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Abstract
Let G be an additive abelian group of finite order n and let A be a non-empty set

of integers. The Davenport constant of G with weight A, DA(G), is the smallest

k ∈ Z+
such that for any sequence x1, . . . , xk of elements in G, there exists a non-

empty subsequence xj1 , . . . , xjr and corresponding weights a1, . . . , ar ∈ A such that�r
i=1 aixji = 0. Similarly, EA(G) is the smallest positive integer k such that for

any sequence x1, . . . , xk of elements in G there exists a non-empty subsequence of

exactly n terms, xj1 , . . . , xjn , and corresponding weights a1, . . . , an ∈ A such that�n
i=1 aixji = 0. We consider these constants when G = Zn and A = {b2|b ∈ Z∗

n},
proving lower bounds for each.

1. Introduction

Let G be an additive abelian group of finite order n. The Davenport constant of G,

D(G), is the smallest k ∈ Z+
such that for any sequence x1, . . . , xk of elements in

G, there exists a non-empty subsequence xj1 , . . . , xjr such that
�r

i=1 xji = 0. Let

A be a non-empty set of integers. The Davenport constant of G with weight A,

DA(G), is the smallest k ∈ Z+
such that for any sequence x1, . . . , xk of elements

in G, there exists a non-empty subsequence xj1 , . . . , xjr and corresponding weights

a1, . . . , ar ∈ A such that
�r

i=1 aixji = 0. Similarly, EA(G) is the smallest positive

integer k such that for any sequence x1, . . . , xk of elements in G there exists a

non-empty subsequence of exactly n terms, xj1 , . . . , xjn , and corresponding weights

a1, . . . , an ∈ A such that
�n

i=1 aixji = 0.

In 2008, Adhikari, David, and Urroz [1] considered the case where G is Zn, the

cyclic group of order n, and A is the set of quadratic residues modulo n,

A = An = {b2|b ∈ Z∗
n}, (1)

proving a collection of bounds for each of these constants. Unfortunately, the first

theorem in that paper holds only for odd integers. In this work, we provide some
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counter-examples in the even case, then state and prove a corrected version of the

theorem, explaining the error made in the original proof.

Fix n ≥ 2, let G = Zn, and let A = An, as defined in (1). Let Ω(n) denote the

number of prime factors of n counting multiplicity and let Ωo(n) denote the number

of odd prime factors of n counting multiplicity.

In [1, Theorem 1], it is claimed that

DA(Zn) ≥ 2Ω(n) + 1 and EA(Zn) ≥ 2Ω(n) + n. (2)

Theorem 1. The bounds in (2) are incorrect for even n. For example,

DA(Z2) = 2 < 3 = 2Ω(2) + 1, EA(Z2) = 3 < 4 = 2Ω(2) + n,
DA(Z4) = 4 < 5 = 2Ω(2) + 1, EA(Z4) = 7 < 8 = 2Ω(2) + n,
DA(Z10) = 4 < 5 = 2Ω(2) + 1, EA(Z10) = 13 < 14 = 2Ω(2) + n.

Proof. First note that A2 = A4 = {1} and so, for n = 2 or 4, DA(Zn) = D(Zn) = n,

from which the first two examples follow. For n = 10, we have A = A10 = {1,−1},
and so, from [2, Lemma 2.1], it follows that DA(10) ≤ �log2 10� + 1 = 4 < 5. The

remaining results follow, for A = {1}, from EA(G) = DA(G) + n − 1, which was

proved in [3] and, for A = {−1, 1}, from EA(G) = n + �log2 n�, which was proved

in [2].

2. Corrected Version of the Theorem

We now state and prove our corrected version of the theorem. The proof follows

closely the proof of the original theorem in [1].

Theorem 2. For n ≥ 2, DA(Zn) ≥ 2Ωo(n) + 1 and EA(Zn) ≥ 2Ωo(n) + n.

