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Abstract
We consider a dynamical system generated by exponentiation modulo r, that is, by
the map u !→ fq(u), where fq(u) ≡ qu (mod r) and 0 ≤ fg(u) ≤ r− 1. The number
of cycles is estimated from above in the case when r = pn with a prime integer p
and gcd(q, p) = 1. Also a more general class of functions is considered.

1. Introduction and Formulation of Results

Given a number r ∈ N, we consider a dynamical system generated by exponentiation
modulo r, that is, by the map u !→ fq(u) where fq(u) ≡ qu (mod r) and 0 ≤ fq(u) ≤
r−1. In [2] the author with Igor Shparlinski considered the case when r is prime. We
gave some estimates for the number of 1−, 2−, 3−periodic points of f . We believe
that our estimates are very far from being strict (it seems that better estimates
are not known). But the strictness is not the main issue. The technique we use
does not work even for 4-periodic points. So, it is a challenging problem to prove
any nontrivial estimate for the number of k-periodic points with k ≥ 4. Maybe
one of the difficulties is that f is not an algebraic factor of qx: if, for example,
gcd(r,φ(r)) = 1 then one can choose a representative y ≡ x mod r such that qy

has any possible value modulo r. The situation with large gcd(r,φ(r)) may be more
tractable. In that case, instead of considering the function f , one may consider the
graph with the edges from x ∈ Zr = Z/rZ to all qy mod r, y ≡ x mod r. We
show that it works very well at least for r = pn with a prime p. Also, “additively
close” to qx functions are considered, see Corollary 5.

The main results of the present paper are Theorem 1, Theorem 2, and Theo-
rem 4. A weaker result than Theorem 2 is proved in the author’s preprint [1]. Then
independently, among other things, a result equivalent to Theorem 2 is established
in [3]. The authors of [3] use p-adic analysis and in the present article we use com-
binatorial methods. As it is shown in [3] the algebraic reason to consider a graph
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instead of a function is that f(x) = qx has the m-valued continuous extension on
p-adic numbers where m is the multiplicative order of q modulo p. The results
formulated in Theorem 1 and Theorem 4 do not appear in [3].

In what follows we suppose that gcd(q, p) = 1. Let Γp,n,q be a directed graph
with the set of vertices V (Γ) = Zpn = Z/pnZ and the set of edges E = {(x, qy
mod pn) | x ∈ Zpn , y ∈ Z, y ≡ x mod pn}.

Theorem 1. Let gcd(q, p) = gcd(g, p) = 1 and the multiplicative orders of q and g
modulo pn coincide. Then the graphs Γp,n,q and Γp,n,g are isomorphic.

Given a graph Γ, a sequence v1, v2, . . . , vk, vk+1 with vj ∈ V (Γ), (vj , vj+1) ∈
E(Γ), v1 = vk+1 is said to be a k-cycle (with initial vertex marked) in Γ. Let
Cp,n,q(k) be the number of k-cycles (with initial vertex marked) in Γp,n,q.

Theorem 2. Let m be the multiplicative order of q modulo p. Then Cp,n,q(k) = mk

and the out-degree of any edge of the graph Γp,n,q is m.

Corollary 3. The number of k-periodic points for f(x) ≡ qx mod pn, 0 ≤ f(x) <
pn, is less than mk where m is the multiplicative order of q modulo p.

The same technique is used to estimate the number of k-cyclic points in “additive
perturbations” of graph Γ. Precisely, let us define Γr

p,n,q as follows: the set of vertices
is V (Γ) = Zpn and the set of edges is E = {(x, qy + c mod pn) | x ∈ Zpn , y ∈
Z, y ≡ x mod pn, c = −r,−r + 1, . . . , r}. Let Cr

p,n,q(k) be the number of k-cycles
(with the initial vertex marked) in Γr

p,n,q.

Theorem 4. Cr
p,n,q(k) ≤ p+ 4krp[2(2r + 1)(p− 1)]k−1(n− 1).

