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Abstract
The classical Cauchy–Davenport theorem implies the lower bound n + 1 for the
number of distinct subsums that can be formed from a sequence of n elements of
the cyclic group Zp (when p is prime and n < p). We generalize this theorem to a
conjecture for the minimum number of distinct subsums that can be formed from
elements of a multiset in Zm

p ; the conjecture is expected to be valid for multisets
that are not “wasteful” by having too many elements in nontrivial subgroups. We
prove this conjecture in Z2

p for multisets of size p + k, when k is not too large in
terms of p.

1. Introduction

Determining the number of elements in a particular abelian group that can be
written as sums of given sets of elements is a topic that goes back at least two
centuries. The most famous result of this type, involving the cyclic group Zp of
prime order p, was established by Cauchy in 1813 [1] and rediscovered by Davenport
in 1935 [2, 3] (here #A denotes the cardinality of A):

Lemma 1.1 (Cauchy–Davenport Theorem). Let A and B be subsets of Zp,
and define A + B to be the set of all elements of the form a + b with a 2 A and
b 2 B. Then #(A + B) � min{p,#A + #B � 1}.

The lower bound is easily seen to be best possible by taking A and B to be intervals,
for example. It is also easy to see that the lower bound of #A+#B�1 does not hold
for general abelian groups G (take A and B to be the same nontrivial subgroup of
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G). There is, however, a well-known generalization obtained by Kneser in 1953 [4],
which we state in a slightly simplified form that will be quite useful for our purposes
(see [8, Theorem 4.1] for an elementary proof):

Lemma 1.2 (Kneser’s Theorem). Let A and B be subsets of a finite abelian
group G, and let m be the largest cardinality of a proper subgroup of G. Then
#(A + B) � min{#G,#A + #B �m}.

Given a sequence A = (a1, . . . , ak) of (not necessarily distinct) elements of an
abelian group G, a related result involves its sumset ⌃A, which is the set of all
sums of any number of elements chosen from A (not to be confused with A + A,
which it contains but usually properly):

⌃A =
⇢X

j2J

aj : J ✓ {1, . . . , k}
�

.

(Note that we allow J to be empty, so that the group’s identity element is always
an element of ⌃A, even when A itself is empty) When G = Zp, one can prove the
following result by writing ⌃A = {0, a1} + · · · + {0, ak} and applying the Cauchy–
Davenport theorem inductively:

Lemma 1.3. Let A = (a1, . . . , ak) be a sequence of nonzero elements of Zp. Then
#⌃A � min{p, k + 1}.

This result can also be proved directly by induction on k, and in fact such a proof
will discover why the order p of the cyclic group must be prime (intuitively, the
sequence A could lie completely within a nontrivial subgroup). For a formal proof,
see [6, Lemma 2]. Again the lower bound is easily seen to be best possible, by taking
a1 = · · · = ak.

It is a bit misleading to phrase such results in terms of sequences, since the actual
order of the elements in the sequence is irrelevant (given that we are considering only
abelian groups). We prefer to use multisets, which are simply sets that are allowed
to contain their elements with multiplicity. If we let mx denote the multiplicity
with which the element x occurs in the multiset A, then the definition of ⌃A can
be written in the form

⌃A =
⇢X

x2G

�xx : 0  �x  mx

�
,

where �xx denotes the group element x + · · ·+ x obtained by adding �x summands
all equal to x.

When using multisets, we should choose our notation with care: the hypotheses of
such results tend to involve the total number of elements of the multiset A counting
multiplicity, while the conclusions involve the number of distinct elements of ⌃A.
Consequently, throughout this paper, we use the following notational conventions:
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• |S| denotes the total number of elements of the multiset S, counted with
multiplicity;

• #S denotes the number of distinct elements of the multiset S, or equivalently
the cardinality of S considered as a (mere) set.

In this notation, Lemma 1.3 can be restated as:

Lemma 1.4. Let A be a multiset contained in Zp such that 0 /2 A. Then #⌃A �
min{p, |A| + 1}.

The purpose of this paper is to improve, as far as possible, this lower bound for
multisets contained in the larger abelian group Z2

p. We cannot make any progress
without some restriction upon our multisets: if a multiset is contained within a
nontrivial subgroup of Z2

p (of cardinality p), then so is its sumset, in which case the
lower bound min{p, |A| + 1} from Lemma 1.4 is the best we can do. Therefore we
restrict to the following class of multisets. We use the symbol 0 = (0, 0) to denote
the identity element of Z2

p.

Definition 1.5. A multiset A contained in Z2
p is called valid if:

• 0 /2 A; and

• every nontrivial subgroup contains fewer than p points of A, counting multi-
plicity.

The exact number p in the second condition has been carefully chosen: any nontriv-
ial subgroup of Z2

p is isomorphic to Zp, and so Lemma 1.4 applies to these nontrivial
subgroups. In particular, any multiset A containing p � 1 nonzero elements of a
nontrivial subgroup will automatically have that entire subgroup contained in its
sumset ⌃A, so allowing p nonzero elements in a nontrivial subgroup would always
be “wasteful”.

We believe that the following lower bound should hold for sumsets of valid mul-
tisets:

Conjecture 1.6. Let A be a valid multiset contained in Z2
p such that p  |A| 

2p�3. Then #⌃A � (|A|+2�p)p. In other words, if |A| = p+k with 0  k  p�3,
then #⌃A � (k + 2)p.

