

ON THE HIGHER-DIMENSIONAL GENERALIZATION OF A PROBLEM OF ROTH

József Borbély

Department of Algebra and Number Theory, Eötvös Lóránd University, Budapest, Hungary

Received: 9/23/12, Revised: 3/12/13, Accepted: 8/7/13, Published: 9/26/13

Abstract

Long ago Roth conjectured that for any k-coloring of the positive integers the equation $x + x' = n, x \neq x'$ has a monochromatic solution in (x, x') for more than cM integers n up to M (where c is an absolute constant independent of k). Later Erdős, Sárközy and T. Sós proved this conjecture with $\frac{1}{2} - \varepsilon$ in place of c. In this paper we will prove a higher-dimensional generalization of this theorem by using a higher-dimensional extension of the well known Hilbert cube-lemma. We will also give bounds for the number of monochromatic solutions in higher dimension.

1. Introduction

K. F. Roth conjectured (see [2] and [6]) that for an arbitrary k-coloring of the positive integers there are more than cM integers $n \leq M$ such that the equation $x + x' = n, x \neq x'$, has a monochromatic solution in (x, x'). In [1] Erdős, Sárközy and T. Sós proved this conjecture in the following form:

Theorem 1. For every $k \ge 2$ there exists a positive integer $M_0(k)$ such that for any $M \ge M_0(k)$ and an arbitrary k-coloring of the set \mathbb{N} , the number of positive integers $n \le M$ for which there is a monochromatic solution of the equation x + x' = n, $x \ne x'$, is greater than $\frac{M}{2} - 3M^{1-2^{-k-1}}$

The proof of this theorem was based on the density version of Hilbert's cube lemma (for the original coloring version see [7]). Szemerédi proved that if we consider a sequence of positive integers of positive density, then the sequence must contain a so-called Hilbert *d*-cube or affine *d*-cube, i.e., for every *d* a set of the form $u + \sum_{i=1}^{d} \varepsilon_i v_i$, where $\varepsilon_i = 0$ or 1 for every i. In [7] Hilbert used the coloring version of this lemma in studying irreducibility of polynomials with integer coefficients. Later, Szemerédi gave the density version of this lemma (see [3] and [10]). This density version of Hilbert's cube lemma is generally called Szemerédi's cube lemma. Erdős, Sárközy and T. Sós used the following quantitative version of this lemma: **Lemma 1.** (Szemerédi's cube lemma): If H is a subset of (1,M) for M large enough and H has at least $3M^{1-2^{-d}}$ elements, then H contains a Hilbert-cube.

Our first goal is to give a higher-dimensional generalization of Lemma 1. With this generalization we will prove the following result:

Theorem 2. For fixed positive integers r, s, k, there is a positive integer m_0 with the following property: for any positive integer $m > m_0$ and for any k-coloring of the elements of the set $(1,m)^r$ there are at least $\left[\frac{m}{s}\right]^r - 3 \cdot \left(2^{r-1}m^r\right)^{1-2^{-ks+k-1}}$ vectors \vec{x} in $(1,m)^r$, such that one can find pairwise distinct vectors $\vec{x_1}, \vec{x_2}, \cdots, \vec{x_s}$ of the same color in $(1,m)^r$, whose sum is \vec{x} .

The special case r = 1 and s = 2 in Theorem 2 gives the result of Theorem 1. After the proof of Theorem 2 we will study the number of solutions of the equation $\vec{x} + \vec{x'} = \vec{n}, \vec{x} \neq \vec{x'}$ for vectors \vec{n} in $(1, m)^r$, where \vec{x} and $\vec{x'}$ are monochromatic. We will get the following result:

Theorem 3. For every positive real number α and β with the property $\alpha^r + \beta^r \leq \frac{1}{2^{2r+1}k}$ there is a positive integer $m_{\alpha\beta}$, such that for every $m > m_{\alpha\beta}$ and for every k-coloring of \mathbb{N}^r the number of elements in $(1,m)^r$ having representations as a sum of two monochromatic distinct vectors in more than $\frac{\beta^r}{2}m^r$ ways is more than $\alpha^r m^r$.

