INDEPENDENT DIVISIBILITY PAIRS ON THE SET OF INTEGERS FROM 1 TO N

Rosemary Sullivan
Dept. of Mathematics, West Chester University, West Chester, Pennsylvania
rsullivan@wcupa.edu
Neil Watling
Department of Mathematics, Widener University, Chester, Pennsylvania
nawatling@widener.edu

Received: 6/2/12, Revised: 8/6/13, Accepted: 8/30/13, Published: 9/26/13

Abstract

Let \mathbb{S}_{N} denote the set of integers from 1 up to N and A_{i} be the event that a number selected from \mathbb{S}_{N} is divisible by i. For the sample space \mathbb{S}_{N}, with the uniform probability measure, consider the question of the independence of the events A_{i} and $A_{j}, i \neq j$. We determine a characterization in terms of N, i and j. Using this we consider various situations and supplementary questions.

1. Introduction

Statistical independence is a fundamental concept in probability theory. Two events A and B are statistically independent if $P(A) P(B)=P(A \cap B)$; see Chung [3], Kac [5] or Ross [8] for example. Probabilists often illustrate statistical independence with examples from games of chance, whereas number theorists like to demonstrate the property using sets of positive integers. The natural density measure of a set A of natural numbers $[2,3,5]$ is defined as,

$$
D(A)=\lim _{n \rightarrow \infty} \frac{|A \cap\{1,2, \ldots, n\}|}{n}
$$

where $|\cdot|$ denotes the cardinality of a set. For example, if $A=\{3,6,9, \ldots\}$ then $D(A)=\frac{1}{3}$. If the "divisibility event", $A_{q_{1}}$, is the set of natural numbers divisible by q_{1} then $D\left(A_{q_{1}}\right) D\left(A_{q_{2}}\right)=D\left(A_{q_{1}} \cap A_{q_{2}}\right)$ if and only if q_{1} and q_{2} are coprime. Here $D\left(A_{q_{1}}\right)=1 / q_{1}, D\left(A_{q_{2}}\right)=1 / q_{2}$ and $D\left(A_{q_{1}} \cap A_{q_{2}}\right)=D\left(A_{q_{1} q_{2}}\right)=1 / q_{1} q_{2}$. In this sense the "event of divisibility by q_{1} " and the "event of divisibility by q_{2} " are independent on the set of natural numbers if and only if q_{1} and q_{2} are coprime.

However, it should be noted that $D(A)$ is not a probability measure since it is not countably additive [2]; so this is not true statistical independence.

Suppose instead we restrict to a finite set $\mathbb{S}_{N}=\{1, \ldots, N\}$, where N is a natural number, with the uniform probability measure. We can analogously define $A_{q_{i}}$ to be the event that a number selected from \mathbb{S}_{N} is divisible by q_{i}. Now which events $A_{q_{1}}$ and $A_{q_{2}}$ are independent? This is more complicated to answer since we have the additional parameter N. As a simple illustration, consider the events A_{2} and A_{3}. It is a straightforward computation to show these events are not independent on \mathbb{S}_{10}, even though 2 and 3 are coprime, but are independent on \mathbb{S}_{12}.

As another illustration if $N=24, P\left(A_{3}\right)=8 / 24, P\left(A_{5}\right)=4 / 24$ and $P\left(A_{3} \cap\right.$ $\left.A_{5}\right)=P\left(A_{15}\right)=1 / 24 \neq 8 / 24 \cdot 4 / 24$. So once again being coprime is not sufficient but it is, as we shall see, necessary. Clearly the cardinality of the set, N, plays a role. Perhaps we should require q_{1} and q_{2} to be coprime factors of N. This is in fact not necessary. For example, if we keep $N=24$ but consider A_{3} and A_{7} then $P\left(A_{3}\right)=8 / 24, P\left(A_{7}\right)=3 / 24$ and $P\left(A_{3} \cap A_{7}\right)=P\left(A_{21}\right)=1 / 24=8 / 24 \cdot 3 / 24$ so these two events are independent.

Define $A_{q_{1}}$ and $A_{q_{2}}$ to be an independent divisibility pair on \mathbb{S}_{N} if $P\left(A_{q_{1}}\right) P\left(A_{q_{2}}\right)=$ $P\left(A_{q_{1}} \cap A_{q_{2}}\right)$ where $P(\cdot)$ is the uniform distribution on \mathbb{S}_{N}. Theorem 2.1 gives the necessary and sufficient conditions on N, q_{1} and q_{2} for $A_{q_{1}}$ and $A_{q_{2}}$ to be an independent divisibility pair on \mathbb{S}_{N}.

With the conditions for independence known, it is possible to consider various supplementary questions. If we fix q_{1} and q_{2}, for which N are the events $A_{q_{1}}$ and $A_{q_{2}}$ an independent divisibility pair on \mathbb{S}_{N} ? If instead we fix N, which pairs $\left(A_{q_{1}}, A_{q_{2}}\right)$ are an independent divisibility pair on \mathbb{S}_{N} ? These questions are examined in Sections 3 and 4 respectively. In Section 5, we analyze the question of characterizing those N which possess a specified number of independent divisibility pairs. In particular, we prove that if N is the product of a Sophie Germain prime and its corresponding safe prime then there is a unique independent divisibility pair given by these two primes. We conclude in Section 6 with some conjectures and generalizations.

