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Abstract
The prime number theorem is one of the most fundamental theorems of analytic
number theory, stating that the prime counting function, ⇡(x), is asymptotic to
x/ log x. However, it says little about the parity of ⇡(n) as an arithmetic function.
Using Selberg’s sieve, we give, for any fixed integers r and t, a positive lower bound
on the proportion of positive integers n such that ⇡(n) is congruent to r modulo
t. Moreover, we generalize this to the counting function of any set of primes with
positive density.

1. Introduction and Statement of Results

The prime counting function ⇡(x) has been a topic of interest for mathematicians
throughout history. One of the first main results about this function is the prime
number theorem, which states that ⇡(x) ⇠ x

log x . This asymptotic carries deep im-
plications for the distribution of prime numbers. However, there are many problems
about primes which remain unsolved in spite of this theorem. Two examples are
the Goldbach conjecture, stating that every even number greater than 2 is the sum
of two primes, and the twin prime conjecture, which claims that there are infinitely
many pairs of primes that di↵er by 2.

In spectacular fashion, there has been a spate of recent advances concerning the
gaps between prime numbers. In 2005, Goldston, Pintz and Yıldırım [4] proved that
there exist infinitely many consecutive primes which are much closer than average.
Recent work by Zhang [12] and the polymath project [10] shows that there are
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infinitely many pairs of primes di↵ering by at most an absolute constant. These
advances depend critically on sifting techniques, particularly Selberg’s sieve.

In this paper, we provide another application of Selberg’s sieve, one which does
not seem to have been considered previously in the literature. We treat ⇡(n) as
an arithmetic function, and consider its distribution mod t as n varies. The prime
number theorem alone says little about the parity of ⇡(n) or the proportion of
positive integers n for which ⇡(n) is even. Nevertheless, numerical evidence shows
that this seems to be the case about half the time:

x 100 1000 104 105 106 107

#{n < x | ⇡(n) is even}/x 0.510 0.523 0.486 0.502 0.498 0.499

Define Tr,t(x) to be the number of positive integers n < x such that ⇡(n) ⌘ r
mod t. In this paper, we prove the following.

Theorem 1.1. For any 0  r < t, we have that

lim inf
x!1

Tr,t(x)
x

� 1
16t2

.

If we assume the Hardy-Littlewood prime k-tuple conjecture, we can replace 16 by
2 above.

Remark 1. Recall that the Hardy-Littlewood prime k-tuple conjecture states that
given a = (↵1, ...,↵k), where ↵1, . . . ,↵k are distinct integers which do not cover all
residue classes to any prime modulus, the number ⇡(x; a) of positive integers m < x
for which m� ↵1, ...,m� ↵k are all prime satisfies ⇡(x; a) ⇠ Bx(log x)�k, where B
is a certain nonzero infinite product over primes. With this estimate, it is possible
to improve Theorem 2.3 by a factor of 2kk!. In our application, k = 2, explaining
the improvement of the lower bound by a factor of 8.

Remark 2. Theorem 1.1 was obtained independently and almost simultaneously
by Alboiu [1].

Theorem 1.1 is a special case of a more general theorem. We say that a set S of
primes has density � if

#{p < x : p 2 S}
#{p < x : p prime} ! � as x!1.

Define Tr,t(x;S) to be the number of positive integers n < x such that |S(n)| ⌘ r
mod t, where |S(n)| denotes the number of primes in S less than n.

Theorem 1.2. If we assume the notation above and that S has positive density �,
then

lim inf
x!1

Tr,t(x;S)
x

� �2

16t2
.

If we assume the Hardy-Littlewood prime k-tuple conjecture, we can replace 16 by
2 above.
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Examples. Two examples of sets of primes with positive density follow.

1. Let K/Q be a finite Galois extension with Galois group G, and let C be a
conjugacy class in G. Then the set of unramified primes p for which the
Frobenius automorphism �p is in C has density #C/#G by the Chebotarëv
density theorem.

2. Given a positive irrational ↵ > 1, the set of primes p of the form b↵nc for
some integer n has density ↵�1 by [8, Thm. 2].

In particular, we may consider Tr,t(x; q, a) to be the number of positive integers
n < x such that ⇡(n; q, a) ⌘ r mod t, where ⇡(x; q, a) is the counting function of the
primes congruent to a mod q. In this case, we have the following stronger result.