One can observe that the result of Theorem 2 is asymptotically independent of the number of the colors, if we fix r and s. In Theorem 3 we want to search for an arbitrary k-coloring a "large number" of vectors with a "large number of representations". Here we will see that these "large numbers" already depend on the number of the colors for fixed r and s. First we study only the case of two summands, later we show a way of studying the case of more summands.

2. The Generalization of Hilbert's Cube Lemma

Similarly to the original definition one can interpret d-cubes in the set of r-dimensional vectors.

Definition 1. If $\vec{u}, \vec{v_1}, \vec{v_2}, \cdots, \vec{v_d}$ are r-dimensional vectors, then the set of the sums in the form $\vec{u} + \sum_{i=1}^{d} \varepsilon_i \vec{v_i}$, where $\varepsilon_i = 0$ or 1 for every i, is an affine *d*-cube or a *d*-dimensional Hilbert cube.

Lemma 2. If H is a subset of distinct vectors of $(1, m)^r$ and the set H has at least $3 \cdot (2^{r-1}m^r)^{1-2^{-d}}$ elements, then H contains an affine d-cube.

Proof. Our proof is a generalization of the proof given in [1]. We will define sets H_0, H_1, \dots, H_d and r-dimensional vectors $\vec{v_1}, \vec{v_2}, \dots, \vec{v_d}$ in the following way:

(i)
$$H_0 = H$$

(ii) $H_j \cup \left\{ \vec{b} + \vec{v_j} | \vec{b} \in H_j \right\}$ is a subset of H_{j-1} for every $j = 1, 2, \cdots, d$
(iii) $|H_j| \ge |H|^{2^j} \left(3 \cdot 2^{r-1} m^r \right)^{-(2^j-1)}$

We construct H_0, H_1, \dots, H_d and $\vec{v_1}, \vec{v_2}, \dots, \vec{v_d}$ recursively. Let $H_0 = H$. Assume that $0 \leq j \leq d-1$ and in the case j > 0 sets H_0, H_1, \dots, H_j and vectors $\vec{v_1}, \vec{v_2}, \dots, \vec{v_j}$ have been defined. Let F be the set of the vectors in $(-(m-1), (m-1))^r$, whose first nonzero coordinate is positive. Denote by $f(H_j, \vec{h})$ the number of solutions of the equation $\vec{b} - \vec{b'} = \vec{h}$, where $\vec{b}, \vec{b'} \in H_j$ and $\vec{h} \in F$.

Let L be the maximum value of the numbers $f(H_j, \vec{h})$, where $\vec{h} \in F$ and $\vec{h} \neq \vec{v_1}, \vec{v_2}, \cdots, \vec{v_j}$. For all r-dimensional vectors \vec{h} we have $f(H_j, \vec{h}) \leq |H_j|$. Clearly $\sum_{\vec{h} \in F} f(H_j, \vec{h}) = \binom{|H_j|}{2}$. We give an estimate for L. We can majorize $f(H_j, \vec{h})$ by $|H_j|$, if $\vec{h} \in \{\vec{v_1}, \vec{v_2}, \cdots, \vec{v_j}\}$ and by L otherwise. Thus we get the estimate

$$\binom{|H_j|}{2} \le j |H_j| + \frac{(2m-1)^r - 1}{2}L < j |H_j| + 2^{r-1}m^r L.$$

Thus we have $L \geq \frac{1}{2^r m^r} \left(|H_j|^2 - |H_j| - 2j |H_j| \right) = \frac{|H_j|}{3 \cdot 2^{r-1} \cdot m^r} \left(\frac{3}{2} |H_j| - \frac{3}{2} - 3j \right).$ According to our assumption we have (for *m* large enough) the estimate

$$|H_j| \ge |H|^{2^j} \left(3 \cdot 2^{r-1}m^r\right)^{-\binom{2^j-1}{2}} > \left(3 \cdot \left(2^{r-1}m^r\right)^{1-2^{-d}}\right)^{2^j} \left(3 \cdot 2^{r-1}m^r\right)^{-\binom{2^j-1}{2}} = 3 \cdot \left(2^{r-1}m^r\right)^{1-2^{j-d}} > 3 \cdot \left(2^{r-1}m^r\right)^{1-2^{-1}} > 3 + 6d > 3 + 6j.$$

So we have $\frac{|H_j|^2}{3 \cdot 2^{r-1}m^r} < L$. By (iii) we get $L > |H|^{2^{j+1}} (3 \cdot 2^{r-1}m^r)^{-(2^{j+1}-1)}$. This means that the vector \vec{h} can play the role of v_{j+1} and we are able to define set H_{j+1} , too. Thus indeed we can define sets H_0, H_1, \cdots, H_d and r-dimensional vectors $\vec{v_1}, \vec{v_2}, \cdots, \vec{v_d}$ recursively.