Proof. Given n ≥ 2, let n = 2
α0pα1

1 · · · pαr
r , with α0 ≥ 0 and αi ≥ 1 for i ≥ 1. To

prove the first inequality, it suffices to produce a sequence of 2Ωo(n) = 2(α1 + α2 +

· · · + αr) terms with no non-zero weighted zero-sum subsequence.

For each 1 ≤ i ≤ r, fix vi ∈ Zn such that, modulo pi, vi /∈ Api ∪ {0}. (Note that,

since pi > 2, Api ∪ {0} � Zpi , while A2 ∪ {0} = Z2. This is precisely the problem

invalidating the proof giving in [1]: it was not possible for a v2 to exist satisfying

the given conditions.)

For 1 ≤ i ≤ r and 0 ≤ ji ≤ αi − 1, define xi,ji = npji−αi
i and yi,ji = −vixi,ji .

Let S be the 2Ωo(n)-term sequence:

x1,0, y1,0, x1,1, y1,1, . . . , x1,α1−1, y1,α1−1, x2,0, . . . , y2,α2−1, . . . , xr,αr−1, yr,αr−1.

Suppose that S has a non-empty weighted zero-sum subsequence. Then there

exist si,ji , ti,ji ∈ An ∪ {0}, not all zero, such that

�

i,ji

(si,jixi,ji + ti,jiyi,ji) = 0. (3)
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Fix an arbitrary k, 1 ≤ k ≤ r and notice that for (i, ji) �= (k, 0), pk|xi,ji and

pk|yi,ji . So reducing equation (3) modulo pk yields

sk,0xk,0 + tk,0yk,0 ≡ 0 (mod pk). (4)

Since xk,0 is a unit modulo pk, the congruence simplifies to

sk,0 ≡ vktk,0 (mod pk). (5)

Suppose that sk,0 �= 0. Then, recalling that sk,0, tk,0 ∈ An ∪ {0}, it follows that

sk,0 �≡ 0 (mod pk), and so tk,0 �= 0. Thus, there exist units, u1, u2 ∈ Zn such that

u1
2

= sk,0 and u2
2 = tk,0. But then, by (5), vk ≡ (u1u

−1
2 )

2
(mod pk), which is a

contradiction, since vk /∈ Apk . Thus sk,0 = 0 and so vktk,0 ≡ 0 (mod pk). Since vk

is defined to be non-zero modulo pk, tk,0 ≡ 0 (mod pk), and thus tk,0 = 0.

Now, fix �, 0 < � < αk, and assume by induction that for all jk < �, sk,jk =

tk,jk = 0. Reducing equation (3) modulo p�+1
k , yields

sk,jkxk,jk + tk,jkyk,jk ≡ 0 (mod p�+1
k ).

Dividing through by p�
k, we find that

sk,�
xk,�

p�
k

+ tk�

yk,�

p�
k

≡ 0 (mod pk).

So
xk,�

p�
k

(sk,� − vktk,�) ≡ 0 (mod pk). Since
xk,�

pk
�

is a unit modulo pk, sk,� ≡ vktk,�

(mod pk). Using the same arguments as above, sk,� = tk,� = 0. Hence by induction,

for all jk, sk,jk = tk,jk = 0. Since k was arbitrary, we have that for all i, ji,

si,ji = ti,ji = 0, which is a contradiction.

Hence, S is a sequence of length 2Ωo(n) that does not have a non-empty weighted

zero-sum subsequence. Therefore, DA(n) ≥ 2Ωo(n) + 1, as desired.

Finally, to prove the bound on EA(n), let T be a sequence of length DA(n)−1 with

no weighted zero-sum subsequence. Let T �
be the sequence obtained by appending

n − 1 zeros to T . Then T �
is a sequence of DA(n) + n − 2 terms with no zero-

sum subsequence of exactly n terms. Thus, EA(n) > DA(n) + n − 2, and so

EA(n) ≥ 2Ωo(n) + n.
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