It is easy to see that this conjectured lower bound would be best possible: if A is
the multiset that contains the point (1, 0) with multiplicity p�1 and the point (0, 1)
with multiplicity k + 1, then the set ⌃A is precisely

�
(s, t) : s 2 Zp, 0  t  k + 1

 
,

which has (k + 2)p distinct elements. Conjecture 1.6 is actually part of a larger
assertion (Conjecture 4.3) concerning lower bounds for sumsets in Zm

p . We note
that Conjecture 1.6 is vacuous for p = 2, and we shall see in Section 4 that the
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conditions of the more general conjecture render it similarly unremarkable when
p = 2.

One of our results completely resolves the first two cases k = 0 and k = 1 of this
conjecture:

Theorem 1.7. Let p be a prime.

a. If A is any valid multiset contained in Z2
p with |A| = p, then #⌃A � 2p.

b. Suppose that p � 5. If A is any valid multiset contained in Z2
p with |A| = p+1,

then #⌃A � 3p.

It turns out that proving part (b) of the theorem requires a certain amount of
computation for a finite number of primes (see the remarks following the proof of
the theorem in Section 3). Extending the conjecture to larger values of k would
require, by our methods, more and more computation to take care of small primes p
as k grows. However, we are able to establish the conjecture when p is large enough
with respect to k, or equivalently when k is small enough with respect to p:

Theorem 1.8. Let p be a prime, and let 2  k 
p

p/(2 log p + 1)�1 be an integer.
If A is any valid multiset contained in Z2

p with |A| = p + k, then #⌃A � (k + 2)p.

A contrapositive version of Theorem 1.8 is also enlightening:

Corollary 1.9. Let p be a prime, and let 2  k 
p

p/(2 log p + 1)�1 be an integer.
Let A be a multiset contained in Z2

p \ {0} with |A| = p + k. If #⌃A < (k + 2)p,
then there exists a nontrivial subgroup of Z2

p that contains at least p points of A,
counting multiplicity.

Our methods of proof stem from two main ideas. First, we will obviously exploit
the structure of Z2

p as a direct sum of cyclic groups of prime order, within which we
can apply the known Lemma 1.4 after using projections. Section 2 contains several
elementary lemmas in this vein (see in particular Lemma 2.8). It is important for
us to utilize the flexibility coming from the fact that Z2

p can be decomposed as the
direct sum of two subgroups in many di↵erent ways. Second, our methods work
best when there exists a single subgroup that contains many elements of the given
multiset; however, by selectively replacing pairs of elements with their sums, we
can increase the number of elements in a subgroup in a way that improves our
lower bounds upon the sumset (see Lemma 3.2). These methods, which appear in
Section 3, combine to provide the proofs of Theorems 1.7 and 1.8. Finally, Section 4
contains a generalization of Conjecture 1.6 to higher-dimensional direct sums of Zp,
together with examples demonstrating that the conjecture would be best possible.

Subsequent to the completion of this paper, K. Matomäsi [7] has given an elegant
argument which reduces our Conjecture 4.3 to the single subcase (c), and thereby
establishes Conjecture 1.6 in full generality, by a result of Peng [9].
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2. Sumsets in Abelian Groups and Direct Products

All of the results in this section are valid for general finite abelian groups and have
correspondingly elementary proofs, although the last two lemmas seem rather less
standard than the first few. In this section, G, H, and K denote finite abelian
groups, and e denotes a group’s identity element.

Lemma 2.1. Let B0, B1, B2, . . . , Bj be multisets in G, and set A = B0[B1[ · · ·[
Bj. For each 1  i  j, specify an element xi 2 ⌃Bi, and set C = B0[{x1, . . . , xj}.
Then ⌃C ✓ ⌃A.

Proof. For each 1  i  j, choose a submultiset Di ✓ Bi such that the sum of the
elements of Di equals xi. By definition, every element y of ⌃C equals the sum of
the elements of some subset E of B0, plus

P
i2I xi for some I ✓ {1, . . . , j}. But

then y equals the sum of the elements of E [
S

i2I Di, which is an element of ⌃A
since E [

S
i2I Di ✓ B0 [

S
1ij Bi = A.

Lemma 2.2. Let A1, A2, . . . , Aj be multisets in G, and set A = A1 [ · · · [ Aj.
If m is the largest cardinality of a proper subgroup of G, then either ⌃A = G or
#⌃A � (

Pj
i=1 #⌃Ai)� (j � 1)m.

Proof. Since ⌃A = ⌃A1 + ⌃A2 + · · · + ⌃Aj (viewed as ordinary sets), this follows
immediately by inductive application of Kneser’s theorem.

For the remainder of this section, we will be dealing with groups that can be
decomposed into a direct sum.

Definition 2.3. A subgroup H of G is called an internal direct summand if there
exists a subgroup K of G such that G is the internal direct sum of H and K, or in
other words, such that H\K = {e} and H+K = G. Equivalently, H is an internal
direct summand of G if there exists a projection homomorphism ⇡H : G ! H that
is the identity on H. Note that this projection homorphism does depend on the
choice of K but is uniquely determined by ⇡�1

H (e) = K.

