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Abstract
An improved upper bound is obtained for the density of sequences of positive inte-
gers that contain no k-term geometric progression.

1. A Problem of Rankin

Let k � 3 be an integer. Let r 6= 0,±1 be a real number. A geometric progression
of length k with common ratio r is a sequence (a0, a1, a2, . . . , ak�1) of nonzero real
numbers such that

r =
ai

ai�1

for 1, 2, . . . , k � 1. For example, (3/4, 3/2, 3, 6) and (8, 12, 18, 27) are geometric
progressions of length 4 with common ratios 2 and 3/2, respectively. A k-geometric
progression is a geometric progression of length k with common ratio r for some r.
If the sequence (a0, a1, a2, . . . , ak�1) is a k-geometric progression, then ai 6= aj for
0  i < j  k � 1.

A finite or infinite set of real numbers is k-geometric progression free if the set
does not contain numbers a0, a1, . . . , ak�1 such that the sequence (a0, a1, . . . , ak�1)
is a k-geometric progression. Rankin [3] introduced k-geometric progression free
sets, and proved that there exist infinite k-geometric progression free sets with
positive asymptotic density.1 For example, the set Q of square-free positive integers,
with asymptotic density d(Q) = ⇡2/6, contains no k-term geometric progression for
k � 3.

1If A(n) denotes the number of positive integers a 2 A with a  n, then the upper
asymptotic density of A is dU (A) = lim supn!1A(n)/n, and the asymptotic density of A is
d(A) = limn!1A(n)/n, if this limit exists.
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Let A be a set of positive integers that contains no k-term geometric progression.
Brown and Gordon [2] proved2 that the upper asymptotic density of A, denoted
dU (A), has the following upper bound:

dU (A)  1� 1
2k
� 2

5

✓
1

5k�1
� 1

6k�1

◆
.

Riddell [4] and Beiglböck, Bergelson, Hindman, and Strauss[1] proved that

dU (A)  1� 1
2k � 1

.

The purpose of this note is to improve these results.

2. An Upper Bound for Sets with No k-Term Geometric Progression

Theorem 1. For integers k � 3 and n � 2k�1, let GPFk(n) denote the set of sub-
sets of {1, 2, . . . , n} that contain no k-term geometric progression. If A 2 GPFk(n),
then

n� |A| �
✓

1
2k � 1

+
2
5

✓
1

5k�1
� 1

6k�1

◆
+

4
15

✓
1

7k�1
� 1

10k�1

◆◆
n + O

✓
log n

k

◆
.

Proof. Let

L =


log 2n
k log 2

�
.

For 1  `  L we have 2`k�1  n. Let a be an odd positive integer such that

a  n

2`k�1
.

The sequence ⇣
2(`�1)ka, 2(`�1)k+1a, 2(`�1)k+2a, . . . , 2`k�1a

⌘

is a geometric progression of length k with common ratio 2. If A 2 GPFk(n), then
A does not contain this geometric progression, and so at least one element in the
set

X`(a) =
n
2(`�1)ka, 2(`�1)k+1a, 2(`�1)k+2a, . . . , 2`k�1a

o
is not an element of A. Because every nonzero integer has a unique representation
as the product of an odd integer and a power of 2, it follows that, for integers
` = 1, . . . , L and odd positive integers a  21�`kn, the sets X`(a) are pairwise
disjoint subsets of {1, 2, . . . , n}.

2Brown and Gordon claimed a slightly stronger result, but their proof contains an (easily
corrected) error.
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For every real number t � 1, the number of odd positive integers not exceeding t is
strictly greater than (t�1)/2. It follows that the cardinality of the set {1, 2, . . . , n}\
A is strictly greater than

LX
`=1

1
2

⇣ n

2`k�1
� 1

⌘
=

LX
`=1

✓
n

2`k
� 1

2

◆
= n

LX
`=1

1
2`k

+ O

✓
log n

k

◆

=
n

2k � 1
+ O

✓
log n

k

◆
.

Note that if r is an odd integer and r 2 X`(a), then ` = 1 and r = a.
Let b be an odd integer such that

n

6k�1
< b  n

5k�1
(1)

and b is not divisible by 5, that is,

b ⌘ 1, 3, 7, or 9 (mod 10). (2)

We consider the following geometric progression of length k with ratio 5/3:

(3k�1b, 3k�25b, . . . , 3k�1�i5ib, · · · , 5k�1b).

