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Abstract

Let G be an additive abelian group of finite order n and let A be a non-empty set
of integers. The Davenport constant of G with weight A, D4(G), is the smallest
k € Z* such that for any sequence z1, ...,z of elements in G, there exists a non-
empty subsequence zj, , ..., , and corresponding weights a1,...,a, € A such that
Soi_ia;izj, = 0. Similarly, E4(G) is the smallest positive integer k such that for
any sequence i, ..., x; of elements in G there exists a non-empty subsequence of
exactly n terms, x;,,...,x;,, and corresponding weights a1,...,a, € A such that
St a;zj, = 0. We consider these constants when G = Z,, and A = {b?|b € Z}},
proving lower bounds for each.

1. Introduction

Let G be an additive abelian group of finite order n. The Davenport constant of G,
D(G), is the smallest k € Z™ such that for any sequence 1, ..., x) of elements in
G, there exists a non-empty subsequence x;,,...,x; such that Z:zl x;, = 0. Let
A be a non-empty set of integers. The Davenport constant of G with weight A,
DA(G), is the smallest k& € ZT such that for any sequence z1, ...,z of elements
in G, there exists a non-empty subsequence z;,,...,x; and corresponding weights
ai,...,a, € Asuch that >._, a;z;, = 0. Similarly, E4(G) is the smallest positive
integer k£ such that for any sequence z1,...,z; of elements in G there exists a
non-empty subsequence of exactly n terms, z;,,...,;,, and corresponding weights
ai,...,an € Asuch that 31" | a;z;, = 0.

In 2008, Adhikari, David, and Urroz [1] considered the case where G is Z,, the
cyclic group of order n, and A is the set of quadratic residues modulo n,

A=A, ={becZ:}, (1)

proving a collection of bounds for each of these constants. Unfortunately, the first
theorem in that paper holds only for odd integers. In this work, we provide some
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counter-examples in the even case, then state and prove a corrected version of the
theorem, explaining the error made in the original proof.

Fix n > 2, let G = Z,, and let A = A,,, as defined in (1). Let Q(n) denote the
number of prime factors of n counting multiplicity and let Q,(n) denote the number
of odd prime factors of n counting multiplicity.

In [1, Theorem 1], it is claimed that

Da(Zy,) >20n)+1 and FEa(Zy,) > 2Q(n) + n. (2)
Theorem 1. The bounds in (2) are incorrect for even n. For example,
Du(Zy) =2<3=2Q0(2) +1, Ea(Zy) =3<4=20(2)+n,
Da(Z4) =4 <5=20(2)+1, Ea(Zy) =7<8=2Q(2)+n,
DA(Z10)24<5:29(2)+1, EA(Z10)213< 14:29(2)4-71

Proof. First note that Ay = Ay = {1} and so, for n = 2 or 4, D4(Z,,) = D(Z,) = n,
from which the first two examples follow. For n = 10, we have A = Ajp = {1, -1},
and so, from [2, Lemma 2.1], it follows that D4(10) < |log, 10| +1 =4 < 5. The
remaining results follow, for A = {1}, from F4(G) = Da(G) +n — 1, which was
proved in [3] and, for A = {—1,1}, from E4(G) = n + [logy n|, which was proved
in [2]. O

2. Corrected Version of the Theorem

We now state and prove our corrected version of the theorem. The proof follows
closely the proof of the original theorem in [1].

Theorem 2. Forn > 2, Ds(Z,) > 2Q,(n) +1 and EA(Z,) > 2Q(n) + n.

Proof. Given n > 2, let n = 2%°p{* -+ p* with a9 > 0 and a; > 1 for i > 1. To
prove the first inequality, it suffices to produce a sequence of 2Q,(n) = 2(a1 + as +
-+« + ;) terms with no non-zero weighted zero-sum subsequence.

For each 1 < <r, fix v; € Zj, such that, modulo p;, v; ¢ A,, U{0}. (Note that,
since p; > 2, A,, U{0} C Z,,, while A, U {0} = Zy. This is precisely the problem
invalidating the proof giving in [1]: it was not possible for a vy to exist satisfying
the given conditions.)

For 1 <i<rand0<j; <a;—1, define z; 5, = npzi_o"i and y; j, = —ViT4j, -
Let S be the 29,(n)-term sequence:

Z1,0,Y1,0L1,1,Y1,15 - - - 5 TLa1 =15 Yl,a1 =15 L2,05 - -+ y Y2,00—15 -+ s Ty —15 Yryo—1-

Suppose that S has a non-empty weighted zero-sum subsequence. Then there
exist s; j,,t 5, € A, U {0}, not all zero, such that

> (sigiwig, +tigyig,) =0, (3)

4,Ji
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Fix an arbitrary k, 1 < k < r and notice that for (4,7;) # (k,0), pr|x;;, and
Pr|yij, - So reducing equation (3) modulo py yields

Sk,0%k,0 + teoYko =0 (mod pg). (4)

Since xy,0 is a unit modulo py, the congruence simplifies to
Sk,0 = Uktro (mod py). (5)

Suppose that sgo 7# 0. Then, recalling that sk o, txo € A, U {0}, it follows that
S0 #Z0 (mod pg), and so ty o # 0. Thus, there exist units, ui, us € Z, such that
u1? = sgo and u3 = t 9. But then, by (5), vy = (u1u51)2 (mod pg), which is a
contradiction, since vy, ¢ Ap,. Thus si o = 0 and so vityo =0 (mod pg). Since vy
is defined to be non-zero modulo py, tx0 =0 (mod py), and thus tx o = 0.

Now, fix ¢, 0 < £ < ay, and assume by induction that for all j, < ¢, s;;, =
tr ;. = 0. Reducing equation (3) modulo piﬂ, yields

_ /+1
Sk.jxThjx T tkjr Yk =0 (mod pp).

Dividing through by pi, we find that

Yk.¢
Sk 7

=0 (mod pg).

5
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So Lé’z(sk,g — vptge) = 0 (mod pg). Since L; is a unit modulo pg, sk¢ = Vitke
p Pk

(modkpk). Using the same arguments as above, sj ¢ = 3¢ = 0. Hence by induction,
for all ji, sk j, = tij, = 0. Since k was arbitrary, we have that for all 4, j;,
Si,5, = ti,j, = 0, which is a contradiction.

Hence, S is a sequence of length 2€),(n) that does not have a non-empty weighted
zero-sum subsequence. Therefore, D4(n) > 2Q,(n) + 1, as desired.

Finally, to prove the bound on E4(n), let T be a sequence of length D 4(n)—1 with
no weighted zero-sum subsequence. Let T” be the sequence obtained by appending
n — 1 zeros to T. Then T” is a sequence of D4(n) +n — 2 terms with no zero-
sum subsequence of exactly n terms. Thus, Fa(n) > Da(n) + n — 2, and so
Ea(n) > 2Q,(n) +n. O
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