Lemma 2.4. For any homomorphism f : G ! H, and any subset X of G, we have
f(⌃X) = ⌃(f(X)). In particular, if H is an internal direct summand of G, then
⇡H(⌃X) = ⌃(⇡H(X)) for any subset X of G.

Proof. Given y 2 f(⌃X), there exists x 2 ⌃X such that f(x) = y. Hence we can
find x1, . . . , xj 2 X such that x1 + · · · + xj = x, and so f(x1 + · · · + xj) = y. But
f is a homomorphism, and so f(x1) + · · · + f(xj) = y, so that y 2 ⌃(f(X)). This
shows that f(⌃X) ✓ ⌃(f(X)); the proof of the reverse inclusion is similar.
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Lemma 2.5. Let G = H �K, and let D and E be multisets contained in H and
K, respectively. For any z 2 G,

z 2 ⌃(D [E) if and only if ⇡H(z) 2 ⌃D and ⇡K(z) 2 ⌃E.

Proof. Since z = ⇡H(z) + ⇡K(z), the “if” direction is obvious. For the converse,
note that

⇡H(z) 2 ⇡H

�
⌃(D [E)

�
= ⌃

�
⇡H(D [E)

�
by Lemma 2.4. On the other hand, ⇡H(D) = D and ⇡H(E) = {e}, and so

⇡H(z) 2 ⌃
�
⇡H(D) [ ⇡H(E)

�
= ⌃

�
D [ {e}

�
= ⌃D

(since the sumset is not a↵ected by whether e is an allowed summand). A similar
argument shows that ⇡K(z) 2 ⌃E, which completes the proof of the lemma.

Lemma 2.6. Let H and K be subgroups of G satisfying H\K = {e}. Let D and E
be multisets contained in H and K, respectively. Then #⌃(D [E) = #⌃D ·#⌃E.

Proof. Notice that every element of ⌃(D [E) is contained in H + K; therefore we
may assume without loss of generality that G = H � K. In particular, we may
assume that H and K are internal direct summands of G, so that the projection
maps ⇡H and ⇡K exist and every element z 2 G has a unique representation z =
x + y where x 2 H and y 2 K; note that x = ⇡H(z) and y = ⇡K(z) in this
representation.

To establish the lemma, it therefore su�ces to show that z = ⇡H(z) + ⇡K(z) 2
⌃(D [ E) if and only if ⇡H(z) 2 ⌃D and ⇡K(z) 2 ⌃E; but this is exactly the
statement of Lemma 2.5.

The next lemma is a bit less standard yet still straightforward: in a direct product
of two abelian groups, it characterizes the elements of a sumset that lie in a given
coset of one of the direct summands.

Lemma 2.7. Let H and K be subgroups of G satisfying H \K = {e}. Let D and
E be multisets contained in H and K, respectively. For any y 2 K:

a. if y 2 ⌃E, then (H + {y}) \ ⌃(D [E) = ⌃D + {y};

b. if y /2 ⌃E, then (H + {y}) \ ⌃(D [E) = ;.

Proof. As in the proof of Lemma 2.6, we may assume without loss of generality that
G = H�K. Suppose that z is an element of (H+{y})\⌃(D[E). Since z 2 H+{y},
we may write z = x+y for some x 2 H, whence ⇡K(z) = ⇡K(x)+⇡K(y) = e+y = y.
On the other hand, since z 2 ⌃(D [ E), we see that y 2 ⌃E by Lemma 2.5. In
other words, the presence of any element z 2 (H + {y})\⌃(D [E) forces y 2 ⌃E,
which establishes part (b) of the lemma.
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We continue under the assumption y 2 ⌃E to prove part (a). The inclusions
⌃D+{y} ✓ H+{y} and ⌃D+{y} ✓ ⌃(D[E) are both obvious, and so ⌃D+{y} ✓
(H+{y})\⌃(D[E). As for the reverse inclusion, let z 2 (H+{y})\⌃(D[E) as
above; then ⇡H(z) 2 ⌃D by Lemma 2.5, whence z = ⇡H(z) + ⇡K(z) = ⇡H(z) + y 2
⌃D + {y} as required.

Finally we can establish the lemma that we will make the most use of when we
return to the setting G = Z2

p in the next section.

Lemma 2.8. Let G = H � K, and let C be a multiset contained in G. Let
D = C \H, let F = C \ D, and let E = ⇡K(F ). Then #⌃C � #⌃D · #⌃E.

Proof. Lemma 2.6 tells us that #⌃(D [ E) = #⌃D · #⌃E, and so it su�ces to
show that #⌃C � #⌃(D [E). We accomplish this by showing that

#
�
(H + {y}) \ ⌃C

�
� #

�
(H + {y}) \ ⌃(D [E)

�
(1)

for all y 2 K.
For any y 2 K\⌃E, Lemma 2.7 tells us that (H+{y})\⌃(D[E) = ;, in which

case the inequality (1) holds trivially. For any y 2 ⌃E, Lemma 2.7 tells us that
(H+ {y})\⌃(D [E) = ⌃D + {y}, and so the right-hand side of the inequality (1)
equals #⌃D.

