ON BOUNDS FOR TWO DAVENPORT-TYPE CONSTANTS

H. G. Grundman
Department of Mathematics, Bryn Mawr College, Bryn Mawr, Pennsylvania
grundman@brynmawr.edu
C. S. Owens
Department of Mathematics, Bryn Mawr College, Bryn Mawr, Pennsylvania
catherineowens90@gmail.com

Received: 6/17/12, Revised: 12/9/12, Accepted: 1/27/13, Published: 2/8/13

Abstract

Let G be an additive abelian group of finite order n and let A be a non-empty set of integers. The Davenport constant of G with weight $A, D_{A}(G)$, is the smallest $k \in \mathbb{Z}^{+}$such that for any sequence x_{1}, \ldots, x_{k} of elements in G, there exists a nonempty subsequence $x_{j_{1}}, \ldots, x_{j_{r}}$ and corresponding weights $a_{1}, \ldots, a_{r} \in A$ such that $\sum_{i=1}^{r} a_{i} x_{j_{i}}=0$. Similarly, $E_{A}(G)$ is the smallest positive integer k such that for any sequence x_{1}, \ldots, x_{k} of elements in G there exists a non-empty subsequence of exactly n terms, $x_{j_{1}}, \ldots, x_{j_{n}}$, and corresponding weights $a_{1}, \ldots, a_{n} \in A$ such that $\sum_{i=1}^{n} a_{i} x_{j_{i}}=0$. We consider these constants when $G=\mathbb{Z}_{n}$ and $A=\left\{b^{2} \mid b \in \mathbb{Z}_{n}^{*}\right\}$, proving lower bounds for each.

1. Introduction

Let G be an additive abelian group of finite order n. The Davenport constant of G, $D(G)$, is the smallest $k \in \mathbb{Z}^{+}$such that for any sequence x_{1}, \ldots, x_{k} of elements in G, there exists a non-empty subsequence $x_{j_{1}}, \ldots, x_{j_{r}}$ such that $\sum_{i=1}^{r} x_{j_{i}}=0$. Let A be a non-empty set of integers. The Davenport constant of G with weight A, $D_{A}(G)$, is the smallest $k \in \mathbb{Z}^{+}$such that for any sequence x_{1}, \ldots, x_{k} of elements in G, there exists a non-empty subsequence $x_{j_{1}}, \ldots, x_{j_{r}}$ and corresponding weights $a_{1}, \ldots, a_{r} \in A$ such that $\sum_{i=1}^{r} a_{i} x_{j_{i}}=0$. Similarly, $E_{A}(G)$ is the smallest positive integer k such that for any sequence x_{1}, \ldots, x_{k} of elements in G there exists a non-empty subsequence of exactly n terms, $x_{j_{1}}, \ldots, x_{j_{n}}$, and corresponding weights $a_{1}, \ldots, a_{n} \in A$ such that $\sum_{i=1}^{n} a_{i} x_{j_{i}}=0$.

In 2008, Adhikari, David, and Urroz [1] considered the case where G is \mathbb{Z}_{n}, the cyclic group of order n, and A is the set of quadratic residues modulo n,

$$
\begin{equation*}
A=A_{n}=\left\{b^{2} \mid b \in \mathbb{Z}_{n}^{*}\right\} \tag{1}
\end{equation*}
$$

proving a collection of bounds for each of these constants. Unfortunately, the first theorem in that paper holds only for odd integers. In this work, we provide some
counter-examples in the even case, then state and prove a corrected version of the theorem, explaining the error made in the original proof.

Fix $n \geq 2$, let $G=\mathbb{Z}_{n}$, and let $A=A_{n}$, as defined in (1). Let $\Omega(n)$ denote the number of prime factors of n counting multiplicity and let $\Omega_{o}(n)$ denote the number of odd prime factors of n counting multiplicity.

