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Abstract
Let 1 <ay <ap < --- < ag be integers with Y7, 1/a; > n+ 9/31. In this paper,
we prove that this sum can be decomposed into n parts so that all partial sums are
greater than or equal to 1.

1. Introduction

Erd6s, Graham and Spencer [1] posed the conjecture that if 1 < a; < ag <--- < a,
are integers with >.°_; 1/a; < n — 1/30, then this sum can be decomposed into n
parts so that all partial sums are less than or equal to 1. A counterexample given
by Guo [4], as shown by a1 = 2,a2 = a3 = 3,a4 = 4,a5 = - = a11n—12 = 11, tells
us that we should replace 1/30 by 5/132 or a larger quantity.

On the other hand, Sdndor [3] proved that the Erdds-Graham-Spencer conjecture
is true for >°7_, 1/a; < n —1/2, and recently, Chen [5], Fang and Chen [2] replace
1/2 by 1/3 and 2/7, respectively.

In this paper, instead of improving the bound, we consider the following similar
problem.

Problem 1. Find the least positive number n* = 57 (n) such that when 1 <
a1 < ap < --- < a4 are integers with Zle 1/a; > n +n™, then this sum can be
decomposed into n parts so that all partial sums are > 1.

We get the following result.
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Theorem 2. Let n given, and let n* = n™(n) be defined as in Problem 1. Then

i < + < 2

156 =7 =31
Let n— = n~(n) be the least positive number such that when 1 < a1 < ay <
-+ < a, are integers with Y.°_, 1/a; < n — 7, then this sum can be decomposed
into n parts so that all partial sums are less than or equal to 1. By the results of
Guo [4], Fang and Chen [2] we know % <n- < % We have the following problem.

Problem 3. Is there any relationship between n~ and n*?

In order to prove the theorem, we only need to consider those sequences such that
each term is more than 1 and no partial sum (of two or more terms) is the inverse of
a positive integer; otherwise, we may replace the partial sum by the inverse of the
integer. We call a sequence 1 < a1 < as < - -- < ag primitive if no partial sum of
>y 1/a; is the inverse of a positive integer. In this paper, we consider multisets
(i.e., sets with repetitions allowed) of positive integers. Let A be a multiset, and
T(A) =>"7 ,1/a;, then A is primitive if 1 ¢ A and there is no multisubset A; of
A with the cardinality of A; > 2 and T'(4;)~! being an integer.

2. Notation

For a multiset A and a positive real number x, let m4(a) denote the multiplicity of
a in A, let m(A) denote the cardinality of A and let

A(x)={a:a € A a < z}.

For example, if A = {2,3,3,4,5,5}, B = {3,4,5}, then ma(1) = 0, ma(2) = 1,
ma(3) =2, ma(4) =1, ma(5) =2, m(4) =6, and

A(4) =1{2,3,3}, A\ B={2,3,5}

With this notation, we say that A has an n™-quasiunit partition if A can be de-
composed into n multisubsets Ay, As,- - -, A, with T(4;) > 1 (1 <4 < n) and
ma, (a) + ma,(a) + - - -+ ma,(a) = ma(a) for all integers a. In the following
discussion, if we write A = U, A;, we mean that >, ma,(a) = ma(a) for every
a € A, and, without loss of generality, we assume n > 2.

3. Preliminaries

Similar to Lemma 2 of [5], we have the following lemma.
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Lemma 4. Let i be a positive real number and n a positive integer. If for any
positive integer k < n, any finite primitive multiset A with T(A) > k + n has a
kT -quasiunit partition, then any finite multiset A with T(A) > n +n has an n™-
quasiunit partition.

Proof. Let A be a finite multiset of positive integers. From Lemma 1 of [5] we know
there exists an effective constructible finite primitive multiset A" and a nonnegative
integer k such that T(A) = k +T(A"), and then the lemma follows. O

Lemma 5. Letn be a positive real number and let A be a finite multiset with T(A) =
n+n and A((n—1)/n) = ByUBsU---UB,, and such that Y .-, mp,(a) = ma(a)
for all integers a. Then A has an n™"- quasiunit partition if one of the following
conditions holds:

(i) T(B;) > 1 for1 <i<mn;

(i) T(B;) <14 L for1 <i<n;

n—1

(iii) T(A("1)) < n - 2.

Proof. (i) It is obvious in this case.
(ii) If for every 1 < i < m, one has T'(B;) > 1, then it is just case (i). If there
exists 1 < j <, such that T(B;) < 1, then

(=1

— =n+n=T(A).

T(Ui_Bi) =Y T(B;) <n+
i=1

Thus A\ A((n—1)/n) # @. Add a € A\ A((n—1)/n) to B;. If T(B;) > 1, we have
1 <T(Bj) < 1+4n/(n—1). Otherwise, repeat this process for A\ A((n—1)/n)\{a}.
Since A is a finite set, we may get T(B;) > 1 after finite steps, and then the result
follows.

(iii) Tt follows from (ii) and the result of [2]. O

Let B = {by,ba,-+,b,}, C = {c1,ca, -+, cs} be multisets. We write F'(B) > F(C)
ifr>sandc¢; >b; for1 <i<s.