2. The Necessary and Sufficient Conditions for $A_{q_{1}}$ and $A_{q_{2}}$ to be Independent on \mathbb{S}_{N}

Theorem 2.1. Let N be a natural number and $\mathbb{S}_{N}=\{1, \ldots, N\}$. Let q_{1} and q_{2} be two natural numbers, with $1<q_{1}<q_{2}<N$, and let $A_{q_{i}}$ be the event that a number selected from \mathbb{S}_{N} is divisible by q_{i}. The events $A_{q_{1}}$ and $A_{q_{2}}$ are independent on \mathbb{S}_{N} if and only if q_{1} and q_{2} are coprime and

$$
\begin{equation*}
N=t q_{1} q_{2}+r_{1} q_{1}=q_{1}\left(t q_{2}+r_{1}\right) \tag{1}
\end{equation*}
$$

with t a natural number and r_{1} a non-negative integer such that $r_{1} q_{1}<q_{2}$.

Proof. Assume q_{1} and q_{2} are coprime and satisfy (1). It is straightforward to compute the respective probabilities for $A_{q_{1}}, A_{q_{2}}$ and the intersection:

$$
\begin{gathered}
P\left(A_{q_{1}}\right)=\frac{t q_{2}+r_{1}}{N}=\frac{1}{q_{1}}, \quad P\left(A_{q_{2}}\right)=\frac{t q_{1}}{N}=\frac{t}{t q_{2}+r_{1}} \\
P\left(A_{q_{1}} \cap A_{q_{2}}\right)=P\left(A_{q_{1} q_{2}}\right)=\frac{t}{N}=\frac{t}{q_{1}\left(t q_{2}+r_{1}\right)}
\end{gathered}
$$

confirming they are indeed independent.
Now assume $1<q_{1}<q_{2}<N, A_{q_{1}}$ and $A_{q_{2}}$ are independent on \mathbb{S}_{N} and $N \geq \operatorname{lcm}\left(q_{1}, q_{2}\right)$, the least common multiple of q_{1} and q_{2}. (If $q_{2}<N<\operatorname{lcm}\left(q_{1}, q_{2}\right)$ then the intersection event is empty. So $P\left(A_{q_{1}}\right) P\left(A_{q_{2}}\right) \neq P\left(A_{q_{1}} \cap A_{q_{2}}\right)$ since the left-hand side is nonzero whereas the right-hand side is zero. If $q_{1}<N<q_{2}$ then $A_{q_{2}}$ is empty, so the events $A_{q_{1}}$ and $A_{q_{2}}$ are degenerately independent but the conditions on q_{1}, q_{2} and N have been violated.) By the definition of independence,

$$
\begin{equation*}
\left\lfloor\frac{N}{q_{1}}\right\rfloor \cdot\left\lfloor\frac{N}{q_{2}}\right\rfloor=N \cdot\left\lfloor\frac{N}{\operatorname{lcm}\left(q_{1}, q_{2}\right)}\right\rfloor \tag{2}
\end{equation*}
$$

If we suppose $2 \leq \operatorname{gcd}\left(q_{1}, q_{2}\right)$, the greatest common divisor of q_{1} and q_{2}, then

$$
\left\lfloor\frac{N}{q_{1}}\right\rfloor \cdot\left\lfloor\frac{N}{q_{2}}\right\rfloor \leq \frac{N}{q_{1}} \cdot \frac{N}{q_{2}}=N \cdot \frac{N}{q_{1} q_{2}}<N \cdot\left\lfloor\frac{N \operatorname{gcd}\left(q_{1}, q_{2}\right)}{q_{1} q_{2}}\right\rfloor=N \cdot\left\lfloor\frac{N}{\operatorname{lcm}\left(q_{1}, q_{2}\right)}\right\rfloor
$$

which contradicts (2), so q_{1} and q_{2} must be coprime. Hence $\operatorname{lcm}\left(q_{1}, q_{2}\right)=q_{1} q_{2}$ and (2) becomes

$$
\begin{equation*}
\left\lfloor\frac{N}{q_{1}}\right\rfloor \cdot\left\lfloor\frac{N}{q_{2}}\right\rfloor=N \cdot\left\lfloor\frac{N}{q_{1} q_{2}}\right\rfloor \tag{3}
\end{equation*}
$$

We may assume $N=t\left(q_{1} q_{2}\right)+r$ where $t \geq 1$ and $0 \leq r<q_{1} q_{2}$, and also $r=r_{1} q_{1}+s_{1}$ or $r=r_{2} q_{2}+s_{2}$ with $r_{1}, r_{2} \geq 0,0 \leq s_{1}<q_{1}, 0 \leq s_{2}<q_{2}$. Then (3) gives

$$
\left(t q_{2}+r_{1}\right) \cdot\left(t q_{1}+r_{2}\right)=\left(t\left(q_{1} q_{2}\right)+r\right) \cdot t
$$

which can be simplified to

$$
\begin{equation*}
r_{2}\left(t q_{2}+r_{1}\right)=t s_{1} \tag{4}
\end{equation*}
$$

Now if $r_{2} \geq 1$, then $r_{2}\left(t q_{2}+r_{1}\right) \geq t q_{2}>t q_{1}>t s_{1}$ giving a contradiction to (4), so $r_{2}=0$. Hence, from (4), $s_{1}=0$, and thus, $r=r_{1} q_{1}=s_{2}<q_{2}$. So $N=t\left(q_{1} q_{2}\right)+r_{1} q_{1}$ where $t \geq 1$ and $0 \leq r_{1} q_{1}<q_{2}$ as required.

It should be noted that Theorem 2.1 is a special case of Theorem 1 in [4]. Their requirement that N is composite is clearly true here but we expect a more restrictive condition since we have very specific events.

Observe (1) is satisfied if N is a multiple of two coprime numbers q_{1} and q_{2}. However N need only be a multiple of the smaller number q_{1}, not the larger q_{2}. Conversely, if q_{1} is not a divisor of N the events $A_{q_{1}}$ and $A_{q_{2}}$ are dependent on \mathbb{S}_{N}.