In [1, Theorem 1], it is claimed that

$$
\begin{equation*}
D_{A}\left(\mathbb{Z}_{n}\right) \geq 2 \Omega(n)+1 \quad \text { and } \quad E_{A}\left(\mathbb{Z}_{n}\right) \geq 2 \Omega(n)+n \tag{2}
\end{equation*}
$$

Theorem 1. The bounds in (2) are incorrect for even n. For example,

$$
\begin{array}{ll}
D_{A}\left(\mathbb{Z}_{2}\right)=2<3=2 \Omega(2)+1, & E_{A}\left(\mathbb{Z}_{2}\right)=3<4=2 \Omega(2)+n \\
D_{A}\left(\mathbb{Z}_{4}\right)=4<5=2 \Omega(2)+1, & E_{A}\left(\mathbb{Z}_{4}\right)=7<8=2 \Omega(2)+n, \\
D_{A}\left(\mathbb{Z}_{10}\right)=4<5=2 \Omega(2)+1, & E_{A}\left(\mathbb{Z}_{10}\right)=13<14=2 \Omega(2)+n .
\end{array}
$$

Proof. First note that $A_{2}=A_{4}=\{1\}$ and so, for $n=2$ or $4, D_{A}\left(\mathbb{Z}_{n}\right)=D\left(\mathbb{Z}_{n}\right)=n$, from which the first two examples follow. For $n=10$, we have $A=A_{10}=\{1,-1\}$, and so, from [2, Lemma 2.1], it follows that $D_{A}(10) \leq\left\lfloor\log _{2} 10\right\rfloor+1=4<5$. The remaining results follow, for $A=\{1\}$, from $E_{A}(G)=D_{A}(G)+n-1$, which was proved in [3] and, for $A=\{-1,1\}$, from $E_{A}(G)=n+\left\lfloor\log _{2} n\right\rfloor$, which was proved in [2].

2. Corrected Version of the Theorem

We now state and prove our corrected version of the theorem. The proof follows closely the proof of the original theorem in [1].
Theorem 2. For $n \geq 2, D_{A}\left(\mathbb{Z}_{n}\right) \geq 2 \Omega_{o}(n)+1$ and $E_{A}\left(\mathbb{Z}_{n}\right) \geq 2 \Omega_{o}(n)+n$.
Proof. Given $n \geq 2$, let $n=2^{\alpha_{0}} p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$, with $\alpha_{0} \geq 0$ and $\alpha_{i} \geq 1$ for $i \geq 1$. To prove the first inequality, it suffices to produce a sequence of $2 \Omega_{o}(n)=2\left(\alpha_{1}+\alpha_{2}+\right.$ $\cdots+\alpha_{r}$) terms with no non-zero weighted zero-sum subsequence.

For each $1 \leq i \leq r$, fix $v_{i} \in \mathbb{Z}_{n}$ such that, modulo $p_{i}, v_{i} \notin A_{p_{i}} \cup\{0\}$. (Note that, since $p_{i}>2, A_{p_{i}} \cup\{0\} \subsetneq \mathbb{Z}_{p_{i}}$, while $A_{2} \cup\{0\}=\mathbb{Z}_{2}$. This is precisely the problem invalidating the proof giving in [1]: it was not possible for a v_{2} to exist satisfying the given conditions.)

For $1 \leq i \leq r$ and $0 \leq j_{i} \leq \alpha_{i}-1$, define $x_{i, j_{i}}=n p_{i}^{j_{i}-\alpha_{i}}$ and $y_{i, j_{i}}=-v_{i} x_{i, j_{i}}$. Let S be the $2 \Omega_{o}(n)$-term sequence:

$$
x_{1,0}, y_{1,0}, x_{1,1}, y_{1,1}, \ldots, x_{1, \alpha_{1}-1}, y_{1, \alpha_{1}-1}, x_{2,0}, \ldots, y_{2, \alpha_{2}-1}, \ldots, x_{r, \alpha_{r}-1}, y_{r, \alpha_{r}-1} .
$$

Suppose that S has a non-empty weighted zero-sum subsequence. Then there exist $s_{i, j_{i}}, t_{i, j_{i}} \in A_{n} \cup\{0\}$, not all zero, such that

$$
\begin{equation*}
\sum_{i, j_{i}}\left(s_{i, j_{i}} x_{i, j_{i}}+t_{i, j_{i}} y_{i, j_{i}}\right)=0 . \tag{3}
\end{equation*}
$$

Fix an arbitrary $k, 1 \leq k \leq r$ and notice that for $\left(i, j_{i}\right) \neq(k, 0), p_{k} \mid x_{i, j_{i}}$ and $p_{k} \mid y_{i, j_{i}}$. So reducing equation (3) modulo p_{k} yields

$$
\begin{equation*}
s_{k, 0} x_{k, 0}+t_{k, 0} y_{k, 0} \equiv 0 \quad\left(\bmod p_{k}\right) \tag{4}
\end{equation*}
$$