So, Cr
p,n,q grows no more than linearly in n (but the number of all vertices grows

exponentially). Let us note that the estimate may be nontrivial even for r > p.
For example, if k is fixed, p > 2, r ∼ pεn, and ε < 1/k, then the estimate of the
Theorem is nontrivial for large enough n.

Corollary 5. Let f : Zpn → Zpn be such that f(x) ≡ qx + g(x) mod pn, where
g : Zpn → {−r, . . . , r}. Then the number of k-periodic points of f is less than
p+ 4krp[2(2r + 1)(p− 1)]k−1(n− 1).

One could also consider other additive perturbations. For example, with E =
{(x, qy mod pn) | y ≡ x + j mod pn, j = −r, . . . , r}. But it gives nothing
new. Indeed, let Γr be the graph defined as V (Γr) = Zpn and E(Γr) = {(x, x + j
mod pn), j = −r, . . . , r}. Then both additive perturbations are composition of Γr

and Γp,n,q, but with the different order. It is clear that the order does not change
the number of cycles. The same is true for the composition Γr1 − Γp,n,q − Γr2

(two-sided additive perturbation).
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2. Proof of Theorem 2

In what follows we identify Zpn with {0, 1, 2, . . . , pn−1}. So, y = (x mod pn) often
means that y ≡ x mod pn and y ∈ {0, 1, . . . pn − 1}.

Lemma 6. Let A1, A2, ..., Ar be elements of an associative (not necessarily com-
mutative) ring A. Let M ∈ Matn×n(A),

M =





A1 A2 . . . An

A1 A2 . . . An
...

... . . .
...

A1 A2 . . . An




.

Then trace(Mk) = (A1 +A2 + · · ·+Ar)k.

Proof.

Mk =





1
1
...
1








(
A1 A2 . . . Ar

)





1
1
...
1









(k−1)

(
A1 A2 . . . Ar

)
=

(A1 +A2 + · · ·+Ar)
k−1





A1 A2 . . . An

A1 A2 . . . An
...

... . . .
...

A1 A2 . . . An




.

Lemma 7. Let An be the adjacency matrix of Γp,n,q. Then

1)

A1 =





0 a1 a2 . . . ap−1

0 a1 a2 . . . ap−1
...

...
... . . .

...
0 a1 a2 . . . ap−1





with ai ∈ {0, 1} and a1 + a2 · · ·+ ap−1 = m, where m is the multiplicative order of
q modulo p;

2) for n > 1 one has

An =





Bn
1 Bn

2 . . . Bn
p

Bn
1 Bn

2 . . . Bn
p

...
... . . .

...
Bn

1 Bn
2 . . . Bn

p




,

where Bn
j ∈ Matpn−1×pn−1({0, 1}) and Bn

1 +Bn
2 + ...+Bn

p = An−1.
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Proof. For Item 1 it suffices to note that qx modulo p takes m different values
and depends on x modulo p − 1 only (not on x modulo p). Let us prove Item
2. First of all we represent x ∈ Zpn = {0, 1, 2, . . . , pn − 1} as x = y + bpn−1,
where y ∈ {0, 1, . . . , pn−1 − 1} and b ∈ {0, 1, . . . , p − 1}. The block structure of
An corresponds to the above described representation, such that b’s are indexing
our blocks and y’s are indexing the elements inside the blocks. Let On(x) = {y ∈
Zpn | (x, y) ∈ E(Γp,n,q)}. Item 2 follows from the following facts

(i) On(x) is independent of blocks. That is On(x) = On(z) if x ≡ z mod pn−1.

(ii) Let ψ : Zpn → Zpn−1 be defined as ψ(x) ≡ x mod pn−1. Then for any y ∈
{0, 1, 2, . . . , pn−1 − 1} ψ defines a bijection On(y) ↔ On−1(y).

Fact i). To find qz mod pn it suffices to know z mod (p − 1)pn−1. Let Px =
{z ∈ Z(p−1)pn−1 | ∃a ∈ Z a ≡ z mod (p − 1)pn−1 and a ≡ x mod pn}. One has
that On(x) = {qz mod pn | z ∈ Px}. By Chinese Remainder Theorem Px = Py if
and only if x ≡ y mod pn−1.