3. The Natural Density Measure of Independent $A_{q_{1}}$ and $A_{q_{2}}$

Recall A_{2} and A_{3} are independent on \mathbb{S}_{N} if $N=12$ but not if $N=10$. In fact, given Theorem 2.1, it is clear A_{2} and A_{3} are independent on \mathbb{S}_{N} if and only if $N \equiv 0$ or $2 \bmod 6$. That is, "one third of the time they are independent" and "two thirds of the time they are dependent." More precisely if we define $I_{q_{1}, q_{2}}=$ $\left\{N: A_{q_{1}}, A_{q_{2}}\right.$ are independent on $\left.\mathbb{S}_{N}\right\}$ then,

$$
D\left(I_{2,3}\right)=\lim _{n \rightarrow \infty} \frac{\left|I_{2,3} \cap\{1,2, \ldots, n\}\right|}{n}=\frac{1}{3}
$$

Below are two more examples using Theorem 2.1.
Example 3.1. If $q_{1}=5$ and $q_{2}=53$ then the events A_{5} and A_{53} are independent on \mathbb{S}_{N} if and only if $N \equiv 0,5,10, \ldots, 50 \bmod 265$. So $D\left(I_{5,53}\right)=11 / 265 \approx 0.0415$.

Example 3.2. If $q_{1}=7$ and $q_{2}=510$ then the events A_{7} and A_{510} are independent on \mathbb{S}_{N} if and only if $N \equiv 0,7,14, \ldots, 504 \bmod 3570$. So $D\left(I_{7,510}\right)=73 / 3570 \approx$ 0.020448 .

In general, for q_{1} and q_{2} coprime, if $q_{2}=p q_{1}+r, 1 \leq r \leq q_{1}-1$, then the events $A_{q_{1}}$ and $A_{q_{2}}$ are independent on \mathbb{S}_{N} if and only if $N \equiv 0, q_{1}, 2 q_{1}, \ldots, p q_{1} \bmod q_{1} q_{2}$. So $D\left(I_{q_{1}, q_{2}}\right)=(p+1) /\left(q_{1} q_{2}\right)$. Using the inequalities,

$$
\begin{aligned}
0 & <\frac{1}{q_{1}^{2}}<\frac{1}{q_{1}\left(q_{1}-\frac{1}{p+1}\right)}=\frac{p+1}{q_{1}\left((p+1) q_{1}-1\right)} \leq \frac{p+1}{q_{1} q_{2}} \\
& =\frac{p+1}{q_{1}\left(p q_{1}+r\right)} \leq \frac{p+1}{q_{1}\left(p q_{1}+1\right)} \leq \frac{2}{q_{1}\left(q_{1}+1\right)} \leq \frac{1}{3}
\end{aligned}
$$

we can construct a table of intervals for possible values of $D\left(I_{q_{1}, q_{2}}\right)$:

q_{1}	2	3	4	5	6	7	q_{1}
$D\left(I_{q_{1}, q_{2}}\right)$	$\left(\frac{1}{4}, \frac{1}{3}\right]$	$\left(\frac{1}{9}, \frac{1}{6}\right]$	$\left(\frac{1}{16}, \frac{1}{10}\right]$	$\left(\frac{1}{25}, \frac{1}{15}\right]$	$\left(\frac{1}{36}, \frac{1}{21}\right]$	$\left(\frac{1}{49}, \frac{1}{28}\right]$	$\left(\frac{1}{q_{1}^{2}}, \frac{2}{q_{1}\left(q_{1}+1\right)}\right]$

If we fix q_{1} and let q_{2} get large, then p gets large, and we approach from above the left-hand end point of the interval, $1 / q_{1}^{2}$.

Conversely, for $q_{2}=q_{1}+1$ we have $p=1, r=1$ and the density becomes $\frac{2}{q_{1}\left(q_{1}+1\right)}$, with the maximum value of $\frac{1}{3}$ occurring when $q_{1}=2$. So consecutive pairs have the more explicit table of densities:

$\left(q_{1}, q_{2}\right)$	$(2,3)$	$(3,4)$	$(4,5)$	$(5,6)$	$(6,7)$	$(7,8)$	$\left(q_{1}, q_{1}+1\right)$
$D\left(I_{q_{1}, q_{2}}\right)$	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{10}$	$\frac{1}{15}$	$\frac{1}{21}$	$\frac{1}{28}$	$\frac{2}{q_{1}\left(q_{1}+1\right)}$

In both tables these densities are larger than one would intuitively expect. For the latter it appears to be double, and for the former the density is always larger than $1 / q_{1}^{2}$.

4. The Independent Divisibility Pairs on \mathbb{S}_{N} for a Particular N

If we choose a particular N, then which events $A_{q_{1}}$ and $A_{q_{2}}$ are an independent divisibility pair on \mathbb{S}_{N} ? Equivalently, for which pairs of coprime natural numbers q_{1}, q_{2} do N, q_{1} and q_{2} satisfy (1)?