Theorem 1.3. For any 0  r < t, 0  a < q, where gcd(a, q) = 1, we have that

lim inf
x!1

Tr,t(x; q, a)
x

� 1
16�(q)t2

,

where �(q) is Euler’s totient function.

Remark. Results similar to those in Theorems 1.1, 1.2, and 1.3 can be obtained
by making use of Brun’s sieve. However, the constants will be weaker.

To prove our theorem, we will rely on a judicious application of Selberg’s sieve.
In particular, using either Selberg’s sieve or the prime k-tuple conjecture, we bound
the number of primes which have a particular “small” gap, thus also bounding the
number of primes which have any small gap. This lets us say that not all gaps
occurring at primes pnt+r can be small, and thus Tr,t(x) cannot be too small.

2. Selberg’s Sieve

We now introduce the main tool, Selberg’s sieve. In this, as well as many other
sieve methods (see [2], [7, Ch. 6]), we are given a finite set A and a set of primes
P, and we wish to estimate the size of the set

S(A,P) := {a 2 A | (a, p) = 1 for all p 2 P}.

To do this, we use the inclusion-exclusion principle. For each squarefree integer d,
let Ad be the set of elements in A divisible by d. Then

|S(A,P)| =
X
d|P

µ(d)|Ad|,

where P is the product of all the primes in P. Sieve methods are most useful
when the elements of Ad distribute approximately evenly in A, in which case one
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would expect |Ad| = g(d)X + Rd, where X is approximately the size of A, g(d) is
a multiplicative function that is the density of Ad in A, so that 0 < g(d) < 1, and
Rd is a small error term. Typically, a sieve method gives an estimate for |S(A,P)|
in the following form

|S(A,P)| = X
Y
p2P

(1� g(p)) + error term.

The main term is what one would expect if sifting by the primes in P are pairwise
independent events, and the error term varies from di↵erent sieve methods. How-
ever, when the primes in P are fairly large, this independence condition fails. Hence,
most sieves can only obtain an upper bound for the sifted quantity in question.

The key idea of Selberg’s sieve is to replace the Möbius function in the formula
of |S(A,P)| by an optimally chosen quadratic form so that the resulting estimates
are minimal. Formally, it is stated in the following theorem.

Theorem 2.1. (Selberg’s sieve) [7, Thm. 6.5] With notation as above, let h(d) be
the multiplicative function given by h(p) = g(p)(1� g(p))�1 and set

H(D) =
X

d<
p

D,d|P

h(d)

for any D > 1. If we assume that

|Rd|  g(d)d, (1)
g(d)d � 1 if d|P, (2)X

ypx

g(p) log p⌧ log(2x/y) for all 2  y  x, (3)

then
S(A,P)  X

H(D)
+ O

✓
D

log2 D

◆
.

With further restrictions on g(d), one may obtain an estimate for H(D) which
is frequently useful in practice.

Lemma 2.2. [6, Lemmas 5.3, 5.4] Suppose the conditions in Theorem 2.1 hold.
Moreover, suppose there exist positive real numbers , A1, A2, L such that

0  g(p)  1� 1
A1

; (4)

�L 
X

wpz

g(p) log p�  log
z

w
 A2 for all 2  w  z. (5)

If P is the product of all primes p <
p

D, then

H(D) = C(log
p

D)

✓
1 + O

✓
L

log D

◆◆
,
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where
C =

1
�(+ 1)

Y
p

(1� g(p))�1

✓
1� 1

p

◆

.

The implied constant depends only on A1, A2, and . In particular, it is independent
of L.

Remark. This is a combination of Lemmas 5.3 and 5.4 of Halberstam and Richert’s
book [6]. Note that exactly this formulation appears in [5].

In our work, we will find the following theorem, which is proved as a direct
application of Selberg’s sieve, to be useful.

Theorem 2.3. [7, Thm. 6.7] Let a = (↵1, . . . ,↵k) be distinct integers which do not
cover all residue classes to any prime modulus and ↵i  c log x for some absolute
constant c for all i. Then the number ⇡(x; a) of positive integers m  x for which
m� ↵1, . . . ,m� ↵k are all prime satisfies

⇡(x; a)  2kk!Bx(log x)�k

✓
1 + O

✓
log log x

log x

◆◆
,

where

B =
Y
p

✓
1� ⌫(p)

p

◆✓
1� 1

p

◆�k

and ⌫(p) is the number of roots of the polynomial f(m) = (m � ↵1) · · · (m � ↵k)
modulo p. The implied constant depends only on k and c.