On the other hand, since ⌃E = ⌃(⇡K(F )) = ⇡K(⌃F ) by Lemma 2.4, there
exists at least one element z 2 ⌃F satisfying ⇡K(z) = y; as G = H �K, this is
equivalent to saying that z 2 H+{y}. Since ⌃D ✓ H, we have ⌃D+{z} ✓ H+{y}
as well. But the inclusion ⌃D + {z} ✓ ⌃D + ⌃F = ⌃C is trivial, and therefore
⌃D + {z} ✓ (H + {y}) \ ⌃C; in particular, the left-hand side of the inequality (1)
is at least #⌃D. Combined with the observation that the right-hand side equals
#⌃D, this lower bound establishes the inequality (1) and hence the lemma.

These lemmas might be valuable for studying sumsets in more general abelian
groups. They will prove to be particularly useful for studying sumsets in Z2

p, how-
ever, essentially because there are many ways of writing Z2

p as an internal direct
sum of two subgroups (which are simply lines through 0).

3. Lower Bounds for Sumsets

In this section we establish Theorems 1.7 and 1.8; the proofs employ two combina-
torial propositions which we defer to the next section. It would be possible to prove
these two theorems at the same time, at the expense of a bit of clarity; however, we
find it illuminating to give complete proofs of Theorem 1.7 (the cases |A| = p and
|A| = p + 1) first, as the proofs will illustrate the methods used to prove the more
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general Theorem 1.8. Seeing the limitations of the proof of Theorem 1.7 will also
motivate the formulation of our main technical tool, Lemma 3.2.

Throughout this section, A will denote a valid multiset contained in Z2
p. For any

x 2 Z2
p, we let hxi denotes the subgroup of Z2

p generated by x (that is, the line
passing through both the origin 0 and x), and we let mx denote the multiplicity
with which x appears in A, so that |A| =

P
x2Z2

p
mx. The fact that A is valid means

that m0 = 0 and
P

t2hxi mt < p for every x 2 Z2
p \ {0}.

Our first lemma quantifies the notion that we can establish su�ciently good
lower bounds for the cardinality of ⌃A if we know that there are enough elements
of A lying in one subgroup of Z2

p. Naturally, the method of proof is to partition
A into the elements lying in that subgroup and all remaining elements, project the
remaining elements onto a complementary subgroup, and then use Lemma 1.4 in
each subgroup separately.

Lemma 3.1. Let A be any valid multiset contained in Z2
p. Suppose that for some

x 2 Z2
p \ {0}, X

y2hxi
my � |A|� (p� 1). (2)

Then #⌃A � (|A| + 2� p)p.

Remark. The conclusion is trivial if |A| < p � 1; also, the fact that A is valid
means that the left-hand side of equation (2) is at most p � 1, and so the lemma
is vacuous if |A| > 2p� 2. Therefore in practice the lemma will be applied only to
multisets A satisfying p� 1  |A|  2p� 2.

Proof. Let D = A\ hxi; note that |D|  p� 1 since A is a valid multiset, and note
also that |D| =

P
y2hxi my � |A|� (p� 1) by assumption. Set F = A \ D. Choose

any nontrivial subgroup K of Z2
p other than hxi, and set E = ⇡K(F ). Then by

Lemma 2.8, we know that #⌃A � #⌃D · #⌃E. By Lemma 1.4 and the fact that
0 /2 D [E, we obtain

#⌃A � min
�
p, 1 + |D|

 
· min

�
p, 1 + |E|

 
= min

�
p, 1 + |D|

 
· min

�
p, 1 + |A|� |D|

 
, (3)

since |E| = |F | = |A| � |D|. The inequalities |D|  p � 1 and |A| � |D|  p � 1
ensure that p is the larger element in both minima, and so we have simply

#⌃A � (1 + |D|)(1 + |A|� |D|) = 1
4 |A|2 + |A| + 1�

�
|D|� 1

2 |A|
�2

.

The pair of inequalities |D|  p � 1 and |A| � |D|  p � 1 is equivalent to the
inequality

��|D|� 1
2 |A|

��  p� 1� 1
2 |A|; therefore

|⌃A| � 1
4 |A|2 + |A| + 1�

�
p� 1� 1

2 |A|
�2 = (|A| + 2� p)p,

as claimed.
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This lemma alone is su�cient to establish Theorem 1.7.

Proof of Theorem 1.7(a). When |A| = p, the right-hand side of the inequality (2)
equals 1, and so the inequality holds for any x 2 A. Therefore Lemma 3.1 automat-
ically applies, yielding #⌃A � (|A|+2�p)p = 2p as desired. (In fact essentially the
same proof gives the more general statement: if A is a multiset contained in Z2

p\{0}
but not contained in any proper subgroup, and |A| � p, then #⌃A � 2|A|.)

Proof of Theorem 1.7(b). We are assuming that |A| = p + 1. Suppose first that
there exists a nontrivial subgroup of Z2

p that contains at least two points of A
(including possibly two copies of the same point). Choosing any nonzero element
x in that subgroup, we see that the inequality (2) is satisfied, and so Lemma 3.1
yields #⌃A � (|A| + 2� p)p = 3p as desired.

From now on we may assume that there does not exist a nontrivial subgroup
of Z2

p that contains at least two points of A. Since there are only p + 1 nontrivial
subgroups of Z2

p, it must be the case that A consists of exactly one point from each
of these p+1 subgroups; in particular, the elements of A are distinct. We can verify
the assertion for p  11 by exhaustive computation (see the remarks after the end
of this proof), so from now on we may assume that p � 13.