Since $N=q_{1}\left(t q_{2}+r\right)$ and $r \geq 0$, we have $q_{2} \leq \frac{N}{q_{1} t}$. Now $r q_{1}<q_{2}$ so $N<$ $q_{1} t q_{2}+q_{2}$, hence $q_{2}>\frac{N}{q_{1} t+1}$. Thus, bounds for q_{2} in terms of N, t and q_{1} are:

$$
\begin{equation*}
\frac{N}{q_{1} t+1}<q_{2} \leq \frac{N}{q_{1} t} \tag{5}
\end{equation*}
$$

As $N=q_{1}\left(t q_{2}+r\right)$ and $q_{2} \geq q_{1}+1, t=\frac{1}{q_{2}}\left(\frac{N}{q_{1}}-r\right) \leq \frac{N}{q_{1}\left(q_{1}+1\right)}$, so bounds for t are:

$$
\begin{equation*}
1 \leq t \leq \frac{N}{q_{1}\left(q_{1}+1\right)} \tag{6}
\end{equation*}
$$

Also, $N \geq q_{1}\left(q_{1}+1\right)$ and consequently $q_{1} \leq \frac{\sqrt{4 N+1}-1}{2}$. Hence the bounds on q_{1}, a factor of N, are:

$$
\begin{equation*}
2 \leq q_{1} \leq \frac{\sqrt{4 N+1}-1}{2} \tag{7}
\end{equation*}
$$

Definition 4.1. Define $\left(q_{1}, q_{2}\right)$ to be a valid pair on N if q_{1}, q_{2} and N are natural numbers satisfying (1) and its conditions.

If $\left(q_{1}, q_{2}\right)$ is a valid pair on N then the events $A_{q_{1}}$ and $A_{q_{2}}$ are an independent divisibility pair on \mathbb{S}_{N}.

Example 4.2. When $N=24$ there are 8 valid pairs: $(2,3),(2,5),(2,9),(2,11)$, $(3,4),(3,7),(3,8)$ and $(4,5)$.

The bounds (5), (6), and (7) enable us to write an algorithm that can be used to generate all possible valid pairs for a particular N. Start at $q_{1}=2$ and proceed through all possible values for q_{1} given by (7). For each q_{1} check if it is a factor of N. If so, use (6) to compute the range of values for t and (5) to compute the range of values for potential q_{2}. Now just increment through all these potential q_{2} 's and at each stage check if the potential q_{2} is coprime to q_{1}. If so then this value for q_{2} would make $\left(q_{1}, q_{2}\right)$ a valid pair on N.

Figure 1 has some annotated lines of pseudocode showing this algorithm.
Definition 4.3. Define the function $v(N)$ to be the number of valid pairs on N.
The algorithm in Figure 1 can be used to determine the values of $v(N)$. Figure 2 has a table listing N and $v(N)$ for $N \leq 100$.

```
Input N
count=0;
for q1=2 to ( }\sqrt{}{4*N+1}-1)/2,\quad%\mathrm{ from (7)
    if N mod q1 == 0, % check q1 is a factor of N
        for t=1 to N/(q1*(q1+1)), % from (6)
        for potentialq2 = ceiling(N/(t*q1+1)) to N/(t*q1), % from (5)
        if gcd(q1,potentialq2) == 1, % check q1, q2 coprime
            print(q1,potentialq2), count++ % if so then valid pair
return(count)
    % number of valid pairs
```

Figure 1: Pseudocode to generate all valid pairs on N.

5. Bounds on $v(N)$ and the Characterization of those N with $v(N)<5$

If we allow q_{1}, q_{2} and N to vary, is there a characterization for those N with a particular number of valid pairs? Can we characterize those N for which $v(N)=$ 0 or 1 for example? To begin we will give some simple bounds for $v(N)$.

Theorem 5.1. Let $N=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{r}^{n_{r}}$ be the prime decomposition of N and $v(N)$ be the number of valid pairs on N. Then upper and lower bounds for $v(N)$ are respectively,

$$
\begin{equation*}
v(N)<\frac{N \ln N}{2} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
v(N) \geq \frac{\left[\left(2 n_{1}+1\right) \ldots\left(2 n_{r}+1\right)\right]-2\left[\left(n_{1}+1\right) \ldots\left(n_{r}+1\right)\right]+1}{2} \tag{9}
\end{equation*}
$$

Proof. From (1) we have $q_{2}=\frac{\left(N / q_{1}\right)-r_{1}}{t}$. But $t \geq 1$ and $r_{1} \geq 0$, so $q_{1}<q_{2} \leq$ N / q_{1} and hence, for a given factor q_{1} of N, the maximum number of valid q_{2} 's is $\left(N / q_{1}\right)-q_{1}$. Since q_{1} is a factor of N between 2 and $\lfloor\sqrt{N}\rfloor$, we have

$$
v(N)<\sum_{q_{1}=2}^{\lfloor\sqrt{N}\rfloor}\left(\frac{N}{q_{1}}-q_{1}\right)<\sum_{q_{1}=2}^{\lfloor\sqrt{N}\rfloor} \frac{N}{q_{1}}<N \ln (\sqrt{N})=\frac{N \ln N}{2}
$$

If we consider (1) and fix $r_{1}=0$, the number of choices for coprime factors q_{1} and q_{2}, with $1<q_{1}<q_{2}$, will clearly give a lower bound for $v(N)$.

We can view this counting problem in terms of boxes and colored balls instead of factors and primes as follows: the two coprime values q_{1} and q_{2} correspond to two different boxes and the r distinct primes correspond to r different colors with n_{i} balls of color $i, i=1, \ldots, r$. We now employ the inclusion-exclusion principle.