Fact ii) Observe that pn ≡ 1 mod p − 1. So, On(y) = {qyqbpn
mod pn | b ∈

{0, 1, . . . , p − 2}} and On−1(y) = {qyqbpn−1
mod pn−1 | b ∈ {0, 1, . . . , p − 2}}.

Now, qbp
n−1 ≡ qbp

n

mod pn. Indeed, bpn−1 − bpn ≡ 0 mod (p − 1)pn−1. So,
On(y) = {qyqbpn−1

mod pn | b ∈ {0, 1, . . . , p − 2}}. It remains to prove that for
b1, b2 ∈ {0, 1, . . . , p− 2} the congruence

qb1p
n−1

≡ qb2p
n−1

mod pn−1 (1)

implies the congruence
qb1p

n−1

≡ qb2p
n−1

mod pn. (2)

Let q ≡ gr mod pn for primitive g. The first congruence is equivalent to (b1 −
b2)rpn−1 ≡ 0 mod (p− 1)pn−2. It implies (p− 1)|(b1− b2)r. So, (b1− b2)rpn−1 ≡ 0
mod (p− 1)pn−1 and the second congruence follows. Now, Fact (i) implies that all
block rows in An are equal. Fact (ii) implies that the sum of the blocks in the first
row is An−1.

Now it is easy to finish the proof of Theorem 2. Firstly, Cp,n,q(k) = trace((An)k).
Using Lemma 6, Lemma 7 and compatibility of the trace and multiplication with
the block structure we get

trace((An)
k) = trace((An−1)

k) = · · · = trace((A1)
k) = (a1 + a2 + · · ·+ ap−1)

k.

The second statement of the theorem is a simple consequence of Lemma 7.

3. Proof of Theorem 1

Adopting the notation of the previous section for different q, let On
q (x) = {y ∈

Zpn | (x, y) ∈ E(Γp,n,q)}.
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Lemma 8. Let M be the multiplicative order of q modulo pn. Let r be the greatest
r such that pr|M . Then the following statements are equivalent:

1) On
q (x1) ∩On

q (x2) ,= ∅;

2) x1 − x2 ≡ 0 mod pr;

3) On
q (x1) = On

q (x2).

Proof. 1)=⇒2). Let qy1 ≡ qy2 mod pn and xj ≡ yj mod pn, j = 1, 2. This implies
that y1 ≡ y2 mod M and x1 ≡ x2 mod pr.

2)=⇒3). The values of qx mod pn depend on x mod (p−1)pr. So, the implication
follows by the Chinese Reminder Theorem.

The last implication is trivial.

Under our conditions the multiplicative orders of q and g mod pk, k ≤ n, coin-
cide. So, we inductively construct isomorphisms hk : Zpk → Zpk of graphs Γp,k,q

and Γp,k,g. Let ψ : Zpk+1 → Zpk be the natural projection (as in the previous
section). We inductively keep the following properties:

1. hk is an isomorphism of Γp,k,q and Γp,k,g. In particular, it implies that hk is
a bijection.

2. The following diagram is commutative:

Zpk+1
hk+1 !!

ψ

""

Zpk+1

ψ

""
Zpk

hk !! Zpk

Trivially, h1 = id (the identity map) satisfies our hypothesis. Assume that hk is
constructed. Let x ∈ {0, 1, . . . , pk − 1} = Zpk . Since ψ and hk are bijections on
Ok(x), there is a unique hx

k+1 making the following diagram commute:

Ok+1
q (x)

hx
k+1!!