Every integer in this progression is odd, and

n

2k�1
< 3k�1b < · · · < 5k�1b  n.

Let
Y (b) = {3k�1b, 3k�25b, . . . , 3k�1�i5ib, · · · , 5k�1b}.

It follows that X`(a) \ Y (b) = ; for all `, a, and b. If the integers b and b0 sat-
isfy (1) and (2) with b < b0 and if Y (b) \ Y (b0) 6= ;, then there exist integers
i, j 2 {0, 1, 2, . . . , k � 1} such that 3k�1�i5ib = 3k�1�j5jb0 or, equivalently,

5i�jb = 3i�jb0.

The inequality b < b0 implies that 0  j < i  k � 1 and so b0 ⌘ 0 (mod 5),
which contradicts (2). Therefore, the sets Y (b) are pairwise disjoint. The number
of integers b satisfying inequality (1) and congruence (2) is

2
5

✓
1

5k�1
� 1

6k�1

◆
n + O(1).

Let c be an odd integer such that

n

10k�1
< c  n

7k�1
(3)
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and c is not divisible by 3 or 5, that is,

c ⌘ 1, 7, 11, 13, 17, 19, 23, or 29 (mod 30). (4)

We consider the following geometric progression of length k with ratio 7/5:

(5k�1c, 5k�27c, . . . , 5k�1�i7ic, · · · , 7k�1c).

Every integer in this progression is odd, and

n

2k�1
< 5k�1c < · · · < 7k�1c  n.

Let
Z(c) = {5k�1c, 5k�27c, . . . , 5k�1�i7ic, · · · , 7k�1c}.

It follows that X`(a) \ Z(c) = ; for all `, a, and c. If c and c0 satisfy (3) and (4)
with c < c0 and if Z(c)\Z(c0) 6= ;, then there exist integers i, j 2 {0, 1, 2, . . . , k�1}
such that 5k�1�i7ic = 5k�1�j7jc0 or, equivalently,

7i�jc = 5i�jc0.

The inequality c < c0 implies that 0  j < i  k � 1 and so c ⌘ 0 (mod 5), which
contradicts (4). Therefore, the sets Z(c) are pairwise disjoint.

If b and c satisfy inequalities (1) and (3), respectively, then c < b. If Y (b)\Z(c) 6=
;, then there exist integers i, j 2 {0, 1, . . . , k � 1} such that 5k�1�i7ic = 5k�1�j3jb
or, equivalently,

5j7ic = 5i3jb.

Because bc 6⌘ 0 (mod 5), it follows that i = j and so

7ic = 3ib.

Because c < b, we must have i � 1 and so c ⌘ 0 (mod 3), which contradicts congru-
ence (4). Therefore, Y (b)\Z(c) = ; and the sets X`(a), Y (b), and Z(c) are pairwise
disjoint. The number of integers c satisfying inequality (3) and congruence (4) is

4
15

✓
1

7k�1
� 1

10k�1

◆
n + O(1).

Because A contains no k-term geometic progression, at least one element from each
of the sets X`(a), Y (b), and Z(c) is not in A. This completes the proof.

Corollary 1. If Ak is a set of positive integers that contains no k-term geometric
progression, then

dU (Ak)  1� 1
2k � 1

� 2
5

✓
1

5k�1
� 1

6k�1

◆
� 4

15

✓
1

7k�1
� 1

10k�1

◆
.
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Here is a table of upper bounds for dU (A) for various values of k:

k 3 4 5 6 7 10 17
dU (Ak)  0.84948 0.93147 0.96733 0.98404 0.99211 0.99902 0.99999

3. Open Problems

For every integer k � 3, let GPFk denote the set of sets of positive integers that
contain no k-term geometric progression. It would be interesting to determine
precisely

sup{dU (A) : A 2 GPFk}

and
sup{d(A) : A has asymptotic density and A 2 GPFk}.

In the special case k = 3, Riddell [4, p. 145] claimed that if A 2 GPF3, then
dU (A) < 0.8339, but wrote, ”The details are too lengthy to be included here.”

An infinite sequence A = (ai)1i=1 of positive integers is syndetic if it is strictly
increasing with bounded gaps. Equivalently, A is syndetic if there is a number c such
that 1  ai+1 � ai  c for all positive integers i. Beiglböck, Bergelson, Hindman,
and Strauss [1] asked if every syndetic sequence must contain arbitrarily long finite
geometric progressions.
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