3. The Proof of the Generalization of Roth's Problem

Here we give a proof of Theorem 2.

Proof. Assume to the contrary that there is an appropriate k-coloring for infinitely many positive integers m, such that the number of vectors \vec{x} with the given property in $(1,m)^r$ is less than $\left[\frac{m}{s}\right]^r - 3 \cdot \left(2^{r-1}m^r\right)^{1-2^{-ks+k-1}}$. We will get a contradiction via Lemma 2. Let S be the subset of $(1,m)^r$, in which all the r coordinates of the elements are divisible by s. Let S' denote the set of those elements of S, which do

not have a representation in the given form. According to our assumption we have $3 \cdot (2^{r-1}m^r)^{1-2^{-ks+k-1}} < |S'|$. Now we can apply Lemma 2. In S' one can find an affine (ks-k+1)-cube, so that there are r-dimensional vectors $\vec{u}, \vec{v_1}, \vec{v_2}, \cdots, \vec{v_{ks-k+1}}$ in $(-(m-1), (m-1)))^r$, such that all the sums $\vec{u} + \sum_{i=1}^{ks-k+1} \varepsilon_i \vec{v_i}$ are in S', where $\varepsilon_i = 0$ or 1 for every i. By the pigeonhole principle there are s vectors in the set $\{\frac{1}{s}\vec{u} + \vec{v_i}, i = 1, 2, \cdots, ks - k + 1\}$ with the same color. We can assume without loss of generality, that these vectors are $\vec{v_1}, \vec{v_2}, \cdots, \vec{v_s}$. By the definition of the Hilbert-cube the vector $\vec{u} + \sum_{i=1}^{s} \vec{v_i} = \sum_{i=1}^{s} (\frac{1}{s}\vec{u} + \vec{v_i})$ is an element of S', which contradicts the definition of S'.

4. On the Number of Representations as the Sum of Two Monochromatic Distinct Vectors

In this section we study the number of representations, if the number of summands is s = 2. Our goal is to prove Theorem 3. The key will be the following lemma:

Lemma 3. If for positive real numbers α and β there exist infinitely many positive integers m, such that there is a k-coloring of \mathbb{N}^r , for which at most $\alpha^r m^r$ elements of $(1,m)^r$ have representations as a sum of two monochromatic distinct vectors of \mathbb{N}^r in more than $\frac{\beta^r}{2}m^r$ ways, then $\alpha^r + \beta^r > \frac{1}{2^{2r+1}k}$.

Proof. Let be m a positive integer with the given property. Let a be the minimal and b the maximal positive integer such that $\frac{a}{m} \geq \alpha$ and $\frac{b}{m} \leq \beta$. In this case at most a^r elements of $(1,m)^r$ have representations as a sum of two monochromatic distinct vectors in more than $\frac{b^r}{2}$ ways. Let $f(\vec{x})$ denote the number of representations of $\vec{x} = (x_1, x_2, \cdots, x_r,)$ as the sum of two distinct vectors in $(1, x_1) \times (1, x_2) \times \cdots \times (1, x_r)$. Clearly $f(\vec{x}) = \left[\frac{\prod_{i=1}^r (x_i-1)}{2}\right]$, because one can order the vectors of this set (except at most one vector) into disjoint pairs such that each pair consists of two distinct vectors with sum \vec{x} . For all vectors \vec{x} of the set $(1,m)^r$ let $g(\vec{x})$ denote the number of representations of \vec{x} as the sum of two distinct monochromatic vectors of $(1,m)^r$. Let m_i be the number of vectors with the *i*-th color in $(1, \left[\frac{m}{2}\right])^r$. Clearly $\sum_{i=1}^k m_i = \left[\frac{m}{2}\right]^r$ and $\sum_{i=1}^k \binom{m_i}{2} \leq \sum_{\vec{x} \in (1,m)^r} g(\vec{x})$. We give an upper estimate for the sum $\sum_{\vec{x} \in (1,m)^r} g(\vec{x})$, too. If one can write the vectors $\vec{v_1}, \vec{v_2}, \cdots, \vec{v_t} (t \leq a^r)$, in more than $\frac{b^r}{2}$ ways as the sum of two monochromatic distinct vectors, then