The q_{i} are coprime factors of N so we do not need to use all the balls, but we cannot have the same colored ball in both boxes. For each color, i, there are

N	$v(N)$								
1	0	21	1	41	0	61	0	81	5
2	0	22	3	42	13	62	12	82	11
3	0	23	0	43	0	63	10	83	0
4	0	24	8	44	12	64	11	84	32
5	0	25	0	45	6	65	4	85	3
6	1	26	4	46	6	66	17	86	13
7	0	27	3	47	0	67	0	87	10
8	1	28	4	48	16	68	12	88	17
9	0	29	0	49	0	69	7	89	0
10	1	30	10	50	9	70	17	90	35
11	0	31	0	51	6	71	0	91	2
12	3	32	7	52	9	72	25	92	20
13	0	33	3	53	0	73	0	93	8
14	3	34	5	54	14	74	14	94	15
15	2	35	2	55	1	75	12	95	6
16	1	36	9	56	12	76	14	96	29
17	0	37	0	57	3	77	2	97	0
18	4	38	6	58	8	78	21	98	17
19	0	39	4	59	0	79	0	99	13
20	5	40	9	60	25	80	21	100	21

Figure 2: Values of $v(N)$ for $N \leq 100$
$\left(2 n_{i}+1\right)$ ways to place some or none of the i colored balls into the two boxes. Hence for all r colors we have $\left(2 n_{1}+1\right) \ldots\left(2 n_{r}+1\right)$ total possibilities.

However, we cannot have an empty box, since neither q_{1} nor q_{2} can be 1 ; so we need to remove these possibilities from the above total. These situations correspond to putting the balls into only one box rather than two. Consequently, each color has $\left(n_{i}+1\right)$ choices, and for all colors there are $\left(n_{1}+1\right) \ldots\left(n_{r}+1\right)$ possibilities. Now observe that either the q_{1} box or the q_{2} box could be empty, so multiply this latter number by 2 . However, the case where both boxes are simultaneously empty has now been counted once but excluded twice, hence correct this by adding back one possibility.

Finally, only half the remaining pairs satisfy the requirement $q_{1}<q_{2}$, so we divide the expression by two.

The next two theorems give relatively simple characterizations for those N with exactly zero, one, two, three or four valid pairs.

Theorem 5.2. N has no valid pairs, that is $v(N)=0$, if and only if N is a prime or the square of a prime.

Proof. It is clear that if N is prime then it is impossible to decompose N in the form specified by (1). (In fact it is known that the set \mathbb{S}_{N} is a dependent set, so it has no independent events whatsoever [4].) If N has at least two distinct prime factors, then choose these as q_{1} and q_{2}. With $r_{1}=0$ and $t=N /\left(q_{1} q_{2}\right)$ equation (1) is satisfied demonstrating there is at least one valid pair. Consequently the only remaining cases are powers of a single prime. If $N=p^{n}, n \geq 3$, choose $q_{1}=p$ and $q_{2}=p^{(n-1)}-1$, then q_{1} and q_{2} are coprime with $q_{1}<q_{2}$ and $N=q_{1} q_{2}+q_{1}$. However, if $N=p^{2}$, where p is prime, we must have $q_{1}=p$ in which case it is impossible to choose q_{2} satisfying $q_{2}>q_{1}$ and $q_{1} q_{2} \leq N$ simultaneously.

Once again this is more restrictive than the general situation. It is known that if N is prime then \mathbb{S}_{N} is a dependent set and any two events are dependent. However, if N is the square of a prime, it is possible to have independent events. For example, if $N=9$ there are no independent sets of our divisibility type, but $A=\{1,3,5\}$ and $B=\{5,7,9\}$ are clearly independent.

Theorem 5.3. Let $v(N)$ denote the number of valid pairs on N. Then
(a) $v(N)=1$ if and only if $N=6=2 \cdot 3, N=8=2^{3}, N=16=2^{4}$ or $N=p_{1} p_{2}$, with p_{1}, p_{2} prime and $p_{2}=2 p_{1}+1$. The unique valid pair is $(2,3)$, $(2,3),(2,7)$ and $\left(p_{1}, 2 p_{1}+1\right)$ respectively.
(b) $v(N)=2$ if and only if $N=p_{1} p_{2}$ with p_{1}, p_{2} prime, $2<p_{1}$, and $p_{1}+2 \leq$ $p_{2} \leq 2 p_{1}-1$.
(c) $v(N)=3$ if and only if $N=12=2^{2} \cdot 3, N=14=2 \cdot 7, N=22=2 \cdot 11$, $N=27=3^{3}, N=57=3 \cdot 19, N=p_{1} p_{2}$ with p_{1}, p_{2} prime and $p_{2}=3 p_{1}+2$, or $N=p_{1} p_{2}$ with p_{1}, p_{2} prime and $p_{2}=4 p_{1}+1, p_{1} \geq 5$.
(d) $v(N)=4$ if and only if $N=18=2 \cdot 3^{2}, N=26=2 \cdot 13, N=28=2^{2} \cdot 7$, $N=39=3 \cdot 13, N=p_{1} p_{2}$ with p_{1}, p_{2} prime, $p_{1} \geq 5,2 p_{1}+3 \leq p_{2} \leq 3 p_{1}-2$, or $N=p_{1} p_{2}$ with p_{1}, p_{2} prime, $p_{1} \geq 5, p_{2}=4 p_{1}+3$, with $2 p_{1}+1$ not divisible by 3 .

Proof. If N is the product of at least three distinct prime factors, then (9) gives $v(N) \geq 6$. Hence, we can restrict to N having one or two distinct prime factors.