Proof. We apply Selberg’s sieve (Theorem 2.1). Take A to be the set of polynomial
values

f(m) = (m� ↵1) · · · (m� ↵k)

for positive integers m  x. Take g(p) = ⌫(p)p�1 and X = x. Note that ⌫(p)  k
for all primes p and ⌫(p) = k for su�ciently large p; thus, conditions (1) - (5) hold
for  = k, A1 = k + 1, A2 = 5k, L = (k � 1) log(max↵i) = Ok,c(log log x). By
Lemma 2.2, we have that

H(D)�1 = k!
Y
p

✓
1� ⌫(p)

p

◆✓
1� 1

p

◆�k ✓ log D

2

◆�k ✓
1 + Ok

✓
L

log D

◆◆

= 2kk!B(log D)�k

✓
1 + Ok

✓
L

log D

◆◆
,

hence, by Theorem 2.1 with D = x log�(k�1) x, we have

⇡(x; a)  S(A,P) +
p

D  2kk!Bx(log x)�k

✓
1 + Ok

✓
max{L, log log x}

log x

◆◆
.

The result follows.
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Remark 1. The prime k-tuple conjecture predicts that ⇡(x; a) ⇠ Bx(log x)�k.

Remark 2. For our purpose, it is important that the implied constant depends
only on k and c but not the individual values of ↵i since we will take ↵i to infinity
as x!1 in the proof of Lemma 3.1.

3. Proof of Theorem 1.2

We are now ready to begin the proof of the main theorem. For each positive integer
k, let Sk be the number of positive integers n such that |S(n)| = k. We label the
elements in S by q1, q2. . . . in increasing order, and we note that Sk = qk+1� qk. In
other words, Sk is just the gap between qk and qk+1. Observe that for each prime
qm,

Tr,t(qm;S) =
X
km

k⌘r(mod t)

Sk.

By a simple application of the prime number theorem, we see that, for all A > 1,

Tr,t(x,S) =
X

qk<x,
k⌘r(mod t)

(qk+1 � qk) + Ot

✓
x

logA x

◆
, (6)

where Ot indicates that the implied constant may depend on t.
The proof of Theorem 1.2 relies on the following key lemma, which gives an upper

bound on the number of small gaps.

Lemma 3.1. Let f(x) tend to infinity as x ! 1 and f(x) = O(log x). Then the
number of pairs of primes (pi, pj) with pi, pj < x such that

0 < pi � pj < f(x)

is at most
8x

log2 x
f(x)(1 + o(1)).

To prove this lemma, we start with an auxiliary estimate, which follows from
Theorem 2.3.

Lemma 3.2. Let a be a positive integer such that a  c log x for some positive
constant c. Then the number of prime solutions pi, pj < x to pi� pj = a is at most

8x
log2 x

B(a)
✓

1 + O

✓
log log x

log x

◆◆
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where

B(a) :=
Y
p|a

✓
1� 1

p

◆�1Y
p-a

✓
1� 2

p

◆✓
1� 1

p

◆�2

and the implied constant depends only on c. Assuming the prime k-tuple conjecture,
the upper bound can be improved by a factor of 8.

Proof. In Theorem 2.3, take k = 2, a = (0,�a). Note that ⌫(p) = 1 if p|a and
⌫(p) = 2 if p - a. Then the result follows.

We also need the following estimate.

Lemma 3.3. Assuming the notation in Lemma 3.2, we have that
X

af(x),
2|a

B(a) = f(x)(1 + o(1)).

Proof.

X
af(x),

2|a

B(a) =
X

af(x),
2|a

Y
p|a

✓
1� 1

p

◆�1Y
p-a

✓
1� 2

p

◆✓
1� 1

p

◆�2

= 2
Y
p�3

✓
1� 2

p

◆✓
1� 1

p

◆�2 X
af(x),

2|a

 (a),

where

 (a) :=
Y

p|a,p�3

✓
1 +

1
p� 2

◆
.

Note that  (a) is a multiplicative function, so

L(s, ) =
1X

n=1

 (n)
ns

=
Y
p

✓
1 +

 (p)
ps

+
 (p2)
p2s

+ . . .

◆

=
Y
p

✓
1 +  (p)

✓
1
ps

+
1

p2s
+ . . .