$$\sum_{i=1}^{r} g(\vec{v_i}) \le \sum_{\vec{x} \in (m-a+1,m)^r} f(\vec{x}).$$

Hence we have the following upper estimate:

INTEGERS: 13 (2013)

$$\sum_{\vec{x} \in (1,m)^r} g\left(\vec{x}\right) \leq \frac{b^r}{2} (m)^r + \sum_{\vec{x} \in (m-a+1,m)^r} f(\vec{x})$$

$$\leq \frac{b^r}{2} m^r + \frac{1}{2} \sum_{x_r=m-a+1}^m \cdots \sum_{x_1=m-a+1}^m (x_1 - 1) (x_2 - 1) \cdots (x_r - 1)$$

$$= \frac{b^r}{2} m^r + \frac{1}{2} \sum_{x_r=m-a}^{m-1} \cdots \sum_{x_1=m-a}^m x_1 x_2 \cdots x_r = \frac{b^r}{2} m^r + \frac{1}{2} \left(am - \frac{a^2 + a}{2}\right)^r$$

$$< \frac{b^r}{2} m^r + (am)^r.$$

Using the Cauchy-Schwarz-inequality we get

$$\sum_{i=1}^{k} \binom{m_i}{2} = \frac{1}{2} \sum_{i=1}^{k} m_i^2 - \frac{1}{2} \left[\frac{m}{2}\right]^r \ge \frac{1}{2} k \left(\frac{\left[\frac{m}{2}\right]^r}{k}\right)^2 - \frac{1}{2} \left[\frac{m}{2}\right]^r.$$

By dividing by m^{2r} we get

$$\frac{\frac{1}{2}k\left(\frac{\left[\frac{m}{2}\right]^{r}}{k}\right)^{2} - \frac{1}{2}\left[\frac{m}{2}\right]^{r}}{m^{2r}} < \frac{\frac{1}{2}b^{r}m^{r} + \frac{1}{2}\left(am\right)^{r}}{m^{2r}}.$$

If *m* tends to infinity, then the left-hand side is asymptotically $\frac{1}{2^{2r+1}k}$ and the righthand side is asymptotically $\frac{1}{2}\beta^r + \frac{1}{2}\alpha^r$. Clearly we have $\frac{1}{2}\beta^r + \frac{1}{2}\alpha^r < \alpha^r + \beta^r$, and hence $\alpha^r + \beta^r > \frac{1}{2^{2r+1}k}$.

With Lemma 3 we can easily prove Theorem 3. The proof can be done in the following way:

Proof. Assume, for a contradiction, that there are positive numbers α and β such that $\alpha^r + \beta^r \leq \frac{1}{2^{2r+1}k}$ and for infinitely many positive integers m there is a k-coloring of \mathbb{N}^r such that the number of elements in $(1,m)^r$ having representations as a sum of two monochromatic distinct vectors in more than $\frac{\beta^r}{2}m^r$ ways is at most $\alpha^r m^r$. This contradicts Lemma 3.

Remark. Let k' be the maximal odd integer such that $k \ge k'$. We color the elements of \mathbb{N}^r with at most k colors in the following way: if the sum of the coordinates is 0 or 1 modulo k', then we color this vector by the first color; the other vectors are colored by the other k'-1 colors according to the other residue classes. In this case there are at most $3 \cdot \begin{bmatrix} m \\ k' \end{bmatrix} m^{r-1}$ vectors in $(1, m)^r$, for which the number of representations as a sum of two distinct monochromatic vectors is at least $2 \cdot \begin{bmatrix} m \\ k' \end{bmatrix} m^{r-1}$ (to see this, one should only observe the vectors having the sum of coordinates equal to 0, 1 or 2 modulo k'). Thus Theorem 2 cannot be improved significantly.