If $N=p^{n}$, from Theorem $5.2, n \geq 3$ in which case $\left(p, p^{n-1}-c\right), 1 \leq c \leq p-1$ are valid pairs. So we need only consider $p \leq 5$. If $p=5$, then $\left(5,5^{n-1}-1\right)$, $\left(5,5^{n-1}-2\right),\left(5,5^{n-1}-3\right),\left(5,5^{n-1}-4\right)$, and $\left(5, \frac{5^{n-1}-1}{2}\right)$ are five valid pairs. If $p=3$, then $\left(3,3^{n-1}-1\right),\left(3,3^{n-1}-2\right),\left(3,3^{n-1}-4\right),\left(3,3^{n-1}-5\right)$, and $\left(3,3^{n-1}-7\right)$ are five valid pairs if $n \geq 5$. For $N=3^{3}=27$ and $N=3^{4}=81$ there are three and five valid pairs respectively (see Figure 2). If $p=2$, then $\left(2,2^{n-1}-1\right),\left(2,2^{n-1}-3\right)$, $\left(2,2^{n-1}-5\right),\left(2,2^{n-1}-7\right)$, and $\left(2,2^{n-1}-9\right)$ are five valid pairs if $n \geq 6$. It is easy to check that $(2,3)$ and $(2,7)$ are the unique valid pair for $N=2^{3}=8$ and $N=2^{4}=16$ respectively. The case $N=2^{5}=32$ has seven valid pairs (see Figure 2).

If $N=p_{1}^{n_{1}} p_{2}^{n_{2}}, n_{1}, n_{2} \geq 1$, from (9) $v(N) \geq n_{1} n_{2}$. In particular there are the $n_{1} n_{2}$ valid pairs given by $\left(p_{1}^{a}, p_{2}^{b}\right)$ (possibly in reverse order) where $1 \leq a \leq n_{1}$,
$1 \leq b \leq n_{2}$. So we need only consider when $n_{1} n_{2} \leq 4$.
In the cases $\left(n_{1}, n_{2}\right)=(2,2),\left(n_{1}, n_{2}\right)=(4,1)$, and $\left(n_{1}, n_{2}\right)=(1,4)$ a fifth valid pair is given by $\left(p_{1}, p_{1} p_{2}^{2}-1\right),\left(p_{1}, p_{1}^{3} p_{2}-1\right)$, and $\left(p_{2}, p_{1} p_{2}^{3}-1\right)$ respectively.

If $\left(n_{1}, n_{2}\right)=(3,1)$, then $\left(p_{1}, p_{1}^{2} p_{2}-1\right)$ and $\left(p_{1}, p_{1} p_{2}-1\right)$ give two additional valid pairs whereas for $\left(n_{1}, n_{2}\right)=(1,3)$ they are $\left(p_{2}, p_{1} p_{2}^{2}-1\right)$ and $\left(p_{2}, p_{2}^{2}-1\right)$.

If $\left(n_{1}, n_{2}\right)=(2,1)$, then $\left(p_{1}, p_{1} p_{2}-c\right)$, with $1 \leq c \leq p_{1}-1$ are valid pairs. So there are at least four additional pairs if $p_{1} \geq 5$. If $p_{1}=3$, then $\left(3,3 p_{2}-1\right)$, $\left(3,3 p_{2}-2\right)$, and $\left(3, \frac{3 p_{2}-1}{2}\right)$ are three additional valid pairs. If $p_{1}=2$, then $\left(2,2 p_{2}-1\right)$, $\left(2,2 p_{2}-3\right)$, and $\left(2,2 p_{2}-5\right)$ are three additional valid pairs if $p_{2} \geq 11$. This leaves $N=2^{2} \cdot 3=12, N=2^{2} \cdot 5=20$ and $N=2^{2} \cdot 7=28$ which have 3,5 , and 4 valid pairs respectively (see Figure 2).

If $\left(n_{1}, n_{2}\right)=(1,2)$, then $\left(p_{2}, p_{1} p_{2}-c\right), 1 \leq c \leq p_{1}-1$ are valid pairs. Hence there are at least four additional pairs if $p_{1} \geq 5$. If $p_{1}=3$, then $\left(p_{2}, 3 p_{2}-1\right),\left(p_{2}, 3 p_{2}-2\right)$, and $\left(p_{2}, \frac{3 p_{2}-1}{2}\right)$ are three additional valid pairs. If $p_{1}=2$, then $\left(2, p_{2}^{2}-2\right),\left(2, p_{2}^{2}-4\right)$, and $\left(2, p_{2}^{2}-6\right)$ are three additional valid pairs if $p_{2} \geq 5$. For $N=2 \cdot 3^{2}=18$ there are 4 valid pairs (see Figure 2).

Hence we are reduced to the case where N is the product of two primes p_{1} and p_{2}. First suppose that $p_{1}=2$ so $N=2 p_{2}$. Here $\left(2, p_{2}\right),\left(2, p_{2}-2\right),\left(2, p_{2}-4\right)$, $\left(2, p_{2}-6\right)$, and $\left(2, p_{2}-8\right)$ are valid pairs if $p_{2}>24$. So we are left with $p_{2}=3,5,7$, $11,13,17,19$, and 23 . These have $1,1,3,3,4,5,6$, and 6 valid pairs respectively (see Figure 2). Now suppose $p_{1}=3$, so $N=3 p_{2}$. In this case ($3, p_{2}$) together with four of $\left(3, p_{2}-1\right),\left(3, p_{2}-2\right),\left(3, p_{2}-3\right),\left(3, p_{2}-4\right),\left(3, p_{2}-5\right)$ and $\left(3, p_{2}-6\right)$ are valid pairs provided $p_{2}>24$. This leaves $p_{2}=5,7,11,13,17,19$ and 23 . These have $2,1,3,4,6,3$ and 7 valid pairs respectively (see Figure 2).