Suppose first that all sums of pairs of distinct elements from A are distinct. All
these sums are elements of ⌃A, and thus #⌃A �

�p+1
2

�
> 3p since p � 13.

The only remaining case is when two pairs of distinct elements from A sum to
the same point of Z2

p. Specifically, suppose that there exist x1, y1, x2, y2 2 A such
that x1 + y1 = x2 + y2. Partition A = B0 [ B1 [ B2 where B1 = {x1, y1} and
B2 = {x2, y2} and hence B0 = A\{x1, y1, x2, y2}; note that this really is a partition
of A, as the fact that x1 + y1 = x2 + y2 forces all four elements to be distinct.
Moreover, if we define z = x1 + y1 = x2 + y2, then we know that z 6= 0 since x1 and
y1 are in di↵erent subgroups.

Define C to be the multiset B0 [ {z, z}; by Lemma 2.1, we know that #⌃A �
#⌃C. Define D = C \ hzi; we claim that |D| = 3. To see this, note that A has
exactly one point in every nontrivial subgroup, and in particular A has exactly
one point in hzi. Furthermore, that point cannot be x1 for example, since then
y1 = z � x1 would also be in that subgroup; similarly that point cannot be x2, y1,
or y2. We conclude that B0 has exactly one point in hzi, whence C has exactly
three points in hzi.

Now define F = C\D, so that |F | = |C|�|D| = (|B0|+2)�3 = (|A|�4+2)�3 =
p � 4. Let K be any nontrivial subgroup other than hzi, and set E = ⇡K(F ).
The lower bounds #⌃D � 4 and #⌃E � p � 3 then follow from Lemma 1.4. By
Lemma 2.8, we conclude that #⌃C � #⌃D ·#⌃E = 4(p�3) > 3p since p � 13.

Remark. The computation that verifies Theorem 1.7(b) for p  11 should be done
a little bit intelligently, since there are 1012 subsets A of Z2

11 (for example) consisting
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of exactly one nonzero element from each nontrivial subgroup. We describe the com-
putation in the hardest case p = 11. Let us write the elements of Z2

11 as ordered pairs
(s, t) with s and t considered modulo 11. By separately dilating the two coordinates
of Z2

11 (which does not alter the cardinality of ⌃A), we may assume without loss of
generality that A contains both (1, 0) and (0, 1). We also know every such A contains
a subset of the form {(i, i), (j, 2j), (k, 3k), (`, 4`)} for some integers 1  i, j, k, `  10.
Therefore the cardinality of every such ⌃A is at least as large as the cardinality of
one of the subsumsets ⌃

�
{(1, 0), (0, 1), (i, i), (j, 2j), (k, 3k), (`, 4`)}

�
.

There are 104 such subsumsets, and direct computation shows that all of them
have more than 33 distinct elements except for the cases ⌃

�
{(1, 0), (0, 1),±(1, 1),

±(1, 2),±(1, 3),±(1, 4)}
�
, which each contain 32 distinct elements. It is then easily

checked that any subsumset of the form ⌃
�
{(1, 0), (0, 1),±(1, 1),±(1, 2),±(1, 3),

±(1, 4), (m, 5m)}
�

with 1  m  10 contains more than 33 distinct elements. This
concludes the verification of Theorem 1.7(b) for p = 11, and the cases p  7 are
verified even more quickly.

We now foreshadow the proof of Theorem 1.8 by reviewing the structure of
the proof of Theorem 1.7(b). In that proof, we quickly showed that the desired
lower bound held if there were enough elements of A in the same subgroup. Also,
the desired lower bound certainly held if there were enough distinct sums of pairs
of elements of A. If however no subgroup contained enough elements of A and
there were only a few distinct sums of pairs of elements of A, then we showed
that we could find multiple pairs of elements summing to the same point in Z2

p.
Replacing those elements in A with multiple copies of their joint sum, we found that
the corresponding subgroup now contained enough elements to carry the argument
through.

The following lemma quantifies the final part of this strategy, where we replace j
pairs of elements of A with their joint sum and then use our earlier ideas to bound
the cardinality of the sumset from below.

Lemma 3.2. Let A be any valid multiset contained in Z2
p, and let z 2 Z2

p \ {0}.
For any integer j satisfying

0  j  1
2

X
t2Z2

p\hzi
min{mt,mz�t}, (4)

we have

#⌃A � min
⇢

p, 1 + j +
X

y2hzi
my

�
min

⇢
p, 1 + |A|� 2j �

X
y2hzi

my

�
.

Remark. This can be seen as a generalization of Lemma 3.1, as equation (3) is the
special case j = 0 of this lemma.
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Proof. Partition A = B0[B1[· · ·[Bj , where for each 1  i  j, the multiset Bi has
exactly two elements, neither contained in hzi, that sum to z (the complementary
submultiset B0 is unrestricted). The upper bound (4) for j is exactly what is
required for such a partition to be possible; the factor of 1

2 arises because the sum
on the right-hand side of (4) double-counts the pairs (t, z � t) and (z � t, t). Then
set C equal to B0 with j additional copies of z inserted. By Lemma 2.1, we know
that #⌃A � #⌃C.