5. Further Remarks

We studied in the last section only the case s = 2 (i.e., the number of addends is two). We can do calculations in a similar way using the further asymptotic formulae (see [9]). The method we use will not be combinatorially new, one needs only the same technique, but with a little more work. Let us denote by p(n, s) the number of partititons of n into exactly s not necessarily distinct parts and q(n, s) the number of partitions of n into exactly s distinct parts. We formulate the relevant statements of [9] in Lemma 4.

Lemma 4. $p(n,s) \sim \frac{n^{s-1}}{(1\cdot 2\cdots (s-1))^2 \cdot s}$ and $q(n,s) \sim \frac{n^{s-1}}{(1\cdot 2\cdots (s-1))^2 \cdot s}$ where $n \gg 1$ and s = O(1).

We give only a sketch of how our methods generally work. Let $H(x_1, x_2, \dots, x_r)$ denote the number of representations of the vector $\vec{x} = (x_1, x_2, \dots, x_r)$ as a sum of s distinct vectors in $(1, x_1) \times (1, x_2) \times \dots \times (1, x_r)$. Let m_i be the number of vectors with the *i*-th color in $(1, \left\lfloor \frac{m}{s} \right\rfloor)^r$. It is obvious that $\sum_{i=1}^k {m_i \choose s} \leq \sum_{\vec{x} \in (1,m)^r} T(\vec{x})$, where $T(\vec{x})$ is the number of ways vector \vec{x} can be written as a sum of s monochromatic distinct vectors. A similar argument to that of Section 4 shows that we have to majorize $H(x_1, x_2, \dots, x_r)$.

It is easy to verify that

$$q(x_1, s) \prod_{i=2}^r (1 \cdot 2 \cdots s \cdot q(x_i, s)) \leq H(x_1, x_2, \cdots, x_r)$$
$$\leq p(x_1, s) \prod_{i=2}^r (1 \cdot 2 \cdots s \cdot p(x_i, s)).$$

By Lemma 4 we get the conclusion that $H(x_1, x_2, \dots, x_r)$ is asymptotically equal to

$$\frac{x_1^{s-1}}{(1\cdot 2\cdots (s-1))^2 \cdot s} \prod_{i=2}^r \left(1\cdot 2\cdots s \frac{x_i^{s-1}}{(1\cdot 2\cdots (s-1))^2 \cdot s}\right)$$

if s is fixed and $x_i \gg 1$. With further calculation one can achieve analogous results as formulated in Theorem 3.

References

- Paul Erdős, András Sárközy and Vera T. Sós, On a conjecture of Roth and Some Related Problems I Irregularities of partitions, Pap. Meet., (Fertőd, 1986), 4759, Algorithms Combin. Study Res. Texts, 8, Springer, Berlin, 1989.
- [2] Paul Erdős, Some unsolved problems, Publ. Math. Inst. Hung. Acad. Sci., Ser. A 6, 221-254, 1961.
- [3] R. L. Graham, B. L. Rotschild and J. H. Spencer, Ramsey Theory, Wiley, 1980.

- [4] David S. Gunderson and Vojtech Rödl, An alternate proof of Szemerédi's cube lemma using extremal hypergraphs, Diskrete Strukturen in der Mathematik, Preprintreihe, 1995.
- [5] David S. Gunderson and Vojtech Rödl, Extremal problems for affine cubes of integers, Combin. Probab. Comput 7, no. 1, 65-79, 1998.
- [6] R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, 1980.
- [7] David Hilbert, Ueber die Irreduzibilitaet ganzer rationaler Functionen, mit ganzzahligen Koeffizienten, Crelles J. Math., Volume 110, 104-129, 1892.
- [8] Bruce M. Landman and Aaron Robertson, Ramsey Theory on the Integers, American Mathematical Soc., 2004.
- [9] Charles Knessl and Joseph B. Keller, Partititon asymptotics from recursion equations, SIAM Journal on Applied Mathematics, Vol. 50, No. 2, Apr., 323-338. 1990.
- [10] Endre Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica 27, 199-245, 1975.