Finally, assume $p_{1} \geq 5$. So p_{1} and p_{2} are odd primes, $p_{2} \neq c\left(p_{1}+1\right), p_{2} \neq c p_{1}$ and at most one of $p_{2}-1, p_{2}-2, p_{2}-3, p_{2}-4$ and $p_{2}-5$ is a multiple of p_{1}. Now suppose that $\left(p_{1}, q_{3}\right)$ is a valid pair on $N=p_{1} p_{2}$ and $\left(p_{1}, q_{3}\right) \neq\left(p_{1}, p_{2}\right)$. Then we must have $p_{2}=t q_{3}+r$ with $r \geq 1, t \geq 1, q_{3}$ coprime to p_{1}, and $q_{3}>r p_{1}$. Hence $q_{3}=\frac{p_{2}-r}{t}$ and $p_{2}>\operatorname{tr} p_{1}+r$. So restrictions on the value of p_{2} will generate restrictions on the possible values of r and t, which in turn give restrictions on the possible forms for q_{3}, and hence the possible valid pairs. Consequently, we have the following:

If $p_{2}>5\left(p_{1}+1\right)$, at least five of $\left(p_{1}, p_{2}\right),\left(p_{1}, p_{2}-1\right),\left(p_{1},\left(p_{2}-1\right) / 2\right),\left(p_{1}, p_{2}-2\right)$, $\left(p_{1}, p_{2}-3\right),\left(p_{1}, p_{2}-4\right)$, and $\left(p_{1}, p_{2}-5\right)$ are valid pairs.

If $4\left(p_{1}+1\right)<p_{2}<5\left(p_{1}+1\right)$, then $p_{2}-1$ is coprime to p_{1}, so at least five of $\left(p_{1}, p_{2}\right),\left(p_{1}, p_{2}-1\right),\left(p_{1},\left(p_{2}-1\right) / 2\right),\left(p_{1}, p_{2}-2\right),\left(p_{1}, p_{2}-3\right)$, and $\left(p_{1}, p_{2}-4\right)$ are valid pairs.

If $p_{2}=4 p_{1}+3$, then $\left(p_{1}, p_{2}\right),\left(p_{1}, p_{2}-1\right),\left(p_{1},\left(p_{2}-1\right) / 2\right)$, and $\left(p_{1}, p_{2}-2\right)$ are valid pairs. If $2 p_{1}+1$ is divisible by 3 , then $\left(p_{1},\left(p_{2}-1\right) / 3\right)$ is a fifth valid pair.

If $p_{2}=4 p_{1}+1$, then $\left(p_{1}, p_{2}\right),\left(p_{1}, p_{2}-2\right)$, and $\left(p_{1}, p_{2}-3\right)$ are the only valid pairs.

If $3\left(p_{1}+1\right)<p_{2} \leq 4 p_{1}-1$, then $\left(p_{1}, p_{2}\right),\left(p_{1}, p_{2}-1\right),\left(p_{1},\left(p_{2}-1\right) / 2\right),\left(p_{1}, p_{2}-2\right)$, and $\left(p_{1}, p_{2}-3\right)$ are valid pairs. If $2 p_{1}-1$ is divisible by 3 , then $\left(p_{1},\left(p_{2}-1\right) / 3\right)$ is a sixth valid pair.

If $p_{2}=3 p_{1}+2$, then $\left(p_{1}, p_{2}\right),\left(p_{1}, p_{2}-1\right)$, and $\left(p_{1},\left(p_{2}-1\right) / 2\right)$ are the only valid pairs.

If $2 p_{1}+3 \leq p_{2} \leq 3 p_{1}-2$, then $\left(p_{1}, p_{2}\right),\left(p_{1}, p_{2}-1\right),\left(p_{1},\left(p_{2}-1\right) / 2\right)$, and $\left(p_{1}, p_{2}-2\right)$ are the only valid pairs.

If $p_{2}=2 p_{1}+1$, then $\left(p_{1}, p_{2}\right)$ is the only valid pair.
If $p_{1}+2 \leq p_{2} \leq 2 p_{1}-1$, then $\left(p_{1}, p_{2}\right)$ and $\left(p_{1}, p_{2}-1\right)$ are the only valid pairs.

6. Remarks, Conjectures, and Generalizations

Remark 6.1. Primes p such that $2 p+1$ is also prime are called Sophie Germain primes with $2 p+1$ called a safe prime. The numbers are listed in sequence A005384 in [6]. For more information see [7], [9], and [1]. It is interesting to note that the largest known Sophie Germain prime, found in April 2012, is 18543637900515 . $2^{666667}-1$ which has 200,701 digits. It is conjectured there are infinitely many such primes.

Remark 6.2. Primes p such that $3 p+2$ or $4 p+1$ are also prime do not appear to be named, but the numbers are listed in sequences A023208 and A023212 in [6]. (Primes of the form $(4 n+1)$ can be called Pythagorean, [6, A002144], since they correspond to the length of the hypotenuse of a right triangle with integer sides.) Figure 3 contains a table of all N values less than 50000 with exactly three valid pairs, together with the corresponding p_{1} and p_{2} values.

N	p_{1}	p_{2}	N	p_{1}	p_{2}	N	p_{1}	p_{2}
12	2	3	689	13	53	18023	67	269
14	2	7	901	17	53	18881	79	239
22	2	11	1121	19	59	20833	83	251
27	3	-	1633	23	71	21389	73	293
33	3	11	2581	29	89	23941	89	269
57	3	19	4181	37	113	25043	79	317
85	5	17	5513	37	149	28421	97	293
161	7	23	5633	43	131	32033	103	311
203	7	29	7439	43	173	37733	97	389
533	13	41	10561	59	179	48641	127	383

Figure 3: Values of $N<50000$ with $v(N)=3$

Given the lower bound, (9), it is clear that N exist for which $v(N)>M$ for any non-negative integer M.

Conjecture 6.3. N exist such that $v(N)=M$ for any non-negative integer M.
We have used Mathematica to confirm values of N for M up to 20,000.
Definition 6.4. Define the function $r(N)$ to be the ratio of the number of valid pairs on N to the value of N, that is, $r(N)=v(N) / N$.