Lemma 6. Let B,C be multisets with F(B) > F(C) and p; > 0 for 1 < i < n.
If B=U1B; and T(B;) < p;, then C can be decomposed into C = U, C; with
T(Ci) < pi-

Proof. Let B = {by,ba,- - -, b}, C = {c1,¢2," - -, ¢cs} be multisets and ¢; > b; for
1 S ) S s. Let Biﬁ{bhbg,"',bs} = {bil,biz,“',bik} and put Ci = {cil,ciz,n-,cik}.
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4. The Proof

We are now ready to give the proof of Theorem 2.

Proof. We begin by proving n™ > 5/156. Let n > 2 and
a1 =2, ag=a3=3, as =4, a5 =--+=a13p—14 = 13;

then
13n—14

15
Let A = {a1,a2, -, a13n-14} = B1UByU---U B,,. Then there exists 1 < j <n
such that T'(B;) < 1, which yields n* > 5/156. In fact, suppose that T'(B;) > 1 for
every 1 < j < n. Without loss of generality, we assume 2 € Bj.

If {3,3} C By, then

1—5—1—1-1—1—&-1>1-i- b
2 3 3 6 156’
which is impossible.
If 3 € By, then
L L
2 3 4 12 156’
and we know that 4 ¢ By; thus
1 1 r
TBi)=~=-+-+—
which is impossible since
L L L S S A R
2 3 13 78 7 2 3 13 78 156"
Therefore we have )
r
T(B1)—§+1—3,
which is also impossible since
LR T A I R
2 13 26 7 2 13 26 156"

We have proved the left inequality in Theorem 2, and we proceed to prove the
right inequality in it, that is, ™ < 9/31.

By Lemma 4, we assume A is primitive with T(A) > n + 9/31. By Lemmas
3-5 in [2] and the proof of the main theorem in the same paper, we know that
T(A(B1(n—1)/9)) <T(A(T(n—1)/2)) <n—1/3 for n =2,3,4 and n > 11. Then
from Lemma 5(iii), A has an n™- quasiunit partition.
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To finish the proof, we treat the cases 5 < n < 10. First we have the following
equalities:

11 1 1 1 2.1 1 1 2 1
37672 171273 5T 5TBTR
1,1 1 o3, 1 12 1 1 1.1 1
57201 T2 7tuTy stuTw
1 1 1 5 1 1 1 1 6 1 1
97186 122 2 15730 100 13 2 2

Since A is primitive, the two fractions in the left-hand side of each equality above
cannot exist in T'(A) at the same time.

Below, the notation b(v) in the multiset B means that mp(b) = v.

(1)n=5

Let B =1{2,3(2),4,5(4),7(6),8,9(2),11(10), 13(12) }; then F(B) > F(A(124/9)).
By Lemma 5(ii) and Lemma 6, A has a 57~ quasiunit partition since B = U2_; B;
with By = {2,3,9(2)}, Bz = {3,4,5(2), 13}, By = {5(2),7(4),11}, By = {7(2).8,
11(7)}, Bs = {11(2),13(11)} and T(B;) < 1 4 35 for 1 <i < 5.

(2)n==6

Let B = {2,3(2),4,5(4), 7(6),8,9(2), 11(10), 12,13(12), 15, 16, 17(16)}; then F(B)
> F(A(155/9)). Let B = US_| B; with By = {2,3, 9( )}, Bo = {3,4,17(8)}, By =
(5(4),8,15,16}, By = {7(6),13,17(2)}, Bs = {11(9), 17(4)}, Bs = {11,13(11),17(2)}.
Then T(B;) < 1+ % for 1 < i < 6, which implies that A has a 6*- quasiunit par-
tition by Lemma 5 and Lemma 6.

3)n="1,8

Let B = {2,3(2),4,5(4),7(6),8,9(2), 11(10), 13(12), 15, 16, 17(16), 19(18)}, C =
B U {23(22)} Then B = Uzlei, C = U?ZlCi with B; = {2, 13(7)}, By =
{3(2),4}, B3 = {5(4),11,13(2)}, B4 = {7(6),9,13}, Bs = {11(9),9,19(2)}, Bs =
{8,13(2),15, 16,17(2),19}, By = {17(4),19(15)}, Cy = By, Cy = By, C5 =
{5(4),13(3)}, C1 = {7(6),11(2)}, C5 = {9(2),11(8),23(2)}, Cs = By, C7 = B,

={19(2),23(20)} and T(B;) < 14+ for 1 <i < 7,T(C;) < 1443 for 1 <i < 8.
It is easy to see that F(T(A(62/3))) < F(B) and F(T(A(217/9))) < F(C). From
Lemma 5(ii) and Lemma 6, we know that A has a 7*- quasiunit partition for n =7
and an 8- quasiunit partition for n = 8.

(4) n=9,10

Let B = {2,3(2),4,5(4),7(6),8,9(2), 11(10), 13(12), 15, 16, 17(16), 19(18), 23(22),
25(4),27(2)}, C = B U {28,29(28)}. Then B = UJ_,B;, C = U, C; with By =
{2,4,8,27(2)}, B> = {3(2),9(2)}, B3 = {5(4),15}, B4 = {7(6), 16}, Bs = {11(10),
25(2)}, Bs = {13(12),25}, Br = {17(16),25}, Bs = {19(18)}, By = {23(22)},
Ol = Bl U {28)}, Cz = BZ for 2 S ) S 97 010 = {29(28)}, and for all i, T(B1),T(CZ)
are less than 1. Since F/(T'(A(248/9))) < F(B), F(T(A(31))) < F(C), from Lemma
5(ii) and Lemma 6, we get n™ < 2% for n =9, 10. O
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