ψ

""

Ok+1
g (hk(x))

ψ

""
Ok

q (x)
hk !! Ok

g (hk(x))

Let X =
⋃

x∈Zpk
Ok+1

q (x) =
⋃

x∈Zpk+1
Ok+1

q (x) and Y =
⋃

x∈Zpk
Ok+1

g (x). Lemma 8

implies that Ok+1
q (x), x ∈ Zpk forms a partition of X and Ok+1

q (x1) = Ok+1
q (x2)

if and only if Ok+1
g (hk(x1)) = Ok+1

g (hk(x2)). So, the set of functions hx
k+1, x ∈
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Zpk , define bijection hk+1 : X → Y . By construction, the following diagram is
commutative:

X
hk+1 !!

ψ

""

Y

ψ

""
ψ(X)

hk !! ψ(Y )

So, we can define hk+1 : Zpk+1 \X → Zpk+1 \ Y making the corresponding diagram
commute. Taking into account that Ok+1(x) = Ok+1(ψ(x)) one can check that the
hk+1 constructed satisfies properties 1. and 2..

4. Proof of Theorem 4

For A,B ∈ Matd×d({0, 1}) we will write A / B if Ai,j = 1 implies Bi,j = 1.

Lemma 9. Let An be the adjacency matrix of Γ+r
p,n,q. Then

(1)

A1 /





1 1 1 . . . 1
1 1 1 . . . 1
...

...
... . . .

...
1 1 1 . . . 1




;

(2) for n > 1 one has

An /





Bn
1 Bn

2 . . . Bn
p

Bn
1 Bn

2 . . . Bn
p

...
... . . .

...
Bn

1 Bn
2 . . . Bn

p




+X, where Bn

j ∈ Mat
pn−1×pn−1

({0, 1}),

Bn
1 +Bn

2 + ...+Bn
p = An−1 and X ∈ Matpn×pn({0, 1}) with less then 2rp non-zero

columns;

(3) The number of 1s in a row of An is less than 2r(p− 1).

Proof. Item (1) is trivial. The proof of Item (2) proceeds in the same way as the one
of Lemma 7. As in Lemma 7 the block structure corresponds to the representation
x = y + bpn−1 with 0 ≤ y < pn−1 and b ∈ {0, 1, . . . , p− 1}. The neighborhood of a
vertex x in Γr

p,n,q is easy to construct using the neighborhood of x in Γp,n,q. So, let
On(x) = {y ∈ Zpn | (x, y) ∈ E(Γp,n,q)} and On

r (x) = {y ∈ Zpn | (x, y) ∈ E(Γr
p,n,q)}.

By definition of Γr
p,n,q one has that y+ bpn−1 ∈ On

r (x) if and only if (y+ bpn−1 + j
mod pn) ∈ On(x) for some j = −r, . . . , r. Observe that y + j = (y + j mod pn−1)
for r ≤ y < pn−1 − r. So, (y+ j mod pn−1) + bpn−1 = (y+ j + bpn−1 mod pn) for
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such y. It implies that

(Bn
0 +Bn

1 + · · ·+Bn
p−1)jy = (An−1)jy

for r ≤ y < pn−1 − r. (Recall that On(x) satisfies items (i) and (ii) of the proof of
Lemma 7.) So, there exist no more than 2r columns in each block where the equality
does not hold. Item (2) of the lemma follows. Item (3) holds since the number of
1s in a row x is |On

r (x)| but |On
r (x)| ≤ (2r + 1)|On(x)| = (2r + 1)(p− 1).

Now we are ready to prove Theorem 4. We have

Cr
p,n,q(k) = cn = trace(Ak

n) ≤ trace(Ak
n−1) +∆ = cn−1 +∆,

where ∆ is the sum of the traces of 2k−1 matrices Ps, each of them being a product
of k matrices containing X . Observe that trace(Ps) ≤ 2krp((2r + 1)(p − 1))k−1.
Indeed, this is the number of k-periodic paths such that at least one edge of a path
corresponds to the matrix X (X-edge). We have no more than 2rp ends of X-edges.
Starting counting from these vertices we get no more than 2rp((2r + 1)(p− 1))k−1

cycles. Counting cycles with initial points we get our estimate. Observe that c1 ≤ p
and, by induction, cn ≤ p+ 4krp(2(2r + 1)(p− 1))k−1(n− 1).
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