◆◆

=
✓

1� 1
2s

◆�1 Y
p�3

✓
1 +

p� 1
(ps � 1)(p� 2)

◆
.
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Observe that L(s, ) = ⇣(s)A(s), where

A(s) =
Y
p�3

✓
1 +

1
ps(p� 2)

◆

is absolutely convergent in Re(s) > 0. Hence by the Wiener-Ikehara Tauberian
theorem [9, Cor. 8.8],

X
af(x),

2|a

 (a) =
X

af(x)/2

 (a) = A(1)
f(x)

2
(1 + o(1))

=
Y
p�3

✓
1 +

1
p(p� 2)

◆
f(x)

2
(1 + o(1)).

Therefore

X
af(x),

2|a

B(a) = 2
Y
p�3

"✓
1� 2

p

◆✓
1� 1

p

◆�2✓
1 +

1
p(p� 2)

◆#
f(x)

2
(1 + o(1))

= f(x)(1 + o(1)).

Using Lemma 3.2 and 3.3, we can give an upper bound on the number of pairs
of primes with prime gap in a given range.

Proof of Lemma 3.1. By Lemmas 3.2 and 3.3, the number of such pairs (pi, pj) is
bounded by

X
af(x)

8x
log2 x

B(a)
✓

1 + O

✓
log log x

log x

◆◆

=
8x

log2 x

✓
1 + O

✓
log log x

log x

◆◆ X
af(x),

2|a

B(a) + O(f(x))

=
8x

log2 x
f(x)(1 + o(1)).

If we take f(x) = ↵ log x with ↵ small, then we can give an upper bound on
the number of consecutive primes with an unusually small prime gap. From this
regularity result, we will now deduce the main theorem.
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Proof of Theorem 1.2. Recall from (6) that

Tr,t(x;S) =
X

qk<x,
k⌘r(mod t)

(qk+1 � qk) + Ot

✓
x

logA x

◆
.

Given a function f(x) which tends to 1 as x!1 and f(x) = O(log x), by Lemma
3.1, we know that

#{pn < x | pn+1 � pn < f(x)}  8x
log2 x

f(x)(1 + o(1)). (7)

Note that

#{qn < x | n ⌘ r(mod t)} =
�⇡(x)

t
(1 + o(1)) � �x

t log x
(1 + o(1))

by the prime number theorem and the estimate in [11, Cor. 1, P.69]. Hence

#{qn < x | qn+1�qn � f(x) and n ⌘ r(mod t)} �
✓

�x

t log x
� 8x

log2 x
f(x)

◆
(1+o(1))

In particular, for f(x)  � log x/(8t), the main term is nonnegative. Hence

Tr,t(x;S) =
X

qk<x,
k⌘r(mod t)

(qk+1 � qk) + Ot

✓
x

logA x

◆
=

1X
y=1

X
qk<x,

k⌘r(mod t),
qk+1�qk=y

yX
z=1

1 + Ot

✓
x

logA x

◆

=
1X

z=1

1X
y=z

X
qk<x,

k⌘r(mod t),
qk+1�qk=y

1 + Ot

✓
x

logA x

◆
�

� log x/(8t)X
z=1

X
qk<x,

k⌘r(mod t),
qk+1�qk�z

1 + Ot

✓
x

logA x

◆

�
� log x/(8t)X

z=1

✓
�x

t log x
� 8x

log2 x
z

◆
(1 + o(1)) + Ot

✓
x

logA x

◆

=

 
�x

t log x

� log x

8t
� 8x

2 log2 x

✓
� log x

8t

◆2
!

(1 + o(1))

=
�2x

16t2
(1 + o(1)).

Therefore, we have
Tr,t(x;S)

x
� �2

16t2
(1 + o(1)),

and so
lim inf
x!1

Tr,t(x;S)
x

� �2

16t2
.
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If we assume the prime k-tuple conjecture, the upper bound in Lemma 3.2 can be
improved by a factor of 8. Proceeding analogously in our above proof, we obtain

lim inf
x!1

Tr,t(x;S)
x

� �2

2t2
.

Proof of Theorem 1.3. Theorem 1.3 follows mutatis mutandis by considering only
prime gaps divisible by q and primes congruent to a mod q in Lemma 3.2, in which
case we obtain an extra factor of �(q) in the denominator of the upper bound in
(7). We also recall that ⇡(x; q, a) ⇠ ⇡(x)/�(q) by Dirichlet’s theorem on arithmetic
progressions.
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