Conjecture 6.5. For all N, the ratio of the number of valid pairs on N to the value of N itself is less than one half. That is, $r(N)<0.5$.

Note that the conjecture is equivalent to $v(N)<N / 2$, which is a better upper bound for $v(N)$ than (8). We can confirm this is true for $N \leq 1,000,000$ with the two largest values of $r(N)$ being 0.46317 and 0.465922 when $N=360360$ and $N=720720$ respectively. Figure 4 contains a table with some larger values of N.

N	Prime Factorization	$v(N)$	$r(N)$
360,360	$2^{3} \cdot 3^{2} \cdot 5.7 .11 .13$	166,908	0.46317
720,720	$2^{4} .3^{2} .5 .7 .11 .13$	335,799	0.465922
$12,252,240$	$2^{4} .3^{2} .5 .7 .11 .13 .17$	$5,782,591$	0.471962
$232,792,560$	$2^{4} .3^{2} .5 .7 .11 .13 .17 .19$	$111,124,547$	0.477354
$5,354,228,880$	$2^{4} .3^{2} .5 \cdot 7.11 .13 .17 .19 .23$	$2,576,614,559$	0.48123
$26,771,144,400$	$2^{4} .3^{2} .5^{2} .7 .11 .13 .17 .19 .23$	$12,955,084,847$	0.48392
$80,313,433,200$	$2^{4} .3^{3} .5^{2} .7 .11 .13 .17 .19 .23$	$39,012,925,759$	0.485758

Figure 4: Values of $r(N)$ for select N
These N values have the property that they are the smallest number containing all factors from 2 to m, where $m=15,16,18,22,24,26$ and 28 respectively. The next number in this sequence would be $N=2^{4} .3^{3} .5^{2} .7 .11 .13 .17 .19 .23 .29$, containing all factors from 2 to 30 . (These are the distinct entries in the integer sequence, A003418 [6], where a_{n} is the least common multiple of 1 up to n.)

Conjecture 6.6. The only values of N for which $r(N)>0.45$ are multiples of 420 , that is, have factors 2 through 7 inclusive.

Once again we can confirm this for $N \leq 1,000,000$.
Definition 6.7. Define the function $a(N)$ to be the average number of valid pairs from 1 up to N, that is, $a(N)=\frac{\sum_{i=1}^{N} v(i)}{N}$.

Figure 5 shows a plot of the values of $\frac{a(N)}{N}$ for $N \leq 1,000,000$.

Figure 5: Plot of $\frac{a(N)}{N}$

Conjecture 6.8. $a(N) \approx 0.072 N$ or $\sum_{i=1}^{N} v(i) \approx 0.072 N^{2}$.
Definition 6.9. Define the function $\rho(N)$ to be the average ratio from 1 up to N, that is, $\rho(N)=\frac{\sum_{i=1}^{N} r(i)}{N}$.

Figure 6 shows a plot of the values of $\rho(N)$ for $N \leq 1,000,000$. The black curve corresponds to a model of the form $a\left(\frac{\ln (N)}{N}\right)+b$. The green line on the graph corresponds to 0.143878 the value of b given by the model.

Figure 6: Plot of $\rho(N)$ and model $a\left(\frac{\ln (N)}{N}\right)+b$

Conjecture 6.10. The limiting value of $\rho(N)$ is between 0.14387 and 0.14389 .
Remark 6.11. Statistical independence is also defined for more than two events, $[3,8]$, so it is possible to generalize these ideas for more than two divisibility events. In the case of three divisibility events we have the analog of Theorem 2.1:

Theorem 6.12. Let N be a natural number and $\mathbb{S}_{N}=\{1, \ldots, N\}$. Let q_{1}, q_{2}, and q_{3} be three natural numbers, with $1<q_{1}<q_{2}<q_{3}<N$, and let $A_{q_{i}}$ be the event that a number selected from \mathbb{S}_{N} is divisible by q_{i}. The events $A_{q_{1}}, A_{q_{2}}$, and $A_{q_{3}}$ are independent on \mathbb{S}_{N} if and only if q_{1}, q_{2}, and q_{3} are coprime and

$$
N=t q_{1} q_{2} q_{3}+r_{1} q_{1} q_{2}=q_{1} q_{2}\left(t q_{3}+r_{1}\right),
$$

with t a natural number and r_{1} a non-negative integer such that $r_{1} q_{1} q_{2}<q_{3}$.
We can then consider the same questions as for pairs. The results, not surprisingly, are more complicated in this situation and are not presented here.

References

[1] Chris Caldwell, The Prime Pages, http://primes.utm.edu/
[2] Yung-Pin Chen, On Primes, Density Measures, and Statistical Independence, College Math. J. 36 (2005), 284-288.
[3] Kai Lai Chung, Elementary Probability Theory with Stochastic Processes, 3rd ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1979.
[4] Bennett Eisenberg and B. K. Ghosh, Independent Events in a Discrete Uniform Probability Space, Amer. Statist. 41 (1987), 52-56.
[5] Mark Kac, Statistical Independence in Probability, Analysis, and Number Theory, The Carus Mathematical Monographs, No. 12 (1959), The Mathematical Association of America.
[6] The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2010.
[7] James E. Pommersheim, Tim K. Marks and Erica L. Flapan, Number Theory, John Wiley \& Sons, 2010.
[8] Sheldon Ross, A First Course in Probability, 5th ed., Prentice Hall, 1998.
[9] Eric W. Weisstein, "Sophie Germain Prime." From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/SophieGermainPrime.html