Now let D be the intersection of C with the subgroup hzi, and let F = C \D. Let
K be any nontrivial subgroup other than hzi, and set E = ⇡K(F ). By Lemma 2.8,
we know that #⌃C � #⌃D·#⌃E. However, the number of elements of D (counting
multiplicity) is j + |B0 \ hzi|; this is the same as j + |A \ hzi| (since no elements
of B1, . . . , Bj lie in hzi), or in other words j +

P
y2hzi my. Similarly, the number of

elements of E (equivalently, of F ) is equal to the number of elements of B0\hzi; this
is the same as |A\hzi|�2j, or in other words |A|�2j�

P
y2hzi my. The lower bounds

#⌃D � min
�
p, 1+ j +

P
y2hzi my

 
and #⌃E � min

�
p, 1+ |A|� 2j�

P
y2hzi my

 
then follow from Lemma 1.4; the chain of inequalities #⌃A � #⌃C � #⌃D ·#⌃E
establishes the lemma.

We are now ready to use Lemma 3.2 to establish Conjecture 1.6 when |A| = p+k,
for all but finitely many primes p depending on k. Let Hk = 1 + 1

2 + · · ·+ 1
k denote

the kth harmonic number.

Theorem 3.3. Let k � 2 be any integer, and let A be any valid multiset contained
in Z2

p such that |A| = p + k. If p � 4(k + 1)2Hk � 2k, then #⌃A � (k + 2)p.

Remark. Using the elementary bound Hk  � + log(k + 1), where � denotes
the Euler–Mascheroni constant, we see that Theorem 3.3 holds as long as p �
4(k+1)2(�+log(k+1)). Theorem 1.8 can thus be readily deduced from Theorem 3.3
as follows: If k + 1 

p
p/(2 log p + 1) then p � 4(k + 1)2(1

4 + 1
2 log p). In this case

we have p � (1 + 2 log 2)(k + 1)2, whence log p � 4
5 + 2 log(k + 1) and 1

4 + 1
2 log p �

� + log(k + 1).

Proof. If there are k + 1 elements of A in some nontrivial subgroup, then we are
done by Lemma 3.1. Therefore we may assume that there are at most k points in
each subgroup; in particular, mx  k for all x 2 Z2

p. We now argue that if ⌃A
is small, then there must be lots of pairs of elements of A that add to the same
element of Z2

p, at which point we will be able to invoke Lemma 3.2. We may assume
that ⌃A 6= Z2

p, for otherwise we are done immediately.
For each 1  i  k, we define the level set Ai = {x 2 Z2

p : mx � i}. Notice
that A can be written precisely as the multiset union A1 [ A2 [ · · · [ Ak, and soPk

i=1 #Ai = |A| = p + k. Let Bi be the multiset formed by the sums of pairs of
elements of Ai not in the same subgroup:

Bi =
�
x + y : x, y 2 Ai, hxi 6= hyi

 
.
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Note that 0 /2 Bi (the restriction hxi 6= hyi ensures that x 6= �y) and that every
element of Bi occurs with even multiplicity (the restriction hxi 6= hyi ensures that
x 6= y). It is not hard to estimate the relative sizes of #Ai and |Bi|: for each x 2 Ai

there are at most k elements of A lying in the subgroup hxi. Since each such x
occurs with multiplicity at least i in A, there are at most k/i distinct values of y
excluded by the condition hxi 6= hyi. Hence |Bi| � #Ai(#Ai � k/i), which implies
that

#Ai 
k

i
+
p

|Bi|. (5)

Since
Pk

i=1 #Ai is fixed, this shows that |Bi| cannot be very small on average. At
the same time, #Bi cannot get very large: if

Pk
i=1 #Bi � (2k + 1)p, then (under

our assumption that ⌃A 6= Z2
p) Lemma 2.2 already yields

#⌃A �
kX

i=1

#⌃Ai � (k � 1)p >
kX

i=1

#Bi � (k � 1)p � (k + 2)p.

where the middle inequality holds because Bi ✓ ⌃Ai. We may therefore assume
henceforth that

kX
i=1

#Bi < (2k + 1)p. (6)

Let us now introduce the weighted height parameter

⌘ = max
1ik

⇢
i|Bi|
2#Bi

: #Bi > 0
�

. (7)

We shall show shortly that ⌘ > k + 1. Assuming so, then for some 1  i  k, we
have

|Bi|
2#Bi

>
k + 1

i
,

so by the pigeonhole principle, there exists some z 2 Bi (in particular z 6= 0)
occurring with multiplicity greater than 2(k+1)/i; since this multiplicity is an even
integer, it must be at least 2(k + 2)/i. For each solution x + y = z corresponding to
an occurrence of z in Bi, we have by construction that x, y /2 hzi and mx,my � i,
so for this particular choice of z,

1
2

X
t2Z2

p\hzi
min{mt,mz�t} � k + 2.

Furthermore,
P

y2hzi my  k by assumption. Therefore we are free to apply
Lemma 3.2 with j = (k + 2)�

P
y2hzi my, which gives the lower bound

#⌃A � min{p, k + 3}min
⇢

p, p� k� 3 +
X

y2hzi
my

�
� (k + 3)(p� k� 3) � (k + 2)p
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(the last step used the inequality p � (k + 3)2, which holds under the hypotheses
of the theorem).

