sum_{i=1}^{k}\binom{m_{i}}{2}=\frac{1}{2} \sum_{i=1}^{k} m_{i}^{2}-\frac{1}{2}\left[\frac{m}{2}\right]^{r} \geq \frac{1}{2} k\left(\frac{\left[\frac{m}{2}\right]^{r}}{k}\right)^{2}-\frac{1}{2}\left[\frac{m}{2}\right]^{r}
$$

By dividing by $m^{2 r}$ we get

$$
\frac{\frac{1}{2} k\left(\frac{\left[\frac{m}{2}\right]^{r}}{k}\right)^{2}-\frac{1}{2}\left[\frac{m}{2}\right]^{r}}{m^{2 r}}<\frac{\frac{1}{2} b^{r} m^{r}+\frac{1}{2}(a m)^{r}}{m^{2 r}}
$$

If $m$ tends to infinity, then the left-hand side is asymptotically $\frac{1}{2^{2 r+1} k}$ and the righthand side is asymptotically $\frac{1}{2} \beta^{r}+\frac{1}{2} \alpha^{r}$. Clearly we have $\frac{1}{2} \beta^{r}+\frac{1}{2} \alpha^{r}<\alpha^{r}+\beta^{r}$, and hence $\alpha^{r}+\beta^{r}>\frac{1}{2^{2 r+1} k}$.

With Lemma 3 we can easily prove Theorem 3. The proof can be done in the following way:

Proof. Assume, for a contradiction, that there are positive numbers $\alpha$ and $\beta$ such that $\alpha^{r}+\beta^{r} \leq \frac{1}{2^{2 r+1} k}$ and for infinitely many positive integers $m$ there is a $k$-coloring of $\mathbb{N}^{r}$ such that the number of elements in $(1, m)^{r}$ having representations as a sum of two monochromatic distinct vectors in more than $\frac{\beta^{r}}{2} m^{r}$ ways is at most $\alpha^{r} m^{r}$. This contradicts Lemma 3.

Remark. Let $k^{\prime}$ be the maximal odd integer such that $k \geq k^{\prime}$. We color the elements of $\mathbb{N}^{r}$ with at most k colors in the following way: if the sum of the coordinates is 0 or 1 modulo $k^{\prime}$, then we color this vector by the first color; the other vectors are colored by the other $k^{\prime}-1$ colors according to the other residue classes. In this case there are at most $3 \cdot\left[\frac{m}{k^{\prime}}\right] m^{r-1}$ vectors in $(1, m)^{r}$, for which the number of representations as a sum of two distinct monochromatic vectors is at least $2 \cdot\left[\frac{m}{k^{\prime}}\right] \mathrm{m}^{r-1}$ (to see this, one should only observe the vectors having the sum of coordinates equal to 0,1 or 2 modulo $k^{\prime}$ ). Thus Theorem 2 cannot be improved significantly.

## 5. Further Remarks

We studied in the last section only the case $s=2$ (i.e., the number of addends is two). We can do calculations in a similar way using the further asymptotic formulae (see [9]). The method we use will not be combinatorially new, one needs only the same technique, but with a little more work. Let us denote by $p(n, s)$ the number of partititons of $n$ into exactly $s$ not necessarily distinct parts and $q(n, s)$ the number of partititons of n into exactly $s$ distinct parts. We formulate the relevant statements of [9] in Lemma 4.

Lemma 4. $p(n, s) \sim \frac{n^{s-1}}{(1 \cdot 2 \cdots \cdots \cdot(s-1))^{2} \cdot s}$ and $q(n, s) \sim \frac{n^{s-1}}{(1 \cdot 2 \cdots \cdot(s-1))^{2} \cdot s}$ where $n \gg 1$ and $s=O(1)$.

We give only a sketch of how our methods generally work. Let $H\left(x_{1}, x_{2}, \cdots, x_{r}\right)$ denote the number of representations of the vector $\vec{x}=\left(x_{1}, x_{2}, \cdots, x_{r}\right)$ as a sum of $s$ distinct vectors in $\left(1, x_{1}\right) \times\left(1, x_{2}\right) \times \cdots \times\left(1, x_{r}\right)$. Let $m_{i}$ be the number of vectors with the $i$-th color in $\left(1,\left[\frac{m}{s}\right]\right)^{r}$. It is obvious that $\sum_{i=1}^{k}\binom{m_{i}}{s} \leq \sum_{\vec{x} \in(1, m)^{r}} T(\vec{x})$, where $T(\vec{x})$ is the number of ways vector $\vec{x}$ can be written as a sum of $s$ monochromatic distinct vectors. A similar argument to that of Section 4 shows that we have to majorize $H\left(x_{1}, x_{2}, \cdots, x_{r}\right)$.

It is easy to verify that

$$
\begin{aligned}
q\left(x_{1}, s\right) \prod_{i=2}^{r}\left(1 \cdot 2 \cdots \cdot s \cdot q\left(x_{i}, s\right)\right) & \leq H\left(x_{1}, x_{2}, \cdots, x_{r}\right) \\
& \leq p\left(x_{1}, s\right) \prod_{i=2}^{r}\left(1 \cdot 2 \cdots \cdots \cdot p\left(x_{i}, s\right)\right)
\end{aligned}
$$

By Lemma 4 we get the conclusion that $H\left(x_{1}, x_{2}, \cdots, x_{r}\right)$ is asymptotically equal to

$$
\frac{x_{1}^{s-1}}{(1 \cdot 2 \cdots \cdot(s-1))^{2} \cdot s} \prod_{i=2}^{r}\left(1 \cdot 2 \cdots s \frac{x_{i}^{s-1}}{(1 \cdot 2 \cdots \cdot(s-1))^{2} \cdot s}\right)
$$

if $s$ is fixed and $x_{i} \gg 1$. With further calculation one can achieve analogous results as formulated in Theorem 3.

## References

[1] Paul Erdős, András Sárközy and Vera T. Sós, On a conjecture of Roth and Some Related Problems I Irregularities of partitions, Pap. Meet., (Fertőd, 1986), 4759, Algorithms Combin. Study Res. Texts, 8, Springer, Berlin, 1989.
[2] Paul Erdős, Some unsolved problems, Publ. Math. Inst. Hung. Acad. Sci., Ser. A 6, 221-254, 1961.
[3] R. L. Graham, B. L. Rotschild and J. H. Spencer, Ramsey Theory, Wiley, 1980.
[4] David S. Gunderson and Vojtech Rödl, An alternate proof of Szemerédi's cube lemma using extremal hypergraphs, Diskrete Strukturen in der Mathematik, Preprintreihe, 1995.
[5] David S. Gunderson and Vojtech Rödl, Extremal problems for affine cubes of integers, Combin. Probab. Comput 7, no. 1, 65-79, 1998.
[6] R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, 1980.
[7] David Hilbert, Ueber die Irreduzibilitaet ganzer rationaler Functionen, mit ganzzahligen Koeffizienten, Crelles J. Math., Volume 110, 104-129, 1892.
[8] Bruce M. Landman and Aaron Robertson, Ramsey Theory on the Integers, American Mathematical Soc., 2004.
[9] Charles Knessl and Joseph B. Keller, Partititon asymptotics from recursion equations, SIAM Journal on Applied Mathematics, Vol. 50, No. 2, Apr., 323-338. 1990.
[10] Endre Szemerédi, On sets of integers containing no $k$ elements in arithmetic progression, Acta Arithmetica 27, 199-245, 1975.