Since $x_{k, 0}$ is a unit modulo p_{k}, the congruence simplifies to

$$
\begin{equation*}
s_{k, 0} \equiv v_{k} t_{k, 0} \quad\left(\bmod p_{k}\right) \tag{5}
\end{equation*}
$$

Suppose that $s_{k, 0} \neq 0$. Then, recalling that $s_{k, 0}, t_{k, 0} \in A_{n} \cup\{0\}$, it follows that $s_{k, 0} \not \equiv 0\left(\bmod p_{k}\right)$, and so $t_{k, 0} \neq 0$. Thus, there exist units, $u_{1}, u_{2} \in \mathbb{Z}_{n}$ such that $u_{1}^{2}=s_{k, 0}$ and $u_{2}^{2}=t_{k, 0}$. But then, by (5), $v_{k} \equiv\left(u_{1} u_{2}^{-1}\right)^{2}\left(\bmod p_{k}\right)$, which is a contradiction, since $v_{k} \notin A_{p_{k}}$. Thus $s_{k, 0}=0$ and so $v_{k} t_{k, 0} \equiv 0\left(\bmod p_{k}\right)$. Since v_{k} is defined to be non-zero modulo $p_{k}, t_{k, 0} \equiv 0\left(\bmod p_{k}\right)$, and thus $t_{k, 0}=0$.

Now, fix $\ell, 0<\ell<\alpha_{k}$, and assume by induction that for all $j_{k}<\ell, s_{k, j_{k}}=$ $t_{k, j_{k}}=0$. Reducing equation (3) modulo $p_{k}^{\ell+1}$, yields

$$
s_{k, j_{k}} x_{k, j_{k}}+t_{k, j_{k}} y_{k, j_{k}} \equiv 0 \quad\left(\bmod p_{k}^{\ell+1}\right)
$$

Dividing through by p_{k}^{ℓ}, we find that

$$
s_{k, \ell} \frac{x_{k, \ell}}{p_{k}^{\ell}}+t_{k^{\ell}} \frac{y_{k, \ell}}{p_{k}^{\ell}} \equiv 0 \quad\left(\bmod p_{k}\right)
$$

So $\frac{x_{k, \ell}}{p_{k}^{\ell}}\left(s_{k, \ell}-v_{k} t_{k, \ell}\right) \equiv 0\left(\bmod p_{k}\right)$. Since $\frac{x_{k, \ell}}{p_{k}^{\ell}}$ is a unit modulo $p_{k}, s_{k, \ell} \equiv v_{k} t_{k, \ell}$ $\left(\bmod p_{k}\right)$. Using the same arguments as above, $s_{k, \ell}=t_{k, \ell}=0$. Hence by induction, for all $j_{k}, s_{k, j_{k}}=t_{k, j_{k}}=0$. Since k was arbitrary, we have that for all i, j_{i}, $s_{i, j_{i}}=t_{i, j_{i}}=0$, which is a contradiction.

Hence, S is a sequence of length $2 \Omega_{o}(n)$ that does not have a non-empty weighted zero-sum subsequence. Therefore, $D_{A}(n) \geq 2 \Omega_{o}(n)+1$, as desired.

Finally, to prove the bound on $E_{A}(n)$, let T be a sequence of length $D_{A}(n)-1$ with no weighted zero-sum subsequence. Let T^{\prime} be the sequence obtained by appending $n-1$ zeros to T. Then T^{\prime} is a sequence of $D_{A}(n)+n-2$ terms with no zerosum subsequence of exactly n terms. Thus, $E_{A}(n)>D_{A}(n)+n-2$, and so $E_{A}(n) \geq 2 \Omega_{o}(n)+n$.

References

[1] S. D. Adhikari, C. David, J. J. Urroz. "Generalizations of some zero-sum theorems." Integers 8, \#A52 (2008).
[2] S. D. Adhikari, Y. G. Chen, J. B. Friedlander, S. V. Konyagin, F. Pappalardi. "Contributions to zero-sum problems." Discrete Math. 306, 1-10 (2006)
[3] W. D. Gao. "A combinatorial problem on finite abelian groups." J. Number Theory 58 100-103 (1996)