It remains only to verify that ⌘ > k + 1. Summing the inequality (5) over all
1  i  k yields

p + k =
kX

i=1

#Ai  kHk +
kX

i=1

p
|Bi|  kHk +

p
2⌘

kX
i=1

r
#Bi

i
,

using the definition (7) of ⌘. We estimate the rightmost sum using Cauchy–Schwarz
together with the inequality (6):

kX
i=1

r
#Bi

i

✓ kX

i=1

#Bi

◆1/2✓ kX
i=1

1
i

◆1/2

<
p

(2k + 1)pHk.

Combining the previous two inequalities gives p + k � kHk <
p

⌘(4k + 2)pHk, so
that

⌘>
(p + k � kHk)2

(4k + 2)pHk
>

p(p + 2(k � kHk))
(4k + 2)pHk

=
(p + 2k)� 2kHk

(4k + 2)Hk
� 4(k + 1)2Hk � 2kHk

(4k + 2)Hk

by the hypothesis on the size of p. In other words,

⌘ >
2(k + 1)2 � k

2k + 1
= k + 1 +

1
2k + 1

,

which completes the proof of the theorem.

4. A Wider Conjecture

As mentioned earlier, Conjecture 1.6 is just one part of a more far-reaching conjec-
ture concerning sumsets of multisets in Zm

p . Before formulating that wider conjec-
ture, we must expand the definition of a valid multiset to Zm

p .

Definition 4.1. Let p be an odd prime, and let m be a positive integer. A multiset
A contained in Zm

p is valid if:

• 0 /2 A; and

• for each 1  d  m, every subgroup of Zm
p that is isomorphic to Zd

p contains
fewer than dp points of A, counting multiplicity.

When m = 1, a multiset contained in Zp is valid precisely when it does not contain
0; when m = 2 and |A| < 2p, this definition of valid agrees with Definition 1.5
for multisets contained in Z2

p. Note that in particular, Definition 4.1(b) implies
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that every valid multiset contained in Zm
p has at most mp � 1 elements, counting

multiplicity. We now give an example showing that this upper bound mp � 1 can
in fact be achieved. Throughout this section, let {x1, . . . , xm} denote a generating
set for Zm

p , and let Kd = hx1, . . . , xdi denote the subgroup of Zm
p generated by

{x1, . . . , xd}, so that Kd
⇠= Zd

p.

Example 4.2. Let A1 be the multiset consisting of p � 1 copies of x1; for 2 
j  m let Aj = {xj + ax1 : 0  a  p � 1}; and define Bm =

Sm
j=1 Aj . Then

|Bm| = (p � 1) + (m � 1)p = mp � 1 and 0 /2 Bm. To verify that Bm is a valid
subset of Zm

p , let H be any subgroup of Zm
p that is isomorphic to Zd

p; we need to
show that Bm contains fewer than dp points of H.

First suppose that x1 /2 H, which implies that bx1 /2 H for every nonzero multiple
bx1 of x1. Then for each 2  j  m, at most one of the elements of Aj can be in H,
since the di↵erence of any two such elements is a nonzero multiple of x1. Therefore
|Bm \H| = ` for some 1  `  m� 1, and in fact all ` of these elements are of the
form xj + ax1 for ` distinct values of j. Since no such element is in the subgroup
spanned by the others, we conclude that d � `, and so the necessary inequality
|Bm \H| = `  d < dp is amply satisfied.

Now suppose that x1 2 H. Then for each 2  j  m, either all or none of the
elements of Aj are in H. By reindexing the xi, we may choose an integer 1  `  m
such that H contains A1[· · ·[A` and is disjoint from A`+1[· · ·[Am. In particular,
|Bm \H| = (p � 1) + (` � 1)p = `p � 1. But H contains {x1, . . . , x`} and hence
d � `, so that `p� 1  dp� 1 as required.

We may now state our wider conjecture; Conjecture 1.6 is the special case q = 1
of part (a) of this conjecture.

Conjecture 4.3. Let p be an odd prime. Let m be a positive integer, and let A
be a valid multiset of Zm

p with |A| � p. Write |A| = qp + k with 0  k  p� 1.

a. If 0  k  p� 3, then #⌃A � (k + 2)pq.

b. If k = p� 2, then #⌃A � pq+1 � 1.

c. If k = p� 1, then #⌃A � pq+1.

In particular, if |A| = mp� 1 then ⌃A = Zm
p .

We remark that the quantity dp in Definition 4.1, bounding the number of el-
ements in a valid multiset that can lie in a rank-d subgroup, has been carefully
chosen in light of this conjecture: by Conjecture 4.3(c), any valid multiset A with
at least dp � 1 elements counting multiplicity must satisfy #⌃A � pd. In partic-
ular, if A is a valid multiset contained in a subgroup H < Zm

p that is isomorphic
to Zd

p, then |A| � dp � 1 implies that ⌃A = H. Therefore allowing dp elements



INTEGERS: 13 (2013) 15

in such a subgroup would always be “wasteful”. Of course, the validity of Defini-
tion 4.1 for rank-d subgroups depends crucially upon the truth of Conjecture 4.3(c)
for q = d� 1.

The conjecture is restricted to multisets A with |A| � p because we already
know the truth for smaller multisets, for which the definition of “valid” is simply
the condition that 0 /2 A: when |A|  p � 1, the best possible lower bound is
#⌃A � |A| + 1 as in Lemma 1.4. We remark that Peng [9, Theorem 2] has proved
Conjecture 4.3(c) in the case m = 2 and q = 1, even under a slightly weaker
hypothesis; in other words, he has shown that if A is a valid multiset contained
in Z2

p with |A| = 2p � 1, then ⌃A = Z2
p. (Mann and Wou [5] have proved in

the case that A is actually a set—that is, a multiset with distinct elements—that
#A = 2p� 2 su�ces to force ⌃A = Z2

p.) Peng considers the higher-rank groups Zm
p

as well, but the multisets he allows (see [10, Theorem 1]) form a much wider class
than our valid multisets for q � 2, and so |A| must be much larger than required
by Conjecture 4.3(c) in order to imply ⌃A = Zm

p when m � 3. Finally, we mention
that we have completely verified Conjecture 4.3 by exhaustive computation for the
groups Z2

p with p  7 and also for the group Z3
3.

It is easy to see that all of the lower bounds in Conjecture 4.3(a), if true, would
be best possible. Given q � 1 and 0  k  p � 3, let A0 be any valid multiset
contained in Kq with |A0| = qp � 1 (such as the one given in Example 4.2 with
m = q), and let A be the union of A0 with k + 1 copies of xq+1. Then ⌃A =
{y + axq+1 : y 2 ⌃A0, 0  a  k + 1} and thus #⌃A0 = (k + 2)#⌃A  (k + 2)pq

since ⌃A is contained in Kq. Similarly, the fact that there exists a valid multiset
contained in Kq+1 with qp + (q� 1) = (q + 1)p� 1 elements (such as the one given
in Example 4.2 with m = q + 1) shows that the lower bound in Conjecture 4.3(c)
would be best possible, since the sumset of this multiset would still be contained in
Kq+1 and thus would have at most pq+1 distinct elements.

The lower bound in Conjecture 4.3(b) might seem counterintuitive, especially
in comparison with the pattern established in Conjecture 4.3(a). However, we can
give an explicit example showing that the lower bound pq+1 � 1 for #⌃A cannot
be increased:

Example 4.4. When p is an odd prime, define B0
m to be the set Bm from Ex-

ample 4.2 with one copy of x1 removed, so that B0
m contains x1 with multiplicity

only p � 2. Since Bm is a valid multiset contained in Zm
p , so is B0

m. We have
|B0

m| = |Bm| � 1 = (mp � 1) � 1 = (m � 1)p + (m � 2), and we claim that
�x1 /2 ⌃B0

m; this will imply that #⌃B0
m  pm � 1, and so the lower bound for

#⌃A in Conjecture 4.3(b) cannot be increased. (In fact it is not hard to show that
every other element of Zm

p is in ⌃B0
m, and so #⌃B0

m is exactly equal to pm � 1.)
Suppose for the sake of contradiction that�x1 2 ⌃B0

m, and let C be a submultiset
of B0

m such that �x1 =
P

y2C y. For each 2  j  m, define `j = |C \ Aj | =
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#
�
C \ {xj + ax1 : 0  a  p� 1}

�
. Then

�x1 =
X
y2C

y = tx1 + `2x2 + `3x3 + · · · + `mxm

for some integer t. It follows from this equation that each `j must equal either 0 or
p. However, if `j = p then

X
y2C\Aj

y =
X

0ap�1

(xj + ax1) = pxj +
p(p� 1)

2
x1 = 0

(since p is odd). So in either case, if s = |C \A1| is the multiplicity with which x1

appears in C, then

�x1 =
X
y2C

y = sx1 +
mX

j=2

X
y2C\Aj

y = sx1 + 0 + · · · + 0.

This is a contradiction, however, since s must lie between 0 and p � 2. Therefore
�x1 is indeed not an element of ⌃B0

m, as claimed.

A naive application of Lemma 2.8 seems to relatively ine↵ective in extending our
main theorem to partial results toward Conjecture 4.3 for the higher-rank groups
Zm

p , say using the decomposition Zm
p = Zm�1

p �Zp inductively. If a multiset C is very
well-distributed across subgroups, then we expect the cardinality of D = C \Zm�1

p

to be about p times smaller than that of C. Without exploiting the structure of
C as in the proof of Theorem 1.8, we would thus require |C| � pm�1 elements to
obtain ⌃C = Zm

p . This is comparable to the aforementioned results of Peng, rather
than the linear growth in m which is predicted by Conjecture 4.3.

The line of questioning in this section turns out to be uninteresting when p = 2:
when the multiset A does not contain 0, the condition that no rank-1 subgroup of
Zm

2 contain 2 points of A is simply equivalent to A not containing any element with
multiplicity greater than 1. It is easy to check that if A consists of any q points
in Zm

2 that do not lie in any subgroup isomorphic to Zq�1
2 , then ⌃A fills out the

entire rank-q subgroup generated by A. In other words, the analogous definition of
“valid” for multisets in Zm

2 would simply be a set of q points that generate a rank-q
subgroup of Zm

2 , and we would always have #⌃A = 2|A| = 2#A for valid (multi)sets
in Zm

2 .
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